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Introduction

This document contains two examples of the use of distributive lattices as spaces in commutative
algebra. The first example is a simple proof of Forster’s Theorem about the number of generators
over a ring of finite Krull dimension. The second example is the beginning of the theory of Prüfer
Domain, which has to be thought of as a non Noetherian version of the theory of Dedekind
Domain.

The general framework of this paper is a reformulation Hilbert’s program using the theory
of locales, also known as formal or pointfree topology [33, 13, 40]. Formal topology presents a
topological space, not as a set of points, but as a logical theory which describes the lattice of
open sets. Points are then infinite ideal objects, defined as particular filter of neighbourhoods,
while basic open sets are thought of as primitive symbolic objects or observable facts [14]. This
is a reverse of the traditional conceptual order in topology which defines opens as particular sets
of points [40]. Some roots of this approach involve Brouwer’s notion of choice sequences, and
an analysis of the status of infinite objects and of universal quantification over these objects
in constructive mathematics [37]1. The application to Hilbert’s program is then the following.
Hilbert’s ideal objects are represented by points of such a formal space. There are general meth-
ods to “eliminate” the use of points, close to the notion of forcing and to the “elimination of
choice sequences” in intuitionistic mathematics, which correspond to Hilbert’s required elimi-
nation of ideal objects. Such a technique has been used in infinitary combinatorics, obtaining
intuitionistic versions of highly non constructive arguments [4, 5, 6]. More recently, several
works [7, 9, 10, 11, 12, 17, 20, 32] can be seen as a partial realisation of Hilbert’s program in
the field of commutative algebra.

We think that some of our proofs illustrate well Hilbert’s ideas of elimination of ideal ele-
ments. The points (prime ideals, valuations, . . .) constitute a powerful intuitive help, but they
are used here only as a suggestive mean with no actual existence.

The document is written in the usual style of constructive algebra, with [38] as a basic
reference. In particular, we recall that an integral domain has a decidable equality and we
consider only discrete fields. Each of our statement can be understood as a specification of a
program, and its proof can be seen as a program realising this specification together with its
proof of correctness.

1Logically such a quantification is a priori a Π1
1 statement and it is analysed in the form of a Σ0

1 equivalent
assertion.

1



1 Forster’s Theorem

1.1 Zariski spectrum and Krull dimension

Let R be a commutative ring with unit. Following Joyal [32], we define the Zariski spectrum of
R as the distributive lattice generated by symbols D(f), f ∈ R and relations

D(0) = 0 D(1) = 1 D(fg) = D(f) ∧D(g) D(f + g) 6 D(f) ∨D(g)

We write D(f1, . . . , fm) for D(f1) ∨ . . . ∨D(fm). It can be shown directly that

D(g1) ∧ . . . ∧D(gn) 6 D(f1, . . . , fm)

holds if, and only if, the monoid generated by g1, . . . , gn meets the ideal generated by f1, . . . , fm

[9]. Thus D(f1, . . . , fm) can be defined as the radical of the ideal generated by f1, . . . , fm (with
inclusion as ordering), and we have a point-free and elementary description of the basic open
sets of the Zariski spectrum of R.

In the case where R is a polynomial ring over a field K, D(f1, . . . , fm) can be thought of as
the complement of the sets of common zeros of f1, . . . , fm in an algebraic closure of K. This is
the content of the Nullstellensatz theorem. But our elementary presentation is actually closer
to the one of Kronecker [34], for which the common zeros were symbols in a suitable extension
of K.

If a1, . . . , am and b1, . . . , bn generates the same ideal, we have

D(a1, . . . , am) = D(b1, . . . , bn)

and hence, we can write D(I) = D(a1, . . . , am) if I is the ideal generated by a1, . . . , am.
In [10] we present the following elementary caracterisation of Krull dimension. If a ∈ R we

define the boundary of a as being the the ideal generated by a and the elements b such that ab
is nilpotent (or equivalently D(ab) = 0). Thus an element of the boundary Na of a is of the
form at + b with D(ab) = 0.

Theorem 1.1 The dimension of R is <n + 1 if, and only if, for all a ∈ R the dimension of
R/Na is <n.

This can actually be taken as a constructive definition of Krull dimension, if we define a
ring R to be of dimension <0 if, and only if, R is trivial. This inductive definition of being of
dimension <n is then equivalent to the usual definition that there is no strictly increasing chain
of prime ideals of length n [10]. In [9] it is shown, in an elementary and constructive way, that
the dimension of a polynomial ring with n variables over a discrete field is 6 n.

1.2 The stable range theorem

All the arguments will be based on the following trivial remark, that we state explicitely since
it will motivate the notion of dimension that we present in the last section.

We shall the following two remarks.

Lemma 1.2 D(a + b) ∨D(ab) = D(a) ∨D(b)

Lemma 1.3 If by is nilpotent then 1 = D(b1, . . . , bk, b, y) implies 1 = D(b1, . . . , bk, b + y).
More generally, if by ∈ R is nilpotent in R[a−1] then D(a) 6 D(b1, . . . , bk, b, y) implies D(a) 6
D(b1, . . . , bk, b + y).
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Our inductive definition of dimension allows more perspicuous proofs. For instance, here is
a proof of the Bass “Stable Range” theorem.

Theorem 1.4 If the dimension of R if <n and 1 = D(a, b1, . . . , bn) there exists x1, . . . , xn such
that 1 = D(b1 + ax1, . . . , bn + axn).

Proof. The proof is by induction on n. Let I be the ideal boundary of bn. We have bn ∈ I and
the dimension of R/I is <n− 1. By induction, we can find x1, . . . , xn−1 such that

1 = D(b1 + ax1, . . . , bn−1 + axn−1)

in R/I. This means that there exists xn such that D(bnxn) = 0 and

1 = D(b1 + ax1, . . . , bn−1 + axn−1) ∨D(bn) ∨D(xn)

Since
1 = D(b1 + ax1, . . . , bn−1 + axn−1) ∨D(bn) ∨D(a)

this implies by distributivity

1 = D(b1 + ax1, . . . , bn−1 + axn−1) ∨D(bn) ∨D(axn)

hence the result by Lemma 1.3.

It follows then for instance directly that a stably free module of rank ≥ n over a ring of
dimension <n is free [35], without any noetherianity hypotheses. We can in the same way prove
Kronecker’s theorem about algebraic sets [11, 34].

We shall need a variation on this result. If L ∈ Rn is a vector (a1, . . . , an) we write D(L)
for D(a1, . . . , an).

Lemma 1.5 If a ∈ R and the dimension of R[a−1] is <n then for any L ∈ Rn there exists
X ∈ Rn such that D(a) 6 D(L− aX). Furthermore, we can find X of the form aY, Y ∈ Rn.

Proof. We let L be (b1, . . . , bn) and we reason by induction on n. Let N be the ideal boundary
of bn in R[a−1], and I the ideal N ∩R. It can be checked that I that (R/I)[a−1] is isomorphic
to R[a−1]/N . Hence we can apply the induction hypothesis and compute (x1, . . . , xn−1) ∈ Rn−1

such that
D(a) 6 D(b1 − ax1, . . . , bn−1 − axn−1)

in R/I. In turn, this means that we can find xn such that D(axnbn) = 0 and

D(a) 6 D(b1 − ax1, . . . , bn−1 − axn−1) ∨D(bn) ∨D(xn)

in R. This implies

D(a) 6 D(b1 − ax1, . . . , bn−1 − axn−1) ∨D(bn) ∨D(axn)

hence the result by lemma 1.3. Finally, we can apply the result with a2 instead of a since
R[a−2] = R[a−1] and D(a) = D(a2).

