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1 Gröbner Basics

1.1 Rings and Ring Maps

Definition 1.1.1. Let A be a ring, always commutative with 1.

(1) A monomial in n variables (or indeterminates) x1, . . . , xn
is a power product

xα = xα1
1 · . . . · xαn

n , α = (α1, . . . , αn) ∈ Nn .

The set of monomials in n variables is denoted by

Mon(x1, . . . ,xn) = Monn := {xα | α ∈ Nn} .
Mon(x1, . . . , xn) is a semigroup under multiplication, with
neutral element 1 = x0

1 · . . . · x0
n.

xα | xβ (xα divides xβ) ⇐⇒ αi ≤ βi for all i.

(2) A term is a monomial times a coefficient (an element of A),

axα = axα1
1 · . . . · xαn

n , a ∈ A .

(3) A polynomial over A is a finite sum of terms,

f =
∑
α

aαx
α =

finite∑
α∈Nn

aα1...αn
xα1

1 · . . . · xαn

n ,

with aα ∈ A. For α ∈ Nn, let |α| := α1 + · · ·+ αn.

deg(f) := max{|α| | aα �= 0} is called the degree of f if f �= 0;
deg(f) = −1 for f = 0.

(4) The polynomial ring A[x] = A[x1, . . . , xn] in n variables over A is the
set of all polynomials together with the usual addition and multiplication:∑

α

aαx
α +

∑
α

bαx
α :=

∑
α

(aα + bα)xα,

(∑
α

aαx
α

)
·
⎛⎝∑

β

bβx
β

⎞⎠ :=
∑
γ

⎛⎝ ∑
α+β=γ

aαbβ

⎞⎠ xγ .

Definition 1.1.2. A morphism of rings is a map ϕ : A→ B satisfying
ϕ(a+ a′) = ϕ(a) + ϕ(a′), ϕ(aa′) = ϕ(a)ϕ(a′), for all a, a′ ∈ A, and ϕ(1) = 1.
We call a morphism of rings also a ring map, and B is called an A–algebra.

Lemma 1.1.3. Let A[x1, . . . xn] be a polynomial ring, ψ : A→ B a ring map,
C a B–algebra, and f1, . . . , fn ∈ C (e.g. B = A and ψ = id). Then there exists
a unique ring map

ϕ : A[x1, . . . , xn] −→ C

satisfying ϕ(xi) = fi for i = 1, . . . , n and ϕ(a) = ψ(a) · 1 ∈ C for a ∈ A.

In Singular one can define polynomial rings over the following fields:
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(1) the field of rational numbers Q,

(2) finite fields Fp, p a prime number < 231,

(3) finite fields GF(pn) with pn elements, p a prime, pn ≤ 215,

(4) transcendental extensions of K ∈ {Q,Fp}, K(a1, . . . , an),

(5) simple algebraic extensions of K ∈ {Q,Fp}, K[a]/minpoly,

(6) arbitrary precision real floating point numbers,

(7) arbitrary precision complex floating point numbers.

1.2 Monomial Orderings

Monomial orderings are necessary for constructive ideal and module theory.

Definition 1.2.1. A monomial ordering or semigroup ordering is a total
(or linear) ordering > on Mon(x1, . . . , xn) satisfying

xα > xβ =⇒ xγxα > xγxβ

for all α, β, γ ∈ Nn. We say also > is a monomial ordering on A[x1, . . . , xn].
A monomial ordering is a total ordering on Nn, which is compatible with the
semigroup structure on Nn given by addition.

Example 1.2.2. The lexicographical ordering on Nn:
xα > xβ if and only if the first non–zero entry of α− β is positive.

