

1958-2

Summer School and Conference Mathematics, Algorithms and Proofs

11 - 29 August 2008

Lectures on Constructive Mathematics-II

Douglas S. Bridges Dept. of Mathematics & Statistics, University of Canterbury, Chirstchurch, New Zealand

Lectures on Constructive Mathematics—II

Douglas S. Bridges

Department of Mathematics & Statistics,

University of Canterbury,

Christchurch, New Zealand

Separation theorems

Suppose we start at a point ξ in the interior of a located subset C of a normed space X and move linearly towards a point z in the metric complement of C. Are we able to tell when we are crossing the boundary

$$\partial C = \overline{C} \cap \overline{\sim C}$$

of C?

In general, the constructive answer is no. However, our geometric intuition suggests that when C is convex, we might succeed in pinpointing boundary crossing points.

Proposition: Let C be an open convex subset of a Banach space X such that $C \cup -C$ is dense in X, and let $\xi \in C$. For each $z \in -C$ and each $t \in [0, 1]$ write

$$z_t \equiv t\xi + (1-t) z.$$

Then

(i)
$$\gamma(\xi, z) \equiv \inf \{t \in [0, 1] : z_t \in C\}$$
 exists, and $0 < \gamma(\xi, z) < 1$;

(ii) $z_{\gamma(\xi,z)}$ is the unique intersection of the segment $[\xi, z]$ with ∂C ;

(iii) if $\gamma(\xi, z) < t \leq 1$, then $z_t \in C$; and

(iv) if $0 \leq t < \gamma(\xi, z)$, then $z_t \in -C$.

Moreover, the mapping $(\xi, z) \rightsquigarrow z_{\gamma(\xi, z)}$ of $C \times -C$ into ∂C is continuous at each point of $C \times -C$.

For fixed $\xi \in C$, we call the mapping $z \rightsquigarrow z_{\gamma(\xi,z)}$ in the foregoing proposition the **boundary crossing map of** C relative to ξ .

A subset C of a vector space X over \mathbb{K} is called a **cone** if for all $x, y \in C$ and all t > 0, both x + y and tx belong to C.

In that case, C is convex.

The closure of a cone is a cone, as is the intersection of two cones.

If K is a convex subset of X, then the set

$$c(K) = \{tx : x \in K, t > \mathbf{0}\}$$

is a cone, the cone generated by the convex set K.

If X is a normed space and K is open, then so is c(K).

If K is a bounded, located, convex subset of X such that $\rho(0, K) > 0$, then c(K) is located.

A linear subset H of a normed space X is called a **hyperplane** if there exist an **associated vector** $x_0 \in X$ and a positive number c such that

$$|x - x_0|| \ge c$$
 for each $x \in H$, and

▷ each $x \in X$ is represented (uniquely) in the form $x = tx_0 + y$ with $t \in \mathbb{K}$ and $y \in H$.

The **kernel**, $ker(u) = u^{-1}(0)$, of a nonzero bounded linear functional on X is a hyperplane.

Proposition: Let X be a normed space, and H a hyperplane in X with associated vector x_0 . Then there exists a unique bounded linear functional u on X such that ker u = H and $u(x_0) = 1$.

A half space of a normed space X is a convex subset K such that ∂K is a hyperplane and the set

$$\{x \in X : x \in K \lor -x \in K\}$$

is dense in X.

We are now ready for the **basic separation theorem**:

Let X be a separable normed space, K_0 a bounded, located, open, convex subset of X such that $\rho(0, K_0) > 0$, and x_0 a point of X such that $-x_0 \in K_0$. Then there exists an open half-space K of X such that $K_0 \subset K$, $\rho(x_0, K) > 0$, and ∂K is a located subspace of X that is a hyperplane with associated vector x_0 . The proof illustrates an important observation about classical proofs using Zorn's lemma): for separable spaces it is often possible to replace such a proof by a constructive one that uses an induction argument.

The basic idea of the constructive proof is this. Given a dense sequence $(x_n)_{n \ge 1}$ in X, carry out a succession of located convex enlargements of K_0 such that for $n \ge 1$,

 \triangleright the cone generated by the *n*th enlargement K_n is close to at least one of the points x_n and $-x_n$, and

 \triangleright the union of the cones $c(K_n)$ is the desired open half-space.

The idea may seem simple, but the details are very complicated.

The full separation theorem:

Let A and B be bounded convex subsets of a separable normed space X such that the algebraic difference

$$\{y - x : x \in X, y \in B\}$$

is located and the mutual distance

$$d \equiv \inf \left\{ \|y - x\| : x \in A, y \in B \right\}$$

is positive. Then for each $\varepsilon > 0$ there exists a normed linear functional u on X, with norm 1, such that

$$\operatorname{\mathsf{Re}} u(y) > \operatorname{\mathsf{Re}} u(x) + d - \varepsilon$$

for all $x \in A$ and $y \in B$.