Corollary 1.6 Let M be a n×n matrix of element in R and δ its determinant. If the dimension
of R[δ−1] is <n then for each C ∈ Rn there exists X ∈ Rn such that D(δ) 6 D(MX − C).
Furthermore we can find X of the form δY, Y ∈ Rn.
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Proof. The proof is based on Cramer formulae. Let M̃ be the adjoint matrix of M , and L = M̃C.
We have then M̃(MX −C) = δX −L for an arbitrary column vector X ∈ Rn. Hence the ideal
generated by the coordinates of δX − L is included in the one generated by the coordinates of
MX − C, and

D(δX − L) 6 D(MX − C)

By Lemma 1.5 we can find one X ∈ Rn such that D(δ) 6 D(δX − L), and hence D(δ) 6
D(MX − C) as desired.

1.3 The Basic Element Theorem

Let F be a rectangular matrix of elements in R of columns C1, . . . , Cp, and G the matrix of
columns C2, . . . , Cp. Let ∆k = ∆k(F ) be the ideal generated by all minors of F of order k.

Theorem 1.7 Fix 0<k 6 p. Suppose that for each minor ν of G of order k the ring R[ν−1] is
of dimension <k. Then there exists t2, . . . , tp such that D(∆k) 6 D(C1 + t2C2 + . . .+ tpCp) and
D(C1) 6 D(C1 + t2C2 + . . . + tpCp).

Proof. Clearly, if D(ν) 6 D(C1 + t2C2 + . . . + tpCp) for all minor ν of G of order k then
this holds also for all minor ν of F of order k. It is also enough to show that for one minor
ν of G of order k we can find t2, . . . , tp such that D(ν) 6 D(C1 + t2C2 + . . . + tpCp) and
D(C1) 6 D(C1 + t2C2 + . . .+ tpCp) because we can then apply this successively to all minors of
G of order k. But this is a direct consequence of Corollary 1.6: by this lemma, we find t2, . . . , tp
(with ti = 0 for the columns outside the minor ν) that are multiple of ν and such that

D(ν) 6 D(C1 + t2C2 + . . . + tpCp)

Since t2, . . . , tp are all multiple of ν we have also D(C1) 6 D(ν) ∨ D(C1 + t2C2 + . . . + tpCp)
and hence D(C1) 6 D(C1 + t2C2 + . . . + tpCp) as required.

Corollary 1.8 Suppose that 1 ∈ ∆1 and that for each k > 0 and for each minor ν of G of order
k the ring R[ν−1]/∆k+1 is of dimension <k. Then there exists t2, . . . , tp such that the vector
C1 + t2C2 + . . . + tpCp is unimodular.

Proof. Using the theorem, we define a sequence of vectors Ci
1, i = 1, . . . with C1

1 = C1. For
each k > 0, reasoning in R/∆k+1, we build Ck+1

1 of the form Ck
1 + u2C2 + . . . + upCp such that

D(∆k) 6 D(Ck+1
1 ) and D(Ck

1 ) 6 D(Ck+1
1 ) in R/∆k+1. This means that we have, in R

D(Ck
1 ) ∨D(∆k) 6 D(Ck+1

1 ) ∨D(∆k+1)

Hence the result since D(∆1) = 1 and D(∆k) = 0 for k large enough.

From this follows directly, like in [25, 30], the version of Serre’s “Splitting-off” theoremand
Forster-Swan theorem, with Krull dimension (and without noetheriannity hypothesis). For
instance, here is a version of Forster’s theorem [27], without noetherianity hypothesis.

Corollary 1.9 Let M be a module which is finitely generated over a ring R of dimension 6 d.
If M is locally generated by k elements then M can be generated by d + k elements.

Proof. M is a quotient of a finitely presented module M ′ which has a Fitting ideal of order k
which contains 1, and we can as well suppose that M ′ = M . Let m1, . . . ,mp be a system of
generators of M and F be a presentation matrix of M . If p > d + k we have 1 ∈ ∆k(F ) and
using theorem 1.7, we can find t2, . . . , tp such that M is generated by m2− t2m1, . . . ,mp− tpm1.
Hence we can generate M by p− 1 elements.
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2 Prüfer Domain and Algebraic Curves

2.1 Distributive lattices

The general methodology is to represent Hilbert’s notion of “ideal” elements as a generic point
of a formal space. This formal space is especially simple in the case of spectral spaces [33],
introduced in [44], since it is then a distributive lattice, the lattice of compact open subsets.
Most of the topological spaces introduced in commutative algebra are spectral spaces. In our
approach, we work instead directly with the corresponding distributive lattice of compact open,
which is thought of as a formal presentation of the space. The analysis of the structure of
the associated distributive lattice can be carried out using ideas from sequent calculus and
cut-elimination [7].

2.1.1 Krull dimension

Let D be a distributive lattice. A point of D can be defined classically as a lattice map α from
D to the lattice 2 with two elements. If u is an element of D, we may write α ∈ u for α(u) = 1
and think of u as a (basic open) set of points. The set Sp(D) of points of D is then a topological
space, and D is thought of as a pointfree description of this space. If α and β are points of D
then we write α 6 β to mean that α ∈ u implies β ∈ u for all u in D. One defines classically
Kdim D < n as meaning that there is no strict chain α1 < . . . < αn of points of D. Inpired by
Espanol and Joyal [26] we gave in [9] the following pointfree characterisation of this notion.

Proposition 2.1 Let us consider the distributive lattice Kn(D) generated by the symbols
u1(r), . . . , un(r) for r in D and relations expressing that each ui is a lattice map and that we
have ui(r) 6 ui+1(r). We have Kdim D < n iff for any sequence r2, . . . , rn in D we have

u2(r2) ∧ . . . ∧ un(rn) 6 u1(r2) ∨ . . . ∨ un−1(rn)

in the lattice Kn(D).

In [10], we give the following alternative constructive definition.

Proposition 2.2 We have Kdim D < n iff any sequences a1, . . . , an has a complementary
sequence, that is a sequence b1, . . . , bn such that

1 = a1 ∨ b1, a1 ∧ b1 6 a2 ∨ b2, . . . , an ∧ bn = 0

In particular, we have that Kdim D < 1 iff any element has a complement, that is iff D is a
Boolean algebra.

2.1.2 Going-up and going-down property

Any map φ : Z → V between two distributive lattices defines by composition a continuous map
φ∗ : Sp(V ) → Sp(Z). In this subsection, we collect some pointfree formulations of properties of
the map φ∗. The proofs are omitted.

It can be seen classically that the map φ∗ is surjective iff the map φ is injective. Notice
that the lattice map φ is injective iff u 6 v for u, v in Z is equivalent to φ(u) 6 φ(v). If we see
the lattices Z, V as formal theory presenting the points of the spaces Sp(Z), Sp(V ) it means
that the surjectivity of the map φ∗ can be interpreted formally as a conservativity statement.
(A typical application is for expressing and proving constructively extension theorems, like
the Hahn-Banach Theorem, which become conservativity statements between two propositional
geometric theories when expressed in a pointfree way [7, 15].)
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Proposition 2.3 The map φ∗ has the going-up property iff whenever φ(u) 6 y ∨ φ(v) there
exists w ∈ Z such that φ(w) 6 y and u 6 w ∨ v. The map φ∗ has the going-down property iff
whenever y ∧ φ(u) 6 φ(v) there exists w ∈ Z such that y 6 φ(w) and w ∧ u 6 v.