Definition 1.2.3. Let > be a fixed monomial ordering. Write f ∈ A[x], f �= 0,
in a unique way as a sum of non–zero terms

f = aαx
α + aβx

β + · · ·+ aγx
γ , xα > xβ > · · · > xγ ,

and aα, aβ, . . . , aγ ∈ K. We define:

(1) LM(f) := leadmonom(f):= xα, the leading monomial of f ,

(2) LE(f) := leadexp(f):= α, the leading exponent of f ,

(3) LT(f) := lead(f):= aαx
α, the leading term or head of f ,

(4) LC(f) := leadcoef(f):= aα, the leading coefficient of f ,

(5) tail(f) := f− lead(f)= aβx
β + · · ·+ aγx

γ , the tail of f .

The most important distinction is between global and local orderings.

Definition 1.2.4. Let > be a monomial ordering on {xα | α ∈ Nn}.

(1) > is called a global ordering if xα > 1 for all α �= (0, . . . , 0),

(2) > is called a local ordering if xα < 1 for all α �= (0, . . . , 0),

(3) > is called a mixed ordering if it is neither global nor local.
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Local and global (and mixed) orderings have quite different properties.

Lemma 1.2.5. Let > be a monomial ordering, then the following conditions
are equivalent:

(1) > is a well–ordering.

(2) xi > 1 for i = 1, . . . , n.

(3) xα > 1 for all α �= (0, . . . , 0), that is, > is global.

(4) α ≥nat β and α �= β implies xα > xβ.

The last condition means that > is a refinement of the natural partial order-
ing on Nn defined by

(α1, . . . , αn) ≥nat (β1, . . . , βn) :⇐⇒ αi ≥ βi for all i .

For the proof (which we leave as an exercise) one needs

Lemma 1.2.6 (Dickson‘s Lemma). Let M ⊂ Nn be any subset. Then there is
a finite set B ⊂M satisfying

∀ α ∈M ∃ β ∈ B such that β ≤nat α .

B is sometimes called a Dickson basis of M .

Proof. We write ≥ instead of ≥nat and use induction on n. For n = 1 we can
take the minimum of M as the only element of B.

For n > 1 and i ∈ N define

Mi = {α′ = (α1, . . . , αn−1) ∈ Nn−1 | (α′, i) ∈M}
and, by induction, Mi has a Dickson basis Bi.

Again, by induction hypothesis,
⋃
i∈N

Bi has a Dickson basis B′. B′ is finite,
hence B′ ⊂ B1 ∪ · · · ∪Bs for some s.

We claim that

B := {(β′, i) ∈ Nn | 0 ≤ i ≤ s, β′ ∈ Bi}
is a Dickson basis of M .

To see this, let (α′, αn) ∈ M . Then α′ ∈ Mαn
and, since Bαn

is a Dickson
basis of Mαn

, there is a β′ ∈ Bαn
with β′ ≤ α′. If αn ≤ s, then (β′, αn) ∈ B

and (β′, αn) ≤ (α′, αn). If αn > s, we can find a γ′ ∈ B′ and an i ≤ s such that
γ′ ≤ β′ and (γ′, i) ∈ Bi. Then (γ′, i) ∈ B and (γ′, i) ≤ (α′, αn).

Example 1.2.7 (the first two are global, the third is local).

(1) lp : xα > xβ ⇔ ∃i : α1 = β1, . . . , αi−1 = βi−1, αi > βi,
lexicographical ordering (lex)

(2) dp : xα > xβ ⇔ |α| > |β| or |α| = |β| and ∃i : αi < βi, αi+1 =
βi+1, . . . , αn =βn,
degree reverse lexicographical ordering (degrevlex).

(3) ds : xα > xβ ⇔ |α| < |β| or |α| = |β| and ∃i : αi < βi, αi+1 =
βi+1, . . . , αn =βn,
negative degree reverse lexicographical ordering.
(mixed orderings will be considered later)
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1.3 Ideal Operations

Ideals are in the centre of commutative algebra and algebraic geometry.
Let A be a ring, as always, commutative and with 1.

Definition 1.3.1.

