Thierry Coquand

August 2008

Dedekind domain

We present a logical (constructive) analysis of the notion of *Dedekind domain*

This notion played historically an important role w.r.t. the connections reasoning/computation

- H. Edwards *The genesis of ideal theory*, Arch. Hist. Ex. Sci. 23 (1980)
- J. Avigad Methodology and metaphysics in the development of Dedekind's theory of ideals
- L. Ducos, H. Lombardi, C. Quitté and M. Salou. *Théorie algorithmique des anneaux arithmétiques, des anneaux de Prüfer et des anneaux de Dedekind.* J. Algebra 281 (2004), no. 2, 604–650.

Dedekind domain

Two (a priori) different motivations

algebraic curves (Gauss, Abel, Riemann, Kronecker, Dedekind-Weber) $\mathbb{Q}[x,y]$ where $y^2=1-x^4$

number theory: Kummer, Kronecker, Dedekind, Zolotarev $\mathbb{Z}[\sqrt{-5}]$

Usual definition (van der Waerden?): Noetherian integrally closed domain where any nonzero prime ideal is maximal

Equivalent to: Noetherian Prüfer domain, which gives a *logical* decomposition of the notion

Prüfer domain: first-order notion

Dedekind domain

Example of computation: for $R=\mathbb{Q}[x,y]$ where $y^2=1-x^4$ compute (i.e. find generators for)

$$\langle x \rangle \cap \langle 1 - y \rangle$$

Valuation domain

A valuation domain is an integral domain R such that for any u,v in R either v divides u or u divides v

Example: \mathbb{Z} is *not* a valuation domain, but $\mathbb{Z}[1/3]$ is a valuation domain

Another formulation is that for any $s \neq 0$ in the field of fraction of R we have s in R or 1/s in R

Valuation domain

Theorem: A valuation domain is integrally closed

Indeed assume $s \neq 0$ is integral over R. We have an equation

$$s^n + a_1 s^{n-1} + \dots + a_n = 0$$

Then either s is in R (and we have finished) or 1/s is in R. But we have $s = a_1 + a_2/s + \cdots + a_n/s^{n-1}$ and hence s is in R

Classically a Prüfer domain R is a domain R such that for any prime $\mathfrak p$ of R the localisation $R_{\mathfrak p}$ is a valuation domain

This means that for any $u, v \neq 0$ in R then we have v/u in $R_{\mathfrak{p}}$ or u/v in $R_{\mathfrak{p}}$

For instance \mathbb{Z} is a Prüfer domain: each $\mathbb{Z}[1/p]$ is a valuation domain

How to write this in a finite way (without points)?

We remark that if we have v/u in $R_{\mathfrak{p}}$ then there exists a in R such that \mathfrak{p} is in D(a) and v/u is in R[1/a]

Hence for any u, v and any $\mathfrak p$ there exists a such that $\mathfrak p$ is in D(a) and v/u is in R[1/a] or u/v is in R[1/a].

By compactness of the Zariski spectrum we have finitely many elements a_1, \ldots, a_n in R such that $1 = D(a_1, \ldots, a_n)$ and for each i, we have u/v is in $R[1/a_i]$ or v/u is in $R[1/a_i]$.

This is a finite condition but we can simplify it a little

We can first assume $\Sigma a_i = 1$. Then taking b to be the sum of all a_i such that u/v is in $R[1/a_i]$ we see that u/v is in R[1/b] and v/u is in R[1/1-b]

We have used the fact that if $u_1/v_1=u_2/v_2$ then $u_1/v_1=u_2/v_2=u_1+u_2/v_1+v_2$

Thus we get the point-free condition: for any u,v we can find b such that u/v is in R[1/b] and v/u is in R[1/1-b]

This means $u/v = p/b^N$ and $v/u = q/(1-b)^N$ for some N

Since $1=D(b^N,(1-b)^N)$ we can still simplify this to u/v=d/c and v/u=e/1-c

This gives the other equivalent condition: for any u,v there exists c,d,e such that uc=vd and v(1-c)=eu

Notice that this is a simple first-order (and even coherent) condition

A ring satisfying this condition is called arithmetical

Each Bezout domain is a Prüfer domain

A gcd domain is not necessarily a Prüfer domain: k[X,Y] is not a Prüfer domain since $k[X,Y]_{\leq X,Y>}$ is not a valuation domain

Local-global principle

Let R be a Prüfer domain

We know that, locally, R is a valuation domain

We know also that a valuation domain is integrally closed

Hence we deduce from a local-global principle that R is integrally closed

We can follow this reasoning and get a direct proof that R is integrally closed from the fact that R is arithmetic (this is yet another illustration of the completeness of coherent logic)

Local-global principle

What is the direct proof? Assume s is in the field of fraction of R and is integral over R

$$s^n + a_1 s^{n-1} + \dots + a_n = 0$$

We have s in R[1/u] and 1/s in R[1/1-u] for some u

Writing $s = -a_1 - \cdots - a_n/s^{n-1}$ we see that s is also in R[1/1 - u]