The corresponding map on points φ∗ : Sp(V ) → Sp(Z) satisfies the going-up property iff
whenever φ∗(β) 6 α1 there exists β1 > β such that α1 = φ∗(β1). It satisfies the going-down
property iff whenever α1 6 φ∗(β) there exists β1 6 β such that α1 = φ∗(β1).

2.1.3 Going-up property and Krull dimension

If φ∗ has the going-up or going-down property and is surjective, it is clear in term of points that
this implies Kdim Sp(Z) 6 Kdim Sp(V ). The following proposition expresses this implication
in a pointfree way.

Proposition 2.4 If φ : Z → V has the going-up or going-down property and is injective and
Kdim V < n then Kdim Z < n.

Proof. We give only the proof for the going-up property (the result for the going-down property
follows by duality). Let a1, . . . , an be an arbitrary sequence in Z. Since Kdim V < n we can
find v1, . . . , vn in V such that

1 = φ(a1) ∨ v1, φ(a1) ∧ v1 6 φ(a2) ∨ v2, . . . , φ(an) ∧ vn = 0

Since φ has the going-up property, we find successively b1, . . . , bn such that

φ(b1) 6 v1, . . . , φ(bn) 6 vn

and
1 = a1 ∨ b1, a1 ∧ b1 6 a2 ∨ b2, . . . , an−1 ∧ bn−1 6 an ∨ bn

Since φ is injective we get also an ∧ bn = 0 from φ(an ∧ bn) = 0 and this shows that a1, . . . , an

has a complementary sequence.

2.2 The Zariski lattice of a ring

Joyal [32] defines the Zariski lattice of a commutative ring R to be the lattice Zar(R) generated
by the symbols D(a), a ∈ R and relations (called support relations [32])

D(0) = 0, D(1) = 1, D(ab) = D(a) ∧D(b), D(a + b) 6 D(a) ∨D(b)

If b1, . . . , bn are elements in R we write D(b1, . . . , bn) for D(b1) ∨ . . . ∨ D(bn). Because of the
equality D(a)∧D(b) = D(ab), any element of Zar(R) can be written in the form D(b1, . . . , bn).
In general this cannot be simplified further2. It is direct to check from the support relations
that we have D(a) 6 D(b1, . . . , bm) whenever a, or more generally some power of a, belongs
to the ideal generated by b1, . . . , bm. The reverse implication, which characterises the lattice
Zar(R) can be obtained by a cut-elimination argument [7]. In this case, it can be presented in
the following algebraic way. A particular realisation of a lattice satisfying the support relations
is obtained by taking the lattice of radical of finitely generated ideals3 of R and D(b1, . . . , bn)
to be the radical of the ideal generated by b1, . . . , bn. Since Zar(R) is the free lattice satisying

2But we have for instance D(a, b) = D(a + b) if D(ab) = 0 [12].
3In general the lattice of ideals of R is not distributive, for instance in the case R = k[X, Y ]. If it is, the ring

is said to be arithmetic. The importance of this notion for constructive algebra is stressed in [20].
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the support relations it follows from this remark that if D(a) 6 D(b1, . . . , bn) in Zar(R) then a
belongs to the radical of the ideal generated by b1, . . . , bn.

It is suggestive to think of D(a) as the proposition a ∈ S, where S is the complement of a
generic prime ideal of R. Another possible interpretation, in the case where R = k[X1, . . . , Xn],
is to see D(a) as the complement of the set of zeros of the polynomials a in an algebraic closure
of k. This is indeed a possible reading of Hilbert’s Nullstellensatz Theorem.

The Krull dimension Kdim R of the ring R is defined to be the Krull dimension of the Zariski
lattice Zar(R).

Theorem 2.5 Kdim R < n iff for any sequence x1, . . . , xn in R there exists k1, . . . , kn in N and
a1, . . . , an in R such that

xk1
1 (xk2

2 · · · (xkn
n (1 + anxn) + · · ·+ a2x2) + a1x1) = 0.

Proof. See [9].

In particular, Kdim R < 1 iff for any x in R there exists k and a such that xk(1 + ax) = 0.
This expresses the notion of Krull dimension directly in term of the ring structure. Notice that
this statement involves an existential quantification over natural numbers, and is geometric [46],
but not first-order.

2.3 The space of valuations

Let R be an integral domain and L be a field containing R. By analogy with Joyal’s construction
of the Zariski lattice, we consider the distributive lattice Val(L,R) generated by the symbols
VR(s), s ∈ L and relations 1 = VR(r) for r in R and for s 6= 0, u1, u2 in L

1 = VR(s) ∨ VR(s−1), VR(u1) ∧ VR(u2) 6 VR(u1u2) ∧ VR(u1 + u2).

We write VR(u1, . . . , un) for VR(u1) ∨ . . . ∨ VR(un). Intuitively, VR(s) means that s belongs to
the “generic” valuation ring V of L containing R. In the case where L is the fraction field of R
we write simply Val(R) instead of Val(L,R).

Since we have only VR(x) ∧ VR(y) 6 VR(xy), in general we cannot simplify VR(x) ∧ VR(y).
However, we always have the equality VR(s)∧VR(s−1) = VR(s+ s−1)4. We also have VR(r−1

1 )∧
VR(r−1

2 ) = VR((r1r2)−1) if VR(r1) = VR(r2) = 1.

Lemma 2.6 VR((x+y)−1) 6 VR(x−1, y−1) in Val(R). It follows from this that if 1 = s1+. . .+sn

then 1 = VR(1/s1, . . . , 1/sn) in Val(R).

Proof. Let s be y/x. We have 1 = VR(s, 1/s). Also x−1 = (x + y)−1(1 + 1/s) and y−1 =
(x + y)−1(1 + s). Hence the result.

If V is a valuation ring containing R we can define a linear ordering on L× by taking x 6R y
to mean y/x ∈ V . For any finite family x1, . . . , xn we have i such that xi 6R xj for all j. The
formal representation of this remark is expressed as follow.

Lemma 2.7 For any x1, . . . , xn we have 1 = ∨i ∧j VR(xj/xi) in the lattice Val(R).

Proof. By induction on n. Assume 1 = ∨i<n∧j<nVR(xj/xi). We have also 1 = VR(xi/xn, xn/xi)
for each i < n. We can conclude from VR(xi/xn) ∧ ∧j<nVR(xj/xi) 6 ∧jVR(xj/xn).

4This follows from VR(s, s−1) = 1 and VR(s + s−1) ∧ VR(s−1) 6 VR(s), VR(s + s−1) ∧ VR(s) 6 VR(s−1).
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It follows from the axioms of VR that VR(t1) ∧ . . . ∧ VR(tn) 6 VR(p) whenever p belongs
to R[t1, . . . , tn]. More generally, if s is integral over t1, . . . , tn, that is, if have a relation sk +
p1s

k−1 + . . . + pk = 0 with p1, . . . , pk in R[t1, . . . , tn], then, since this can also be written
s = −p1 − p2s

−1 − . . . − pks
−1+k and 1 = VR(s, s−1), we have VR(t1) ∧ . . . ∧ VR(tn) 6 VR(s).

The converse will follow from the following characterisation of Val(L,R), which is proved by a
cut-elimination argument.