(1) A subset I ⊂ A is called an ideal if it is an additive subgroup which is
closed under scalar multiplication.

(2) A family (fλ)λ∈Λ, Λ any index set, and fλ ∈ I, is called a system of
generators of I if every element f ∈ I can be expressed as a finite sum
f =

∑
λ aλfλ for suitable aλ ∈ A. If Λ is finite, say Λ = {1, . . . , k}, we say

that I is finitely generated and we write

I = 〈f1, . . . , fk〉A = 〈f1, . . . , fk〉 .

(3) If G ⊂ A[x] = A[x1, . . . , xn] is any set we denote by

• L(G) = 〈LT(g) | g ∈ G〉A[x], the leading term ideal of G,

• LM(G) = 〈LM(g) | g ∈ G〉A[x], the leading monomial ideal of G,

For A = K a field, L(G) = LM(G), and we have for λ ∈ K \ {0}

λxα ∈ L(G) ⇐⇒ xα ∈ L(G) ⇐⇒ ∃ g ∈ G : LM(g) | xα.

Often ideals are not given by generators.
If ϕ : A→ B is a ring homomorphism and J ⊂ B an ideal, then the preimage

ϕ−1(J) = {a ∈ A | ϕ(a) ∈ J}
is an ideal. In particular, the kernel

Kerϕ = {a ∈ A | ϕ(a) = 0}

is an ideal in A. On the other hand, the image

Im ϕ = ϕ(I) = {ϕ(a) | a ∈ I}

is, in general, only an ideal if ϕ is surjective.

Note 1.3.2. Preimages (hence kernels) can be effectively computed (i.e. a gen-
erating set can be computed) which is, however, not easy. Images are generated
by the images of the generators (for surjective ϕ), hence the computation is
trivial.

Definition 1.3.3. A ring A is called Noetherian if every ideal in A is finitely
generated.

Theorem 1.3.4 (Hilbert Basis Theorem). If A is a Noetherian ring then the
polynomial ring A[x1, . . . , xn] is Noetherian. In particular, if K is a field, then
K[x1 . . . , xn] is Noetherian.

For the proof of the Hilbert basis theorem we use
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Proposition 1.3.5. The following properties of a ring A are equivalent:

(1) A is Noetherian.

(2) Every ascending chain of ideals

I1 ⊂ I2 ⊂ I3 ⊂ . . . ⊂ Ik ⊂ . . .

becomes stationary (that is, there exists some j0 such that Ij = Ij0 for all
j ≥ j0).

(3) Every non–empty set of ideals in A has a maximal element (with regard
to inclusion).

Condition (2) is called the ascending chain condition and (3) the maximality
condition. We leave the proof of this proposition as an exercise.

Proof of Theorem 1.3.4. We need to show the theorem only for n = 1, the
general case follows by induction.

We argue by contradiction. Let us assume that there exists an ideal I ⊂ A[x]
which is not finitely generated. Choose polynomials

f1 ∈ I, f2 ∈ I � 〈f1〉, . . . , fk+1 ∈ I � 〈f1, . . . , fk〉, . . .

of minimal possible degree. If di = deg(fi),

fi = aix
di + lower terms in x ,

then d1 ≤ d2 ≤ . . . and 〈a1〉 ⊂ 〈a1, a2〉 ⊂ . . . is an ascending chain of ideals
in A. By assumption it is stationary, that is, 〈a1, . . . , ak〉 = 〈a1, . . . , ak+1〉 for

some k, hence, ak+1 =
∑k
i=1 biai for suitable bi ∈ A. Consider the polynomial

g = fk+1 −
k∑
i=1

bix
dk+1−difi = ak+1x

dk+1 −
k∑
i=1

biaix
dk+1 + lower terms .

Since fk+1 ∈ I � 〈f1, . . . , fk〉, it follows that g ∈ I � 〈f1, . . . , fk〉 is a polynomial
of degree smaller than dk+1, a contradiction to the choice of fk+1.