Hence s can be written p/u^N and $q/(1-u)^N$ for some N and hence s is in R

Local-global principle

It follows that $\mathbb{Q}[x,y]$ where $y^2=x^3$ is not a Prüfer domain

Indeed the element y/x is integral but is not in $\mathbb{Q}[x,y]$

Dedekind Domain

Classically a Dedekind Domain can be defined to be a *Noetherian* Prüfer domain

A Noetherian valuation domain is exactly a discrete valuation domain, which happens to be of Krull dimension $\leqslant 1$

Hence (local-global property) a Dedekind domain is of Krull dimension $\leqslant 1$: a non zero prime ideal is maximal

But several important properties of Dedekind domain hold already for Prüfer domain, which is a *first-order notion* (and which is not necessarily of dimension ≤ 1)

Principal Localization Matrix

A valuation domain is such that the divibility relation is linear

Hence if we have finitely many element x_1, \ldots, x_n one of them divides all the other

Over a Prüfer domain R we deduce that we have a_1,\ldots,a_n such that $1=D(a_1,\ldots,a_n)$ and x_i divides all x_j in $R[1/a_i]$

As before we can simplify this condition by $1 = \Sigma a_i$ and there exists b_{ij} such that $b_{ij}x_j = a_ix_i$

Principal Localization Matrix

For instance for n=3

We have $x_1|x_2$ in R[1/w] and $x_2|x_1$ in R[1/1-w]

We have $x_2|x_3$ in R[1/u] and $x_3|x_2$ in R[1/1-u]

We have $x_3|x_1$ in R[1/v] and $x_1|x_3$ in R[1/1-v]

Then D(wv, w(1-v), (1-w)u, (1-w)(1-u)) = 1 and

 $x_3|x_1, x_3|x_2 \text{ in } R[1/wv], x_1|x_2, x_1|x_3 \text{ in } R[1/w(1-v)]$

 $x_2|x_1, x_2|x_3 \text{ in } R[1/(1-w)u], x_3|x_1, x_3|x_2 \text{ in } R[1/(1-w)(1-u)]$

Principal Localization Matrix

In this way we get the existence of a matrix a_{ij} such that $1=\Sigma a_{ii}$ and $a_{ij}x_j=a_{ii}x_i$

Such a matrix is called a *principal localization matrix* of the sequence x_1, \ldots, x_n

If all x_i are $\neq 0$ we get $a_{ji}x_j = a_{jk}x_i$ and we have

$$< a_{1i}, \dots, a_{ni} > < x_1, \dots, x_n > = < x_i >$$

In particular we have an *inverse* of the ideal $\langle x_1, \ldots, x_n \rangle$ (the product is a non zero principal ideal)

Inverse of finitely generated ideal

Dedekind himself thought that the existence of such an inverse was *the* fundamental result about the ring of integers of an algebraic field of numbers (see J. Avigad's paper on Dedekind)

Our argument is constructive, thus can be seen as an *algorithm* which computes this inverse over an arbitrary Prüfer domain

All we need is to know constructively

$$\forall x \ y. \exists \ u \ v \ w. \quad xu = yv \land y(1-u) = xw$$

If $I \subseteq J$ are 2 f.g. ideals we can compute a f.g. ideal K such that J.K = I

Indeed this is simple if J is principal, and we can find J' such that J.J' is principal, and then $I.J'\subseteq J.J'$

In particular, if I,J are f.g. ideals since we have $I.J\subseteq I+J$ we can find K f.g. such that I.J=(I+J).K. It follows then that $K=I\cap J$

Hence: the intersection of two f.g. ideals is f.g. and we have an algorithm to find the generators of this intersection

We prove that if I.J = (I+J).K then $K = I \cap J$

Clearely $(I\cap J).(I+J)\subseteq I.J$ and hence $(I\cap J).(I+J)\subseteq K.(I+J)$ and hence $(I\cap J)\subseteq K$

On the other hand $K\subseteq I$ since $K.(I+J)=I.J\subseteq I.(I+J)$ and $K\subseteq J$ since $K.(I+J)=J.I\subseteq J.(I+J)$. Hence $K\subseteq (I\cap J)$

This can be stated as: any Prüfer Domain is coherent

Classically one works with Dedekind Domain, that are Noetherian, and this remarkable property is usually not stressed (Noetherian implies coherent in a trivial way)

One can show that a domain is a Prüfer domain iff the lattice of ideals is distributive

For instance k[X, Y] is not a Prüfer domain since

$$< X + Y > \cap < X, Y > \neq < X + Y, X > \cap < X + Y, Y >$$

We present now a simple sufficient condition for R to be a Prüfer domain

In particular we will see that the rings $\mathbb{Q}[x,y]$ $y^2=1-x^4$ and $\mathbb{Z}[\sqrt{-5}]$ are Prüfer domain

For any non zero s in the field of fraction of R we have to find u,v,w in R such that u=vs and (1-u)s=w

Theorem: If s is a zero of a primitive polynomial in R[X] then we can find u,v,w integral over R such that u=vs and (1-u)s=w

This is a fundamental result for producing integral elements

We write $a_n s^n + \cdots + a_0 = 0$ with a_n, \ldots, a_0 in R such that $1 = D(a_n, \ldots, a_0)$

We define

$$b_n = a_n, \ b_{n-1} = b_n s + a_{n-1}, \ \dots, \ b_1 = b_2 s + a_1$$

We then check that $b_n, b_n s, \ldots, b_1, b_1 s$ are all integral over R

We consider the ring $S = R[b_n, b_n s, \dots, b_1, b_1 s]$.