Theorem 2.8 If t1, . . . , tn, s1, . . . , sm ∈ L× we have

VR(t1) ∧ . . . ∧ VR(tn) 6 VR(s1, . . . , sm)

iff 1 = <s−1
1 , . . . , s−1

n > in R[t1, . . . , tn, s−1
1 , . . . , s−1

m ].
In particular, VR(t1)∧ . . .∧ VR(tn) 6 VR(s) iff s is integral over R[t1, . . . , tn]. For n = 0, we

get that 1 = VR(s) iff s is integral over R.

The last result can be seen as a pointfree statement of the fact that the intersection of all
valuation rings containing R is the integral closure of R.

Proof. This is proved, for another presentation of the lattice Val(R), in [17] by showing that the
existence of such a polynomial identity, seen as relation between {t1, . . . , tn} and {s1, . . . , sm}
defines an entailment relation [41]. The proof involves the algebraic elimination of variables.

For VR(t1) ∧ . . . ∧ VR(tn) 6 VR(s) we get a polynomial identity 1 = s−1q with q ∈
R[t1, . . . , tn, 1/s]. By multiplying this equality by a large enough power of s we get a rela-
tion of the form sk = p1s

k−1 + . . . + pk with p1, . . . , pm ∈ R[t1, . . . , tn].

Corollary 2.9 We have 1 = VR(s/t1, . . . , s/tn) iff s is integral over the ideal generated by
t1, . . . , tn.

That s is integral over the ideal I generated by t1, . . . , tn means that we can find a relation
sm + a1s

m−1 + . . . + am = 0 with a1 in I, . . ., am in Im.

2.4 Center of a valuation

2.4.1 The center map

If V is a valuation ring containing R, then V is a local ring and its maximal ideal mV is the set of
non invertible elements of V . The prime ideal R∩mV of R is called the center of V . In pointfree
terms, this map V 7−→ R∩mV can be represented as the lattice map φ : Zar(R) → Val(R) which
is defined on generators by φ(D(0)) = 0 and φ(D(r)) = VR(r−1) if r ∈ R, r 6= 0. Indeed, if
r ∈ R and r 6= 0 then r /∈ mV iff r is invertible in V .

For defining formally this map, we need only, by initiality, to check that the support relations
defining the lattice Zar(R) are validated by this interpretation.

Lemma 2.10 In the lattice Val(R) the following relations hold, for any r, s ∈ R− {0}

VR(1) = 1, VR(1/rs) = VR(1/r) ∧ VR(1/s), VR(1/(r + s)) 6 VR(1/r, 1/s)

where in the last relation, we suppose also r + s 6= 0.

Proof. The relation VR(1/rs) = VR(1/r) ∧ VR(1/s) follows from 1 = VR(r) = VR(s), and the
last relation is a special case of Lemma 2.6.

It follows from this that we can define a lattice map φ : Zar(R) → Val(R) by φ(D(r)) =
VR(1/r) if r 6= 0 and φ(0) = 0.
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2.4.2 An application: Dedekind’s Prague Theorem

The simple existence of the center map, which has been proved without using Theorem 2.8,
allows us to transfer some results from the Zariski spectrum to the space of valuations. For
instance, we have the following general on the Zariski spectrum. If P = a0 + . . . + anXn is a
poynomial in R[X] we write c(P ) = D(a0, . . . , an) the radical content of P [26].

Lemma 2.11 (Gauss-Joyal) For any P,Q in R[X] we have c(PQ) = c(P ) ∧ c(Q).

Proof. See for instance [2].

Let now a0, . . . , an, b0, . . . , bm be indeterminates; we write ck = Σi+j=kaibj . We consider the
ring R = Z[ai/ai0 , bj/bj0 ]. Let L = Q(a0, . . . , an, b0, . . . , bm) be the field of fractions of R. In
the lattice Zar(R) we have 1 = ∨D(ck/ai0bj0) by the previous Lemma. Using the center map
for the ring R we deduce that we have 1 = ∨V (ai0bj0/ck) in the lattice Val(L,R). Hence in the
lattice Val(L, Z) we have5

(1) ∧V (ai/ai0) ∧ ∧V (bj/bj0) 6 ∨V (ai0bj0/ck).

Since aibj/ck = ai/ai0 · bj/bj0 · ai0bj0/ck this implies

∧V (ai/ai0) ∧ ∧V (bj/bj0) 6 ∧i,j ∨k V (aibj/ck)

By Lemma 2.7 we have 1 = ∨i0 ∧ V (ai/ai0) = ∨j0 ∧ V (bj/bj0). We deduce from this discussion
the following result6.

Theorem 2.12 In the lattice Val(L, Z) we have 1 = ∨kV (aibj/ck) for any i, j, hence by Corol-
lary 2.9, each element aibj is integral over the ideal generated by c0, . . . , cn+m.

This result, which generalises a famous Theorem of Gauss [22], is described by O. Neumann
to be “one of the most basic result in commutative algebra of the XIXth century” [39]. Our
argument is a computational interpretation of its modern non constructive proof based on
valuations [3], and is a direct generalisation of the reasoning of Gauss. One can follow this
proof and produce explicitely from it the required polynomial identity using Theorem 2.8. Via
this general method of elimination of points, the map L → Val(L,R) can thus be described as a
(clever) system of notations which records polynomial identities. This is to be compared with
the “actualist” interpretation of Val(L,R) as a set of points. In the spirit of Hilbert’s program,
we are helped by our intuition in term of points, but it is used only as an ideal and suggestive
mean.

2.4.3 Properties of the center map

The next result expresses in a pointfree way that the center map is surjective, i.e. any prime
ideal is the center of some valuation rings. There the use of Theorem 2.8 seems essential.

Proposition 2.13 The center map φ : Zar(R) → Val(R) is injective.

5Our argument has the following suggestive interpretation. Let V be a generic valuation ring of L containing
all elements ai/ai0 and bj/bj0 . The polynomials P = 1/ai0ΣaiX

i, Q = 1/bj0ΣbjX
j are in V [X]. Since P and

Q have 1 as coefficient, it follows from Lemma 2.11 that at least one coefficient of the product PQ is not in mV .
This is what the inequality (1) expresses.

6Our argument precises the sketch which is presented at the end of [17].
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Proof. We show that we have D(r) 6 D(s1, . . . , sm) iff, in the lattice Val(R), we have VR(r−1) 6
VR(s−1

1 , . . . , s−1
m ). By Theorem 2.8, this last relation means that we can find m polynomials

q1, . . . , qm in R[r−1, s1, . . . , sm] such that 1 = s1q1 + . . . + smqm. This is then equivalent to
the fact that r is in the radical of the ideal generated by s1, . . . , sm, which is equivalent to
D(r) 6 D(s1, . . . , sm).

Proposition 2.14 The center map φ : Zar(R) → Val(R) has the going-up property.

Proof. Assume, for some non zero elements r, r1, . . . , rm in R and elements s1, . . . , sm in L, that
we have φ(D(r)) 6 VR(s1, . . . , sm)∨ φ(D(r1, . . . , rn)). We can then find q1, . . . , qm, p1, . . . , pn in
R[r−1, s−1

1 , . . . , s−1
m ] such that 1 = Σs−1

j qj + Σripi. By multiplying by a power of r we find a
relation of the form rk − Σtiri = Σs−1

j lj with ti in R and lj in R[1/s1, . . . , 1/sm]. The element
w = rk − Σtiri satisfies then both D(r) 6 D(w, r1, . . . , rn) and φ(D(w)) 6 VR(s1, . . . , sm) and
we can apply Proposition 2.3.

Corollary 2.15 If Vdim R 6 n then Kdim R 6 n.

Proof. This follows from Proposition 2.4.