Definition 1.3.6. For ideals I, J ⊂ A we define:

(1) The ideal quotient of I by J is defined as

I : J :=
{
a ∈ A ∣∣ aJ ⊂ I

}
.

The saturation of I with respect to J is

I : J∞ =
{
a ∈ A ∣∣ ∃ n such that aJn ⊂ I

}
.

(2) The radical of I, denoted by
√
I or rad(I) is the ideal

√
I =

{
a ∈ A ∣∣ ∃ d ∈ N such that ad ∈ I} ,

I is called reduced or a radical ideal if I =
√
I.
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(3) a ∈ A is called nilpotent if an = 0 for some n ∈ N; the minimal n is
called index of nilpotency. The set of nilpotent elements of A is equal
to

√〈0〉 and called the nilradical of A.

(4) 〈0〉 : J = AnnA(J) is the annihilator of J and, hence, 〈0〉 : 〈f〉 = 〈0〉 if
and only if f is a non–zerodivisor of A.

Note 1.3.7. (Generators of) Ideal quotient, saturation, radical can be effectively
computed.

Singular commands:

quotient(I,J); (command in the Singular kernel)
sat(I,J); (procedure in elmi.lib)
radical(I); (procedure in primdec.lib)

1.4 Normal Forms and Gröbner Bases

Let > be a fixed global monomial ordering on Mon(x1, . . . , xn), K a field and
let

R = K[x1, . . . , xn]

Definition 1.4.1. Let I ⊂ R be an ideal. A finite set G ⊂ R is called a
Gröbner basis or standard basis of I if

G ⊂ I, and L(I) = L(G) .

Hence G ⊂ I is a Gröbner basis, if for any f ∈ I � {0} there exists a g ∈ G
satisfying LM(g) | LM(f). We say G is a Gröbner (standard) basis if it is a
Gröbner (standard) basis of 〈G〉R.

Existence of a Gröbner basis (non-constructive):
Choose a finite set of generators m1, . . . ,ms of L(I) ⊂ K[x], which exists, since
K[x] is Noetherian. These generators are leading monomials of suitable elements
g1, . . . , gs ∈ I. The set {g1, . . . , gs} is a standard basis for I.

Definition 1.4.2. Let G ⊂ R be any subset.

(1) G is called interreduced (or minimal) if 0 �∈ G and if LM(g) � LM(f)
for any two elements f �= g in G.

(2) G is called (completely) reduced if G is interreduced and if, for any g ∈
G, LC(g) = 1 and no monomial of tail (g) is divisible by any LM(f), f ∈ G.

• Every Gröbner basis G can be transformed into an interreduced one
by just deleting elements of G.

• We shall see later that reduced Gröbner bases can always be com-
puted and are unique.

Definition 1.4.3. Let G ⊂ R be a finite list. A map

NF : R→ R, f �→ NF(f | G) ,

is called a normal form on R with respect to G, if
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(0) NF(0 | G) = 0 ,

and, for all f ∈ R,

(1) NF(f | G) �= 0 =⇒ LM
(
NF(f | G)

) �∈ L(G).

(2) If G = {g1, . . . , gs}, then r := f −NF(f | G) has a standard represen-
tation, that is the remainder

r = f −NF(f | G) =

s∑
i=1

aigi, ai ∈ R , s ≥ 0 ,

satisfies LM(r) ≥ LM(aigi) for all i such that aigi �= 0.

NF is called a reduced normal form, if, moreover, NF(f | G) has leading
coefficient 1 and no monomial of its tail is divisible by LM(g), g ∈ G.

Lemma 1.4.4. Let I ⊂ R be an ideal, G ⊂ I a standard basis of I and
NF(− | G) a normal form on R with respect to G.

(1) For any f ∈ R we have f ∈ I if and only if NF(f | G) = 0.