All elements of S are integral over R

In this ring we have $1=D(b_n,b_ns,\dots,b_1,b_1s)$ and we have s in $S[1/b_i]$ and 1/s in $S[1/b_is]$

Hence we can find u,v,w in S such that u=vs and (1-u)s=w

Theorem: If S is the integral closure of a Bezout Domain R in a field extension of its field of fractions then S is a Prüfer Domain

Indeed if s is in the field of fractions of S then s satisfies a polynomial equation $a_n s^n + \cdots + a_0 = 0$ with a_n, \ldots, a_0 in R such that $1 = D(a_n, \ldots, a_0)$, since R is a Bezout Domain

Two particular important cases are $R=\mathbb{Z}$ (algebraic integers) and R=k[X] (algebraic curves)

Proposition: If R is a Prüfer Domain and s is in the field of fraction of R then there exists u,w in R such that $R[s]=R[1/u]\cap R[1/w]$. In particular R[s] is integrally closed, and hence, by the Gilmer-Hoffmann's Theorem, R[s] is a Prüfer Domain

Indeed the equality $R[s] = R[1/u] \cap R[1/w]$ follows from $us = v, \ 1 - u = ws$

The center map for a Prüfer Domain

Theorem: If R is a Prüfer Domain then the center map $\psi: \mathsf{Zar}(R) \to \mathsf{Val}(R)$ is an isomorphism

We show that ψ is surjective

We consider s = x/y with x, y in R

We have u,v,w such that ux=vy and (1-u)y=wx

We can then check that we have $V_R(x/y) = \psi(D(u,w))$ and $V_R(y/x) = \psi(D(1-u,v))$

The center map for a Prüfer Domain

It may be that ψ is surjective but R is not a Prüfer Domain

An example is $R=\mathbb{Q}[x,y]$ with $y^2=x^3$ which is not integrally closed

Proposition: If R is integrally closed and the center map is surjective then R is a Prüfer Domain

We apply our results to the case of algebraic curves: we consider an algebraic extension L of a field of rational functions k(x)

If a is an element of L we have an algebraic relation P(a,x)=0.

If x does not appear in this relation then a is algebraic over k: it is a *constant* of L. We let k_0 be the field of constants of L.

If x appears, then x is algebraic over k(a) and a is a *parameter* and then L is algebraic over k(a). We write $E(x_1, \ldots, x_n)$ the elements integral over $k[x_1, \ldots, x_n]$

We consider the formal space X = Val(L, k)

Over X we define a sheaf of rings: if U is a non zero element of Val(L, k) it is a disjunction of elements of the form $V(a_1) \wedge \cdots \wedge V(a_n)$.

We define $\mathcal{O}_X(U)$ to be the set of elements f in L such that $U\leqslant V(f)$ in ${\rm Val}(L,k)$

Intuitively any f in L is a meromorphic function on the abstract Riemann surface X and $U\leqslant V(f)$ means that f is holomorphic over the open U

In particular we have $\Gamma(X, \mathcal{O}_X) = k_0$

This is an algebraic counterpart of the fact that the global holomorphic functions on a Riemann surface are the constant functions

If p is a parameter and b is in E(p) then we have E(p,1/b)=E(p)[1/b] More generally

$$\Gamma(V(p) \wedge V(1/b_1, \dots, 1/b_m), \mathcal{O}_X) = E(p)[1/b_1] \wedge \dots \wedge E(p)[1/b_m]$$

Since E(p) is the integral closure of the Bezout Domain k[p] we have that E(p) is a Prüfer Domain

Hence the sublattice $\downarrow V(p)$ of ${\rm Val}(L,k)$ is isomorphic, via the center map, to ${\rm Zar}(E(p))$

The sheaf \mathcal{O}_X restricted to the basic open V(p) is isomorphic to the affine scheme $\mathsf{Zar}(E(p)), \mathcal{O}$

Algebraic curves as schemes

The pair X, \mathcal{O}_X is thus a most natural example of a *scheme*, which is the glueing of two affine schemes

For any parameter p the space X is the union of the two basic open $U_0=V(p)$ and $U_1=V(1/p)$

 U_0 is isomorphic to Zar(E(p))

 U_1 is isomorphic to Zar(E(1/p))

The sheaf \mathcal{O}_X restricts to the structure sheaf over each open U_i

The Genus of an Algebraic Curve

Following the usual cohomological argument, one can show

Theorem: The k_0 -vector space $H^1(p) = E(p,1/p)/(E(p) + E(1/p))$ is independent of the parameter p and hence defines an invariant $H^1(X,\mathcal{O}_X)$ of the extension L/k

In particular for L defined by $y^2=1-x^4$ we find $H^1(x)=\mathbb{Q}$

For
$$L = \mathbb{Q}(t)$$
 we find $H^1(t) = 0$