2.5 Prüfer domain

The importance of the notion of Prüfer domain for constructive mathematics is stressed in [20]:
it is a non Noetherian version of Dedekind domains, and several of the important properties of
Dedekind domains can be proved at this level. (Classically, a Dedekind domain can be defined
to be a Prüfer domain which is Noetherian.) We say that R is a Prüfer domain iff it is a domain
satisfying

(∗) ∀x y ∃ u v w. ux = vy ∧ (1− u)y = wx.

Notice that being of Prüfer domain is a first-order property.
It follows easily from (∗), see [20], that if R is a Prüfer domain, for any sequence of elements

x1, . . . , xn of R we can find a11 = u1, . . . , ann = un in R such that

1. a11 + . . . + ann = 1

2. for any j there exists aij such that uixj = aijxi

The matrix (aij) is a principal localisation matrix of x1, . . . , xn [20]7. We get ajixkxj =
ajjxkxi = ajkxjxi and hence ajixk = ajkxi if xj 6= 0. It follows that we have <a1i, . . . , ani> ·
<x1, . . . , xn> = <xi>. We find in this way explicitely an inverse of the ideal <x1, . . . , xn>
[20]8.

Let Div(R) be the monoid of fractional ideals, also called divisors of R [22]. We have
just proved that, if R is a Prüfer domain then Div(R) is a group. If we order Div(R) by reverse
inclusion, we see that Div(R) is a lattice group. From this simple fact follows directly9 important
properties [3, 14]: Div(R) is a distributive lattice, and the intersection of two fractional ideals
I, J can be computed as I ∩ J = I · J · (I + J)−1 (and is thus finitely generated). Hence any
Prüfer domain is coherent [38] and we can solve any linear system over it [20]. We stress that

7In the localisation R[1/ui] the ideal <x1, . . . , xn> is principal and equal to <xi>.
8Dedekind himself thought that the existence of such an inverse was the fundamental result about the ring of

integers of an algebraic field of numbers [1]. Theorem 2.25 shows that this ring is a Prüfer domain.
9The structure of lattice group was discovered by Dedekind and rediscovered independently by F. Riesz. It

plays an important rôle in abstract functional analysis [14].
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all these arguments are constructive and can be seen as (relatively simple) algorithms on R,
which use as a basic procedure the hypothesis (∗).

Classically, the lattice group Div(R) is defined to be the free lattice group on the set of prime
ideals of R. In our setting, this is captured by the following result.

Proposition 2.16 The spectrum of the lattice group Div(R) [14] is the dual of the Zariski
spectrum of R.

Proof. The spectrum of Div(R) is shown in [14] to be isomorphic to the lattice of positive
elements of Div(R), that is the finitely generated ideal of R, with the order I � J iff there exists
n such that I 6 Jn. This is equivalent to say that J is included into the radical of I.

Proposition 2.17 If R is a Prüfer domain then the center map φ : Zar(R) → Val(R) is an
isomorphism.

Proof. By Proposition 2.13 it is enough to show that the map φ is surjective10. Since Val(R) is
generated by the elements VR(s), we show that each such element is in the image of φ. We write
s = x/y with x, y ∈ R. Since R is a Prüfer domain there exist u, v, w ∈ R such that ux = vy
and (1− u)y = wx. We can then check that we have VR(s) = φ(D(u, w)) if s 6= 0.

The converse of Proposition 2.17 holds if R is integrally closed. For proving this converse, we
state a general lemma, which expresses in a pointfree way that an integral domain is arithmetical
iff any localisation at a prime ideals is a valuation domain.

Lemma 2.18 Let R be an integral domain, and K its field of fractions. The following is a suf-
ficient condition for R to be a Prüfer domain: for any s in K× there exists a1, . . . , an, b1, . . . , bm

in R such that 1 = D(a1, . . . , an, b1, . . . , bm) and s is in R[1/ai] for all i and 1/s is in R[1/bj ]
for all j.

Proof. We can find N big enough and ui, vj in R such that s = vi/aN
i and 1/s = wj/bN

j .
Since 1 = D(a1, . . . , an, b1, . . . , bm) we can find xi and yj such that 1 = Σxia

N
i + Σyjb

N
j . If

u = Σxia
N
i , v = Σxivi and w = Σwjb

N
j we have then us = v and (1− u)1/s = w.

Lemma 2.19 If R is a Prüfer domain then R is integrally closed.

Proof. Let K be the field of fractions of R. Assume s in in K and s 6= 0 and we have a relation
sn + r1s

n−1 + . . .+ rn = 0 with r1, . . . , rn in R. We can find u, v, w in R such that su = v, sw =
1−u. If u = 1 then s is in R. If u = 0 we have s = −r1−r2w−. . .−rnwn−1 is in R. Finally if u 6= 0
and u 6= 1 we have s in R[1/u] and, since s(1−u)n−1 = −r1(1−u)n−1−r2w(1−u)n−2−. . .−rnwn,
it is also in R[1/1− u]. Hence s is in R[1/u] ∩R[1/1− u] = R, as desired11.

Proposition 2.20 If R is an integral domain which is integrally closed and such that the center
map φ : Zar(R) → Val(R) is an isomorphism then R is a Prüfer domain.

10Proposition 2.13 relies on cut-elimination (Theorem 2.8). One can prove directly, by a somewhat longer
argument, that φ is a bijection without using Theorem 2.8.

11This reasoning can be seen as the interpretation that a valuation ring is integrally closed in the sheaf model
over the Zariski spectrum of R.
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Proof. We use Lemma 2.18. Let s be an element of K×. We have 1 = VR(s, 1/s). Since the
center map φ is surjective we can find a1, . . . , an and b1, . . . , bm in R such that

VR(s) = φ(D(a1, . . . , an)), VR(1/s) = φ(D(b1, . . . , bm)).

We have 1 = φ(D(a1, . . . , an, b1, . . . , bm)) and hence 1 = D(a1, . . . , an, b1, . . . , bm) in Zar(R).
Also VR(1/ai) 6 VR(s) and VR(1/bj) 6 VR(1/s) in Val(R). Since R is integrally closed, so are
R[1/ai] and R[1/bj ], and so VR(1/ai) 6 VR(s) implies s ∈ R[1/ai] and VR(1/bj) 6 VR(1/s)
implies 1/s ∈ R[1/bj ] by Theorem 2.8.

The following proposition was obtained while analysing Seidenberg’s Lemma ([31], Chapitre
III, Proposition 2) in a pointfree setting. We rediscovered in this way Gilmer-Hoffmann’s The-
orem [29]. As above, let R be an integral domain and K be its field of fractions. For s ∈ K we
let I(s) to be the set of all polynomials P in R[X] such that P (s) = 0.

Proposition 2.21 (Gilmer-Hoffmann’s Theorem) If for all s ∈ K× there exists P1, . . . , Pn in
I(s) such that 1 = c(P1) ∨ . . . ∨ c(Pn) in Zar(R)12 and R is integrally closed then R is a Prüfer
domain.

Proof. For any P in I(s) we show how to build a family u1, . . . , um in R such that c(P ) 6
D(u1, . . . , um) and we have s or 1/s in R[1/ui] for each i. The result follows then from Lemma
2.18.