(2) If J ⊂ R is an ideal with I ⊂ J , then L(I) = L(J) implies I = J .

(3) I = 〈G〉R, that is, the standard basis G generates I as R–ideal.

(4) If NF(− | G) is a reduced normal form, then it is unique (i.e. depends
only on G and on >).

Proof. (1) If NF(f | G) = 0 then uf ∈ I and, hence, f ∈ I. If NF(f | G) �= 0,
then LM

(
NF(f | G)

) �∈ L(G) = L(I), hence NF(f | G) �∈ I, which implies f �∈ I,
since 〈G〉R ⊂ I. To prove (2), let f ∈ J and assume that NF(f | G) �= 0.
Then LM

(
NF(f | G)

) �∈ L(G) = L(I) = L(J), contradicting
NF(f | G) ∈ J .
Hence, f ∈ I by (1).

(3) follows from (2), since L(I) = L(G) ⊂ L(〈G〉R) ⊂ L(I), in particular, G
is also a standard basis of 〈G〉R. Finally, to prove (4), let f ∈ R and assume that
h, h′ are two reduced normal forms of f with respect to G. Then no monomial
of the power series expansion of h or h′ is divisible by any monomial of L(G)
and, moreover, h− h′ = (f − h′)− (f − h) ∈ 〈G〉R = I.

If h− h′ �= 0, then LM(h− h′) ∈ L(I) = L(G), a contradiction, since
LM(h− h′) is a monomial of either h or h′.

Definition 1.4.5. Let f, g ∈ R� {0} with LM(f) = xα and LM(g) = xβ . Set

γ := lcm(α, β) :=
(
max(α1, β1), . . . ,max(αn, βn)

)
and let lcm(xα, xβ) := xγ be the least common multiple of xα and xβ . The
s–polynomial (spoly, for short) of f and g is

spoly(f, g) := xγ−αf − LC(f)

LC(g)
· xγ−βg .

9



If LM(g) divides LM(f), say LM(g) = xβ , LM(f) = xα, then the s–polynomial
is particularly simple,

spoly(f, g) = f − LC(f)

LC(g)
· xα−βg ,

and LM
(
spoly(f, g)

)
< LM(f). We use in this case the notation

f −→
g

h if h = spoly(f, g).

Algorithm 1.4.6 (NFBuchberger(f | G)). Assume that > is a global mono-
mial ordering.

Input: f ∈ K[x], G ∈ G, where G denotes the class of finite lists.

Output: h ∈ K[x], a normal form of f with respect to G.

• h := f ;

• while (h �= 0 and Gh := {g ∈ G | LM(g) divides LM(h)} �= ∅)
choose any g ∈ Gh;
h := spoly(h, g);

• return h;

Note that each specific choice of “any” can give a different normal form function.

Algorithm 1.4.7 (redNFBuchberger(f | G)). Assume that > is a global
monomial ordering.

Input: f ∈ K[x], G ∈ G
Output: h ∈ K[x], a reduced normal form of f with respect to G

• h := 0, g := f ;

• while (g �= 0)
g := NFBuchberger (g | G);
if (g �= 0)
h := h+ LT(g);
g := tail(g);

• return h/LC(h);

Example 1.4.8. Let > be the ordering dp on Mon(x, y, z),

f = x3+ y2+ 2z2+ x+ y + 1 , G = {x2, y + z} .

NFBuchberger proceeds as follows:
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LM(f) = x3, Gf = {x2},
h1 = spoly(f, x2) = y2 + 2z2 + x+ y + 1, (f −→

x2 h1);

LM(h1) = y2, Gh1 = {y + z},
h2 = spoly(h1, y + z) = −yz + 2z2 + x+ y + 1, (h1 −→y+z h2);

LM(h2) = yz, Gh2 = {y + z},
h3 = spoly(h2, y + z) = 3z2 + x+ y + 1, (h2 −→y+z h3); Gh3 = ∅.