Corollary: Let x be an element of a nontrivial separable normed space X, and let $\varepsilon > 0$. Then there exists a normed linear functional u on X such that ||u|| = 1 and $u(x) > ||x|| - \varepsilon$.

Proof: If $x \neq 0$, apply the separation theorem with $A = \{0\}$ and $B = \{x\}$.

In the general case, choose a nonzero vector y such that $||x - y|| < \varepsilon/2$, and construct a normed linear functional u on X such that ||u|| = 1 and $u(y) > ||y|| - \varepsilon/2$. Then

$$u(x) \geqslant u(y) - |u(x) - u(y)| > \|y\| - rac{arepsilon}{2} - \|x-y\| > \|x\| - arepsilon$$

The previous proposition is used in the proof of the **Hahn–Banach theorem**:

Let v be a nonzero bounded linear functional on a linear subset Y of a separable normed linear space X such that ker v is located in X. Then for each $\varepsilon > 0$ there exists a normed linear functional u on Xsuch that $||u|| < ||v|| + \varepsilon$ and u(y) = v(y) for each $y \in Y$.

In the constructive context we deal only with the extension of linear functionals on subspaces of a separable normed space. The standard classical proofs extending the theorem to nonseparable normed spaces depend on Zorn's lemma and are therefore nonconstructive. In **RUSS** there is an example where it is impossible to obtain an extended linear function u such that ||u|| = ||v||.

Ishihara has shown that such an extension can be found when the norm function on X is Gâteaux differentiable.

The Hahn–Banach theorem has some surprising applications, like the following (whose classical proof is almost trivial).

Proposition: Let x_1, \ldots, x_n be elements of an infinite-dimensional normed space X, and let $\varepsilon > 0$. Then there exist linearly independent elements e_1, \ldots, e_n of X such that $||x_k - e_k|| < \varepsilon$ for each k.

Proof: First construct a finite-dimensional subspace V of span $\{x_1, \ldots, x_n\}$ such that for each *i* there exists $y_i \in V$ with $||x_i - y_i|| < \varepsilon/2$. Embed V in an *n*-dimensional subspace W of X.

WLOG $y_1 \neq 0$. Set $e_1 \equiv y_1$.

Suppose we have found e_1, \ldots, e_k in W such that $||y_i - e_i|| < \varepsilon/2$ for $1 \le i \le k < n$. Let $V_k \equiv \text{span} \{e_1, \ldots, e_k\}$.

Construct a normed linear functional u on W such that $u(V_k) = \{0\}$ and ||u|| = 1.

Pick $z \in W$ such that $||z|| = \varepsilon/2$ and $u(z) > \varepsilon/3$.

If $u(y_{k+1}) \neq 0$, then $\rho(y_{k+1}, V_k) > 0$ and we set $e_{k+1} \equiv y_{k+1}$.

If $u(y_{k+1}) < \varepsilon/3$, then $u(y_{k+1} - z) \neq 0$, $\rho(y_{k+1} - z, V_k) > 0$, and we set $e_{k+1} \equiv y_{k+1} - z$.

Locally Convex Spaces

A locally convex space consists of a linear space X over \mathbb{K} , a family $(p_i)_{i \in I}$ of seminorms on X, and the equality and compatible inequality defined by

$$\begin{array}{ll} x = y & \Longleftrightarrow & \forall_{i \in I} \left(p_i \left(x - y \right) = \mathbf{0} \right), \\ x \neq y & \Longleftrightarrow & \exists_{i \in I} \left(p_i \left(x - y \right) > \mathbf{0} \right). \end{array}$$

The corresponding **locally convex topology** on X is the family τ_X of all subsets of X that are unions of sets of the form

$$U(a, F, \varepsilon) = \left\{ x \in X : \sum_{i \in F} p_i(x - a) < \varepsilon \right\}$$

where $a \in X$, F is an inhabited finitely enumerable subset of I, and $\varepsilon > 0$.

With natural modifications, we can extend notions from normed to locally convex spaces.

For example, a subset S of the locally convex space $(X, (p_i)_{i \in I})$ is said to be **located** (in X) if

$$\inf\left\{\sum_{i\in F}p_i\left(x-y\right):y\in S\right\}$$

exists for each $x \in X$ and each finitely enumerable subset F of I.

Consider the linear space $\mathcal{B}(X, Y)$ of all bounded linear mappings between the locally convex spaces X and Y.