Write P = anXn + . . . + a0. We define

bn = an, bn−1 = bns + an−1, bn−2 = bn−1s + an−2, . . . , b1 = b2s + a1

Notice that P (s) = b1s + a0 = 0. We have c(P ) 6 D(bn, bns, bn−1, bn−1s, . . . , b1, b1s) since
D(an) = D(bn) and D(ai) 6 D(bi+1s, bi) for 0 < i < n and D(a0) = D(b1s). Since we
have P (s) = ansn + . . . + a0 = 0 and R is integrally closed, we can prove successively that
bn, bns, bn−1, . . . are all in R. Finally, we have 1/s in R[1/bis] and s in R[1/bi].

Corollary 2.22 If Kdim R[X] 6 2 and R is integrally closed then R is a Prüfer domain.

Proof. We use Proposition 2.21. Given s in K we build P,Q in I(s) such that 1 = c(P ) ∨ c(Q)
in Zar(R). For this, we write s = a/b with a, b in R and b 6= 0. We apply Theorem 2.5 to the
sequence bX − a, b, X in R[X], using Kdim R[X] < 3. It follows that there exists p1, p2, p3 in
R[X] and k1, k2, k3 in N such that

(bX − a)k1(bk2(Xk3(1 + Xp3) + bp2) + (bX − a)p1) = 0

Since R is an integral domain, this can be simplified to bk2(Xk3(1+Xp3)+bp2)+(bX−a)p1 = 0.
If we specialise X to s we get bk2(sk3(1 + sp3(s)) + bp2(s)) = 0 and hence since b 6= 0 we have
sk3(1 + sp3(s)) + bp2(s) = 0. If we take P = bX − a and Q = Xk3(1 + Xp3(X)) + bp2(X) we
have P,Q in I(s) and 1 = c(P ) ∨ c(Q) in Zar(R) as desired.

Corollary 2.23 If R is an integral domain which is integrally closed and such that Vdim R 6 1
then R is a Prüfer ring.

12It is direct to see that this is equivalent to c(P ) = 1 for one P in I(s), but our formulation is more convenient
in the applications.
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Proof. We proceed like in the proof of Corollary 2.22. We write s = a/b with a, b in R and b 6= 0.
Since Vdim R 6 1 we have Kdim R[s] 6 1 by Corollary 2.15. Hence we can apply Theorem 2.5
to the sequence b, s: there exists p1, p2 in R[X] and k1, k2 in N such that bk1(sk2(1 + sp2(s)) +
bp1(s)) = 0. Since b 6= 0 this simplifies to sk2(1 + sp2(s)) + bp1(s) = 0. If we take P = bX − a
and Q = Xk2(1 + Xp2(X)) + bp1(X) we have P,Q in I(s) and 1 = c(P ) ∨ c(Q) in Zar(R) as
desired.

This can be compared with the characterisation in [20]: if R is integrally closed and coherent
and such that Kdim R 6 1 then R is a Prüfer ring.

The following Lemma will be needed in the definition of the genus of an algebraic curve.

Lemma 2.24 Let R be a Prüfer domain, and K its field of fractions. If s is in K then R[s] is
a Prüfer domain. It follows that if s1, . . . , sn are in K then R[s1, . . . , sn] is a Prüfer domain.

Proof. Using Proposition 2.21 it is enough to show that R[s] is integrally closed. Like in the
proof of Proposition 2.17 we find u, v, w in R such that us = v, ws = 1 − u. If u = 0 then
R[s] = R[1/w] is integrally closed. If u = 1 then s = v is in R and R[s] = R is integrally
closed by Lemma 2.19. If u 6= 0 and u 6= 1 we claim that R[s] = R[1/u] ∩ R[1/w], which
will show that R[s] is integrally closed since both R[1/u] and R[1/w] are integrally closed.
Indeed we have s in R[1/u] and R[1/w]. Conversely if x is in R[1/u] and R[1/w] we can write
x = p/un = q/wn = qsn/(1−u)n. We can then find a, b in R such that aun + b(1−u)n = 1 and
we have x = ap + bqsn in R[s].

Another more direct application is a simple proof of the fundamental fact that the integral
closure of a Bezout domain13 in an extension of its field of fractions is a Prüfer domain.

Theorem 2.25 If S is the integral closure of a Bezout domain R in a field extension of the
field of fractions of R then S is a Prüfer domain14.

Proof. We use Proposition 2.21. Given s in the field of fractions of S we have a non zero
polynomial P in in R[X] such that P (s) = 0. Since R is a Bezout domain, we can compute
the gcd g of the coefficients of P and we can then write P = gQ with Q(s) = 0 and c(Q) = 1.
(Notice that we find a polynomial in I(s) which is even in R[X].)

2.6 Towards pointfree algebraic geometry

We apply the previous results to give a simple pointfree description of the notion of algebraic
curves as a scheme. For this we need to develop some sheaf theory in a pointfree setting, up
to the cohomological definition of the genus, following the fundamental paper of Serre [43].
All our definitions and proofs are constructive, but follow closely the intuitions given by the
classical picture. Once the basic definitions are in place (but this was the main difficulty here),
the logical structures of proofs using cohomology theory are quite elementary, most arguments
being of a direct algebraic nature.

13A Bezout domain is a domain where any finitely generated ideal is principal [38].
14Two particular important cases are R = Z (algebraic integers) and R = k[X] (algebraic curves).
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2.6.1 Sheaves over lattices

We will analyse now how to represent the notion of sheaves of abelian groups in our setting. Since
for us, a space is a distributive lattice, we have to define what is a sheaf F over a distributive
lattice D.

A preheaf of rings F over a distributive lattice D is a family F(u) of rings for each u in
D together with restriction maps ρvu : F(u) → F(v), x 7−→ x|v whenever v 6 u. We require
furthermore that x|u = x if x is in F(u), and that (x|v)|w = x|w if w 6 v 6 u. If x is in F(u)
and y is in F(v), we may write simply x = y on u ∧ v for expressing that x|u ∧ v = y|u ∧ v in
F(u ∧ v). We say that F is a sheaf iff the following glueing conditions are satisfied:

1. if u = u1 ∨ u2, and xi in F(ui) satisfy x1 = x2 on u1 ∧ u2 then there exists one and only
one x ∈ F(u) such that x|ui = xi and

2. F(0) is the trivial ring 0.

It follows from the first condition that if u = u1 ∨ u2 and x, y in F(u) are such that x = y on
both u1 and u2 then x = y. If F is a sheaf on a lattice D, it is clear that it defines by restriction
a sheaf on any lattice ↓ u for u in D.

If R is an arbitrary integral domain, an important sheaf on the lattice Zar(R) is the structure
sheaf on R15.

Lemma 2.26 If D(b) 6 D(a1, . . . , an) in Zar(R), where b, a1, . . . , an are 6= 0, then R[1/a1] ∩
. . . ∩R[1/an] ⊆ R[1/b].

Proof. Assume that u is in R[1/a1]∩ . . .∩R[1/an]. One can find k and r1, . . . , rn in R such that
u = ri/ak

i . Since D(ai) = D(ak
i ), we know that some power bl of b is of the form Σsia

k
i with si

in R. We have then u = (Σsiri)/bl and hence u is in R[1/b].

An element of Zar(R) is 0 or of the form D(a1, . . . , an) where all ai are 6= 0. We define
O(D(a1, . . . , an)) to be R[1/a1]∩ . . .∩R[1/an], and O(0) to be 0. This definition is justified by
Lemma 2.26. If v = D(b1, . . . , bm) 6 D(a1, . . . , an) = u and x is in R[1/a1] ∩ . . . ∩ R[1/an], we
have also x in R[1/b1] ∩ . . . ∩ R[1/bm] and we define x|v to be x itself. The sheaf condition is
then clearly satisfied.