Hence, NFBuchberger(f | G) = 3z2 + x+ y + 1.

To have shorthand notation we underline the leading terms and then the
reduced normal form acts as

f −→ NF(f | G) = 3z2+x+y+1 −→
y+z

3z2+x−z+1 −→ z2 +
1

3
x− 1

3
z +

1

3︸ ︷︷ ︸
=RedNF(f |G)

.

1.5 Gröbner Basis Algorithm

Let > be a fixed global monomial ordering and let R = K[x1, . . . , xn]. Let G be
the class of finite lists (a list is a sequence).

Algorithm 1.5.1 (Gröbner(G,NF)).

Input: G ∈ G, NF an algorithm returning a normal form.

Output: S ∈ G such that S is a Gröbner basis of I = 〈G〉R ⊂ R

• S := G;

• P := {(f, g) | f, g ∈ S, f �= g}, the pair–set;

• while (P �= ∅)
choose (f, g) ∈ P ;
P := P � {(f, g)};
h := NF

(
spoly(f, g) | S);

if (h �= 0)
P := P ∪ {(h, f) | f ∈ S};
S := S ∪ {h};

• return S;

Termination of Gröbner: if h �= 0 then LM(h) �∈ L(S) by property (i) of NF.
Hence, we obtain a strictly increasing sequence of monomial ideals L(S) of K[x],
which becomes stationary as K[x] is Noetherian. That is, after finitely many
steps, we always have NF

(
spoly(f, g) | S) = 0 for (f, g) ∈ P , and, again after

finitely many steps, the pair-set P will become empty. Correctness follows from
applying Buchberger’s fundamental standard basis criterion below.

11



Theorem 1.5.2 (Buchberger’s criterion). Let I ⊂ R be an ideal and
G = {g1, . . . , gs} ⊂ I. Let NF(− | G) be a normal form on R with respect to
G. Then the following are equivalent: 1

(1) G is a standard basis of I.

(2) NF(f | G) = 0 for all f ∈ I.
(3) Each f ∈ I has a standard representation with respect to NF(− | G).

(4) G generates I and NF
(
spoly(gi, gj) | G

)
= 0 for i, j = 1, . . . , s.

Example 1.5.3. Let > be the ordering dp on Mon(x, y), f1 = x3 + y2, f2 =
xyz − y2 (underline leading terms), G = {f1, f2}, NF=NFBuchberger.
Gröbner(G,NF) works as follows:

S = {f1, f2}, P = {(f1, f2)}
The while–loop gives, in the first run:
(f1, f2):

P = ∅
spoly(f1, f2) = yzf1 − x2f2 = y3z + x2y2 =: f3 = NF(f3, S)
P = {(f1, f3), (f2, f3)}
S = {f1, f2, f3}

In the second run:
(f1, f3):

P = {(f2, f3)}
spoly(f1, f3) = y2f1 − xf3 = y4 − xy3z −→

f2
0

In the third run:
(f2, f3):

P = ∅
spoly(f2, f3) = xyf2 − zf3 = −xy3 − y3z2 =: f4 = NF(f4, S)
P = {(f1, f4), (f2, f4), (f3, f4)}
(Note: spoly(f1, f4) −→

{f1,f4}
0 by the product criterion, since

LM(f1) = x3 and LM(f4) = y3z2 have no common divisor.)
S = {f1, f2, f3, f4}

In the fourth run:
(f2, f4):

P = {(f3, f4)}
spoly(f2, f4) = −y4z − x2y3 −→

f3
0

In the fifth run:
(f3, f4):

P = ∅
spoly(f3, f4) = y4z3−x3y3 −→

f4
−x3y3−xy4z −→

f1
−xy4z+ y5 −→

f2
0

return{f1, f2, f3, f4}, a Gröbner basis of 〈f1, f2〉R.

1Usually, the implication (4) ⇒ (1) is called Buchberger’s criterion.