This set becomes a locally convex space when endowed with the seminorms p_x defined by

$$p_x(T) = ||Tx|| \quad (x \in X, T \in \mathcal{B}(X, Y)).$$

We denote the unit ball of $\mathcal{B}(X, Y)$ by $\mathcal{B}_1(X, Y)$ or just \mathcal{B}_1 . When X = Y, we usually write $\mathcal{B}(X)$ and $\mathcal{B}_1(X)$ rather than $\mathcal{B}(X, Y)$ and $\mathcal{B}_1(X, Y)$.

In the special case where Y is the ground field \mathbb{K} , we obtain the space of all bounded linear functionals on X; this space is called the **dual** of X, and is denoted by X^* ; its unit ball is denoted by X_1^* . The topology associated with the family of seminorms $(p_x)_{x \in X}$ on X^* is called the **weak**^{*} **topology** on X^* .

When we are dealing with, for example, total boundedness relative to the locally convex structure on X^* , we speak of weak*-total boundedness.

Banach–Alaoglu theorem: If X is a separable normed space, then X_1^* is weak*-complete and weak*-totally bounded.

It is straightforward to prove the weak*-completeness of X_1^* .

Weak*-total boundedness of X_1^* is a lot trickier to establish; we sketch the ideas.

Let $F = \{x_1, \ldots, x_m\}$ be a finitely enumerable subset of X, let $M > 4 + \max\{||x_i|| : 1 \le i \le m\},$

and let $0 < \varepsilon < 1$.

Construct a finite-dimensional subspace X_0 of X such that for $1 \leq i \leq m$, $\rho(x_i, X_0) < \varepsilon/m$ and therefore there exists $y_i \in X_0$ with $||x_i - y_i|| < \varepsilon/m$.

If $X_0 = \{0\}$, then life is easy. So we assume that X_0 has positive dimension. Then every element of X_0^* is normed, and X_0^* , taken with the operator norm, is a finite-dimensional Banach space. Hence its unit ball is compact relative to the operator norm.

Each nonzero element of X_0^* has its kernel located in X_0 ; since X_0 is locally compact, this kernel is locally compact and hence is located *in the space* X. It follows that the Hahn–Banach theorem can be applied to extend nonzero bounded linear functionals from X_0 to X.

Let $\{u_1^0, \ldots, u_n^0\}$ be an ε/m -approximation to the unit ball of X_0^* in the operator norm, such that $0 < ||u_k^0|| < 1$ for each k.

Use the Hahn–Banach theorem to construct normed linear functionals u_1, \ldots, u_n in X_1^* such that $u_k(x) = u_k^0(x)$ for each $x \in X_0$ and each k.

Given $u \in X_1^*$, we can find k such that $|u(x) - u_k^0(x)| < \varepsilon/m$ for all $x \in X_0$ with $||x|| \leq 1$. Then

$$\sum_{i=1}^m |u(x_i) - u_k(x_i)| < M\varepsilon.$$

Thus $\{u_1, \ldots, u_n\}$ is an $M\varepsilon$ -approximation to X_1^* relative to F.

This technique of cutting down to a finite-dimensional subspace and then applying the Hahn-Banach theorem is fundamental in the constructive theory of duality.

Let X be a normed space. For a fixed vector $x \in X$, the linear functional $u \rightsquigarrow u(x)$ on X^* is weak*-uniformly continuous on X_1^* .

Any element of X^{**} (the dual of X^*) that is uniformly continuous on X_1^* can be approximated arbitrarily closely by functionals of this special form.

Proposition: Let X be a separable normed space, and ϕ a linear function on X^* that is weak*-uniformly continuous on the unit ball X_1^* . Then for each $\varepsilon > 0$ there exists $x \in X$ such that $||x|| < 3 ||\phi||$ and

$$|\phi(u) - u(x)| < \varepsilon \quad (u \in X_1^*).$$

If X is complete, then this approximation can be made exact.

Theorem: Let X be a separable Banach space, and ϕ a linear functional on X^{*} that is weak^{*}-uniformly continuous on X₁^{*}. Then there exists $x \in X$ such that $\phi(u) = u(x)$ for each $u \in X^*$. **Proof:** We may assume that $\|\phi\| < 1$. Recursively applying the preceding proposition, construct a sequence $(x_n)_{n \ge 1}$ of vectors in X such that for each n,

$$\left|\phi(u)-\sum_{k=1}^n u(x_k)\right|<rac{1}{2^n} \quad (u\in X_1^*)$$

and $||x_n|| < 3/2^{n-1}$.

The series $\sum_{n=1}^{\infty} x_n$ then converges to an element x of the complete space X.