A structure sheaf is also called an affine scheme.
Notice that, by definition, the global sections of this sheaf are the elements of Γ(Zar(R),O) =

O(D(1)) = R.

2.6.2 Algebraic curves and schemes

Let k be a field. An algebraic curve is defined to be an algebraic extension L of a a field of
rational functions k(x), where x is an indeterminate. If a1, . . . , an are elements of L we write
E(a1, . . . , an) the set of elements of L that are integral over k[a1, . . . , an]. If a is an element of
L it is algebraic on k[x] and hence we have a polynomial relation P (a, x) = 0. Since equality is
decidable in L, we can test if this equality is of the form P (a) = 0, that is a is algebraic on k,
in which case a is said to be a constant of L, or if x is algebraic on k[a], in which case a is said
to be a parameter of L. If p is a parameter, L is the field of fractions of E(p), since this field
contains x because x is algebraic over E(p).

15This can be defined for an arbitrary ring, but the definition is a little simpler for an integral domain, and we
shall only need this case.
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Any non zero element of the lattice Val(L, k) can be written as a disjunction of elements
of the form V (a1) ∧ . . . ∧ V (an). If u is such a non zero element, we define F(u) to be the
set of elements q in L such that u 6 V (q) in Val(L, k). In particular F(V (a1) ∧ . . . ∧ V (an))
is the set E(a1, . . . , an), by Theorem 2.8. Thus Γ(X,F) = F(1), the global sections of F , is
the field of constants of L. The fact that Γ(X,F) is the field of constants of L is an algebraic
counterpart of the fact that the global holomorphic functions on the Riemann sphere are the
constant functions.

A point α of Val(L, k) can be identified with the valuation ring Aα of elements a such that
α ∈ V (a). The fiber of F at a point α is defined to be the inductive limit of F(u) with α ∈ u.
The fiber at α is nothing else than Aα itself.

If b is a non zero element of E(a) we have E(a, 1/b) = E(a)[1/b]. More generally, if b1, . . . , bm

are non zero elements of E(a), we have F(V (a) ∧ V (1/b1, . . . , 1/bm)) = E(a)[1/b1] ∩ . . . ∩
E(a)[1/bm].

If p is a parameter of L, and φ is the center map of E(p) and q1, . . . , qm are non zero
elements of E(p) and u is the element D(q1, . . . , qm) of Zar(E(p)) we deduce from our discussion
the equality

OE(p)(u) = E(p)[1/q1] ∩ . . . ∩ E(p)[1/qm] = F(φ(u)).

It follows also from Theorem 2.25 that E(p) is a Prüfer domain, and so by Proposition 2.17 that
the sublattice ↓ V (p) of Val(L, k), which is isomorphic to V (E(p)), is isomorphic to Zar(E(p)).
We thus see that the sheaf F restricted to the basic open V (p) is isomorphic to the affine scheme
Zar(E(p)),O.

The pair (X,F), where X = Val(L, k), is a most natural example of a scheme. For each
parameter p of L the space X is the union of two basic open sets U0 = V (p), U1 = V (1/p).
The open U0 is isomorphic to Zar(E(p)) and U1 is isomorphic to Zar(E(1/p)). Furthermore the
sheaf F reduces to the structure sheaf over each open Ui. (Suprisingly, I was unable to find this
example in the literature.)

Notice that, even in the simplest case where L = k(t), the sheaf F is not isomorphic to an
affine scheme. This follows from the observation that Γ(X,F) is the field of constants of L,
while we have seen that Γ(Zar(R),O) = R for the structure sheaf of an integral domain R.

2.6.3 The genus of an algebraic curve

Lemma 2.27 For all parameters p and q we have E(p, q, 1/q) = E(p, q)⊕ E(p, 1/q).

Proof. Let R be E(p) which is a Prüfer ring of field of fractions L. It follows from Lemma 2.24
that we have E(p, q) = R[q], E(p, 1/q) = R[1/q] and E(p, q, 1/q) = R[q, 1/q]. We clearly have
R[q, 1/q] = R[q]⊕R[1/q], hence the result16.

Corollary 2.28 The k-vector space H1(p) = E(p, 1/p)/E(p) ⊕ E(1/p) is independent of the
parameter p and hence it defines an invariant H1(L) of the field L.

Proof. Our argument is a specialisation of the general cohomological argument [43]. Let p and
q be two parameters. Write p0 = p, p1 = 1/p and q0 = q, q1 = 1/q. We say that x in E(p, 1/p)
and y in E(q, 1/q) are related iff there exists aij in E(pi, qj) such that x = a10− a00 = a11− a01

and y = a01 − a00 = a11 − a10. Using Lemma 2.27, we show that this relation defines an
isomorphism between H1(p) and H1(q).

16This result has a direct cohomological intepretation since it follows from the fact that the sheaf F restricted
to the basic open V (p) is isomorphic to an affine scheme and that a structure sheaf is acyclic.
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We have first that y is uniquely determined modulo E(q)⊕E(1/q). Indeed, if we have other
elements bij in E(pi, qj) such that

x = b10 − b00 = b11 − b01, y′ = b01 − b00 = b11 − b10

then b10 − a10 = b00 − a00 belongs to E(q, p)∩E(q, 1/p) = E(q). Similarly b11 − a11 = b01 − a01

belongs to E(1/q, p) ∩ E(1/q, 1/p) = E(1/q). Hence y′ − y belongs to E(q)⊕ E(1/q).
We show that any element x in E(p, 1/p) is related to at least one element y in E(q, 1/q).

Indeed x belongs to E(p, 1/p, q), which is E(q, p)⊕E(q, 1/p) by Lemma 2.27, and hence it can
be written x = a10 − a00 with ai0 in E(pi, q0). Similarly x can be written a11 − a01 with ai1

in E(pi, q1). We can then let y to be a11 − a10 = a01 − a00 which belongs to E(q, 1/q, p) ∩
E(q, 1/q, 1/p) = E(q, 1/q).

We illustrate these notions in the cases of the curve S = Q(t) and in the case of the algebraic
curve L = Q(x, y) with y2 = 1 − x4, an example which played historically an important rôle
[28, 24]. In this case, an element of E(x) is an element p + yq with p, q ∈ Q[x]. Also, an
element of E(1/x) is of the form a + (y/x2)b, with a, b ∈ Q[1/x]. It follows that the elements of
E(x, 1/x) = E(x)[1/x] can be written (uniquely) in the form p + qy + ry/x + a + (y/x2)b with
r ∈ Q and p, q ∈ Q[x], a, b ∈ Q[1/x].

Proposition 2.29 We have H1(L,F) = E(x, 1/x)/E(x)⊕ E(1/x) = Q.

For S = Q(t) we have E(t, 1/t) = k[t, 1/t] and E(t) = k[t], E(1/t) = k[1/t].

Proposition 2.30 We have H1(S,F) = 0.

Since these are invariant attached to the function field L we get the result.

Proposition 2.31 L = Q(x, y), y2 = 1− x4 cannot be written on the form L = Q(t).