12



2 Constructive Ideal and Module Theory

2.1 Operations on Ideals and their Computation

2.1.1 Ideal Membership

Problem: Given f, f1, . . . , fk ∈ K[x], and let I = 〈f1, . . . , fk〉. Decide whether
f ∈ I, or not.

Solution: Choose any global monomial ordering > and compute a standard
basis G = {g1, . . . , gs} of I. Then f ∈ I if and only if NF(f | G) = 0.

2.1.2 Intersection with Subrings (Elimination of variables)

This is one of the most important applications of Gröbner bases.

Problem: Given f1, . . . , fk ∈ K[x] = K[x1, . . . , xn], I = 〈f1, . . . , fk〉K[x], find
generators of the ideal

I ′ = I ∩K[xs+1, . . . , xn], s < n .

Elements of I ′ are said to be obtained from I by eliminating x1, . . . , xs.
> is called an elimination ordering for x1, . . . xs if for all f ∈ K[x1, . . . , xn]

LM(f) ∈ K[xs+1, . . . , xn]⇒ f ∈ K[xs+1, . . . , xn]

(e.g.: lex or product orderings).

Solution: Choose an elimination ordering for x1, . . . , xs on Mon(x1, . . . , xn),
and compute a standard basis S = {g1, . . . , gk} of I. Those gi, for which LM(gi)
does not involve x1, . . . , xs, generate I ′.
Even more, they are a standard basis of I ′. This follows from the following
Lemma.

Lemma 2.1.1. Let > be an elimination ordering for x1, . . . , xs on
Mon(x1, . . . , xn), and let I ⊂ K[x1, . . . , xn]> be an ideal. If S = {g1, . . . , gk}
is a standard basis of I, then

S′ := {g ∈ S | LM(g) ∈ K[xs+1, . . . , xn]}

is a standard basis of I ′ := I ∩K[xs+1, . . . , xn]>′ . In particular, S′ generates
the ideal I ′.

Proof. Given f ∈ I ′ ⊂ I there exists gi ∈ S such that LM(gi) divides LM(f),
since S is a standard basis of I. Since f ∈ K[xs+1, . . . , xn], we have LM(f) ∈
K[xs+1, . . . , xn] and, hence, gi ∈ S′. Since > is an elimination ordering S′ ⊂ I ′.
Hence S′ is a standard basis of I ′.

2.2 Gröbner Bases for Modules

Definition 2.2.1. Let A be a ring. A set M with two maps, an addition,
+ : M ×M −→ M and a scalar multiplication, · : A ×M −→ M is called an
A-module if (M,+) is an abelian group and + and · satisfy

13



• (a+ b) ·m = a ·m+ b ·m
• a · (m+ n) = a ·m+ a · n
• (a · b) ·m = a · (b ·m)

• 1 ·m = m

for all a, b ∈ A, m, n ∈M .
For r > 0, Ar with componentwise + and · is an A-module which is Noetherian
if A is Noetherian.

More generally, we have

Lemma 2.2.2. Let M be an A-module and N ⊂M a submodule.

(1) M is Noetherian ⇐⇒ N and the factor module M/N are Noetherian

(2) If A is Noetherian, then M is Noetherian iff M is finitely generated.

Proof. For the proof see e.g. [GP].

We have to extend the notion of monomial orderings to the free module
K[x]r =

⊕r
i=1K[x]ei, ei = (0, . . . , 1, . . . , 0) ∈ K[x]r, where K is a field.

We call
xαei = (0, . . . , xα, . . . , 0) ∈ K[x]r

a monomial (involving component i).

Definition 2.2.3. Let > be a monomial ordering onK[x]. A (module) mono-
mial ordering or a module ordering on K[x]r is a total ordering >m on the
set of monomials {xαei | α ∈ Nn, i = 1, . . . , r}, which is compatible with the
K[x]–module structure including the ordering >, that is, satisfying

(1) xαei >m xβej =⇒ xα+γei >m xβ+γej,

(2) xα > xβ =⇒ xαei >m xβei

for all α, β, γ ∈ Nn, i, j = 1, . . . , r.