Using the linearity and continuity of u, and letting $n \longrightarrow \infty$ in (??), we obtain the desired conclusion.

Let H be a nontrivial Hilbert space. One of the topologies on $\mathcal{B}(H)$ that is important in operator-algebra theory is the **weak-operator topology** τ_w : the locally convex topology defined by the seminorms of the form $T \rightsquigarrow |\langle Tx, y \rangle|$ with x, y in H.

Classically, the sets of the type

$$\left\{T \in \mathcal{B}(H) : \sum_{i,j=1}^{n} \left|\left\langle Te_{i}, e_{j}\right\rangle\right| < \delta\right\},$$

with $\delta > 0$ and $\{e_1, \ldots, e_n\}$ a set of pairwise orthogonal unit vectors in H, form a base of weak-operator neighbourhoods of 0 in $\mathcal{B}(H)$.

This is not the case constructively. However, it is constructively provable that the sets of the stated type form a base of weak-operator neighbourhoods of 0 in the unit ball $\mathcal{B}_1(H)$.

Proposition: The unit ball $\mathcal{B}_1(H)$ of $\mathcal{B}(H)$ is τ_w -totally bounded.

Proof: Let $\{e_1, \ldots, e_n\}$ be a finite set of pairwise orthogonal unit vectors generating a finite-dimensional subspace H_0 of H. It will suffice to prove that $\mathcal{B}_1(H)$ is totally bounded with respect to the seminorm

$$p_{jk}: T \rightsquigarrow \sum_{j,k=1}^{n} \left| \left\langle Te_j, e_k \right\rangle \right|.$$

Let P be the projection of H on H_0 . Then $\mathcal{B}(H_0)$ is a finite-dimensional Banach space, and hence has a totally bounded unit ball, relative to the operator norm. Let $\{T_1^0, \ldots, T_m^0\}$ be an ε/n^2 -approximation to $\mathcal{B}_1(H_0)$, and consider any $T \in \mathcal{B}_1(H)$. The restriction $(PT)_0$ of PT to H_0 belongs to $\mathcal{B}_1(H_0)$, so there exists i such that $\|(PT)_0 - T_i^0\| < \varepsilon/n^2$. Also, $T_i^0 P \in \mathcal{B}_1(H)$. Thus if $1 \leq j, k \leq n$, then

$$\left|\left\langle \left(T - T_i^{\mathbf{0}} P\right) e_j, e_k \right\rangle \right| = \left|\left\langle \left(T - T_i^{\mathbf{0}}\right) e_j, P e_k \right\rangle \right| = \left|\left\langle P\left(T - T_i^{\mathbf{0}}\right) e_j, e_k \right\rangle \right|$$
$$= \left|\left\langle \left((PT)_{\mathbf{0}} - T_i^{\mathbf{0}}\right) e_j, e_k \right\rangle \right| \leq \left\| (PT)_{\mathbf{0}} - T_i^{\mathbf{0}} \right\| < \frac{\varepsilon}{n^2}.$$

Hence $\sum_{j,k=1}^{n} \left| \left\langle \left(T - T_{i}^{0}P \right) e_{j}, e_{k} \right\rangle \right| < \varepsilon$. We now see that $\left\{ T_{1}^{0}P, \ldots, T_{m}^{0}P \right\}$

is an ε -approximation to $\mathcal{B}_1(H)$ relative to the seminorm p_{jk} .

Classically, a linear functional ϕ on $\mathcal{B}(H)$ is τ_w -continuous if and only if it has the following special continuity property.

SC: There exist $\delta > 0$ and a set $\{e_1, \ldots, e_n\}$ of pairwise orthogonal unit vectors in H such that for each $T \in B(H)$, if $\sum_{i,j=1}^n |\langle Te_i, e_j \rangle| < \delta$, then $|\phi(T)| < 1$.

Constructively, techniques like those used to characterise the linear functionals on a dual space that are weak*-uniformly continuous on the unit ball of the dual enable us to prove the **Proposition:** Let H be a nontrivial Hilbert space, and let ϕ be a linear functional on $\mathcal{B}(H)$ with the property **SC**. Then for each $\varepsilon > 0$ there exist a finite set $\{e_1, \ldots, e_n\}$ of pairwise orthogonal unit vectors in H and elements c_{jk} $(1 \leq j, k \leq n)$ of \mathbb{K} , such that

$$\left|\phi(T) - \sum_{j,k=1}^{n} c_{jk} \left\langle T e_{j}, e_{k} \right\rangle \right| < \varepsilon$$

for all $T \in \mathcal{B}_1(H)$.

dsb lectures part II: 'Mathematics, Algorithms and Proofs, ICTP Trieste, August 2008