While it is possible to prove this Proposition by direct methods, we think that it is a good
illustration of the power of cohomological methods. Here is a simple application.
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[31] P. Jaffard. Théorie de la dimension dans les anneaux de polynomes. Mémor. Sci. Math.,
Fasc. 146 Gauthier-Villars, Paris 1960.
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Exercises on the course on Constructive Logic

August 4, 2008

Exercises on intuitionistic logic

1. Prove that the schema ¬¬A → A is equivalent to the law of excluded middle A ∨ ¬A

2. (To get a feeling about the difference between constructive and classical reasoning.) Con-
sider the sequence zn in [0, 1] defined by z0 = 1 and zn+1 = zn − z2

n/2. Prove classically
that zn converges to 0 as follows. First show that 0 6 zn+1 6 zn and hence that zn

converges. Let l be the limit. Show that l2 = 0 and hence l = 0. Where have we used the
law of excluded-middle in this reasoning? This result implies that given ε > 0 we can find
N such that zN 6 ε. Try to see if we can extract such a N from this reasoning, and then
find a constructive justification of the existence of such a N .

3. (Constructive version of classical results.) Show classically that if X is a compact metric
space and f : X → X is such that d(f(x), f(y)) < d(x, y) if x 6= y then f has a unique
fixed-point. For this, consider a point where the function x 7−→ d(x, f(x)) is minimum.
The goal of this exercice is to present a constructive reading of this result. The condition

x 6= y → d(f(x), f(y)) < d(x, y)

can be written

(∃n.d(x, y) 6 1/2n) → (∃m.d(f(x), f(y)) 6 (1− 1/2m)d(x, y))

A natural constructive reading is

(1) ∀n∃m. d(x, y) 6 1/2n → d(f(x), f(y)) 6 (1− 1/2m)d(x, y))

Show from (1) only that for any ε > 0 and any a in X there exists N such that

d(fN+1(a), fN (a)) < ε

Using (1), show also that we have

(2) ∀ε > 0.∃η > 0. d(x, f(x)) < η ∧ d(y, f(y)) < η → d(x, y) < ε

Explain why (2) can be seen as a constructive reading of the implication

x = f(x) ∧ y = f(y) → x = y

Using this, show constructively that if X is a metric space which satisfies (1) and is
complete (no need of compactness) then f has a unique fixed-point, and furthermore, that
for any point a in X the sequence fn(a) is a Cauchy sequence which converges to this
fixed-point.

This example is extracted from the work of Ulrich Kohlenbach, who had developped re-
markable constructive reading of multiple results in analysis (especially fixed-point theory)
using techniques from logic.
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4. Define in the theory of rings J(x) as ∀y.inv(1 − xy), where inv(x) means ∃y.1 = xy.
Classically J(x) means that x belongs to all maximal ideals. Prove this using Zorn’s
Lemma. It follows in particular that J(x) defines an ideal and hence J(x) ∧ J(y) →
J(x + y) is a semantical consequence of the theory of rings. Check the validity of the
completeness theorem of the first-order theory of rings by giving a direct first-order proof
of this implication.

5. The notion of principal ideal domain is subtle constructively: the classical notion involves
a quantification over all ideals. Constructively, one tries to work instead with a first-
order approximation, which is the notion of Bezout domain: any finitely generated ideal
is principal. Check that this notion is first-order and is even coherent. Show that if K is
a field then K[X] is a Bezout domain.

6. The notion of Unique Factorization Domain (any element is in a unique way a product of
irreducible elements) is not a first-order notion. Constructively, one replaces this notion
by the notion of gcd domain: for any a, b there exists g which divides a and b and such
that if c divides a and b then c divides g. Check that this is a first-order notion. Show
that such an element g is defined uniquely up to a unit. Such an element g is called a gcd
of a and b. Show that any Bezout domain is a gcd domain.

If R is a gcd domain we define the content of a polynomial P in R[X] to be the gcd of all
its coefficient, and we say that a polynomial is primitive iff its content is 1. Show that the
product of two primitive polynomials is primitive. Deduce from this that the content of
the product of two polynomials is the product of the content of these polynomials. Show
that if K is the field of fractions of R then K[X] is a gcd domain. Using this show that if
R is a gcd domain then so is R[X]. (This is similar to the result that R[X] is UFD if R
is UFD.)

7. The goal of this exercise is to show that we cannot derive (∃x.x2 + 1 = 0)∨∀x.x2 + 1 6= 0
in the theory of discrete field (this can be interpreted as the fact that we cannot decide the
irreducibility of polynomials). We consider the forcing associated to the theory of dicsrete
fields where a covering of R is given by R → R/<a> and R → R[1/a]. Show first that
R  ∀x.x2 + 1 6= 0 holds iff R is the trivial ring. Show next that R  ∃x.x2 + 1 = 0 iff
there exists x1, . . . , xn in R such that 0 = (1 + x2

1) . . . (1 + x2
n).

Local-global principle

1. If L is a distributive lattice we say that b is a complement of a iff a∧ b = 0 and a∨ b = 1.
Prove that if b′ is also a complement of b then b′ = b.

2. Find an example of a ring which has a lattice of ideals which is not distributive

3. We consider three sequences X = (ai), Y = (bj), Z = (ck) in a ring R connected by
ck = Σi+j=kaibj . This can be written as ΣckX

k = PQ where P = ΣaiX
i and Q = ΣbjX

j .
The following is a classical proof that if ai and bj are unimodular then so is ck. We consider
an arbitrary prime ideal p. Show that if P and Q are not 0 mod. p then PQ is not 0
mod. p and conclude by using the fact that a sequence is unimodular iff it is not 0 mod.
any prime ideal. Read this argument in a point free way to give a proof of Gauss-Joyal
identity D(Z) = D(X) ∧D(Y ).

Give an example of a ring where we don’t have <Z> = <X><Y > (we recall that <A>
denotes the ideal generated by the elements of the sequence A).
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If R is a domain of field of fractions K, prove that we have also VR(Z) = VR(X)∧VR(Y ),
where VR : K → V al(K, R) is the space of valuations of K/R.

4. Use the previous exercise to give a constructive proof that if P in R[X] is nilpotent then
each coefficient of P is nilpotent.

5. Prove that D(a + b, ab) = D(a, b) first by using prime ideals and then by using only the
universal characterisation of the map D : R → Z(R).

Krull dimension

1. (Kronecker’s Theorem) Implement an algorithm that given P0, P1, P2, P3 in K[X, Y ] com-
pute Q0, Q1, Q2 such that V (P0, P1, P2, P3) the set of commun zeros of P0, P1, P2, P3 in
the algebraic closure of K is equal to V (Q0, Q1, Q2).

2. Show that to be of Krull dimension < n is a local property: if we have a1, . . . , al such that
1 = D(a1, . . . , al) and Kdim R[1/ai] < n for all i then we have also Kdim R < n.

3. (Local Kronecker’s Theorem) We say that two sequences a1, . . . , an and b1, . . . , bn are
disjoint iff we have

D(a1b1) = 0, D(a2b2) 6 D(a1, b1), . . . , D(anbn) 6 D(an−1, bn−1)

Show that in this case we have

D(a1, . . . , ak, b1, . . . , bk, ak+1bk+1) = D(a1 + b1, . . . , ak + bk)

for all k < n. Use this to show that if R is a local ring residually discrete of Krull
dimension n such that its maximal ideal is finitely radically generated, then the maximal
ideal can be radically generated by n elements.

Exercises on Prüfer Domain

1. Given an algorithm which witnesses

∀x y.∃u v w. xu = yv ∧ y(1− u) = xw

we can compute an inverse of any ideal generated by two elements. Compute from this the
inverse of an arbitrary finitely generated ideal (hint: given a finite sequence of elements,
show that, locally, one element divides all the others)

2. Show that Q[x, y] defined by y2 = x3 is not a Prüfer domain.

3. Compute an inverse of the ideal <x, y> in the ring Q[x, y] with y2 = 1− x4
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