Two module orderings are of particular interest:

xαei > xβej :⇐⇒ i < j or (i = j and xα > xβ) ,

giving priority to the components, denoted by (c,>), and

xαei > xβej :⇐⇒ xα > xβ or (xα = xβ and i < j) ,

which gives priority to the monomials in K[x], denoted by (>,c).

Fix a module ordering >m and denote it also with >. Any vector
f ∈ K[x]r � {0} can be written uniquely as

f = cxαei + f∗

with c ∈ K � {0} and xαei > xα
∗

ej for any non–zero term c∗xα
∗

ej of f∗: We
define as before
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LM(f) := xαei , leading monomial

LC(f) := c , leading coefficient

LT(f) := cxαei, leading term

tail(f) := f∗ tail

For I ⊂ K[x]r a submodule we call

L>(I) := L(I) := 〈 LT(g) | g ∈ I � {0} 〉K[x] ⊂ K[x]r

the leading module of 〈I〉K (which coincides with LM(I) = 〈LM(g) | g ∈
I \ {0}〉K[x] since K is a field).

The set of monomials of K[x]r may be identified with Nn×Er ⊂ Nn×Nr =
Nn+r, Er = {e1, . . . , er}.

We say that xβej is divisible by xαei if i = j and xα | xβ .
Let > be a fixed global monomial ordering. Again we write

R := K[x] = K[x1, . . . , xn].

Definition 2.2.4. Let I ⊂ Rr be a submodule. A finite set G ⊂ I is called a
Gröbner or standard basis of I if and only if L(G) = L(I), that is, for any
f ∈ I � {0} there exists a g ∈ G satisfying LM(g) | LM(f).

The notion of minimal and reduced Gröbner basis is the same as for
ideals. Also the definitions of normal form and of s–polynomial.

The normal form algorithm and Buchberger’s Gröbner basis algorithm
extend easily to submodules I ⊂ Rr.

2.3 Exact Sequences and free Resolutions

Definition 2.3.1. A sequence of A–modules and homomorphisms

· · · →Mk+1
ϕk+1−−−→Mk

ϕk−−→Mk−1 → · · ·
is called a complex if Ker(ϕk) ⊂ Im(ϕk+1). It is called exact at Mk if

Ker(ϕk) = Im(ϕk+1) .

It is called exact if it is exact at all Mk. An exact sequence

0 −→M ′ ϕ−→M
ψ−→M ′′ −→ 0

is called a short exact sequence.

Definition 2.3.2. Let A be a ring and M a finitely generated A–module. A
free resolution of M is an exact sequence

. . . −→ Fk+1
ϕk+1−−−→ Fk −→ . . . −→ F1

ϕ1−→ F0
ϕ0−→M → 0

with finitely generated free A–modules Fi for i ≥ 0.
Frequently the complex of free A-modules (without M)

F• : . . . −→ Fk+1
ϕk+1−−−→ Fk −→ . . . −→ F1

ϕ1−→ F0 −→ 0

is called a free resolution of M .
A free resolution has (finite) length n if Fk = 0 for all k > n and n is minimal
with this property.
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2.4 Computing Resolutions and the Syzygy Theorem

In the following definition R can be an arbitrary ring.

Definition 2.4.1. A syzygy or relation between k elements f1, . . . , fk of an
R–module M is a k–tuple (g1, . . . , gk) ∈ Rk satisfying

k∑
i=1

gifi = 0 .

The set of all syzygies between f1, . . . , fk is a submodule of Rk, it is the kernel
of the ring homomorphism

ϕ : F1 :=
k⊕
i=1

Rεi −→M , εi �−→ fi ,

where {ε1, . . . , εk} denotes the canonical basis of Rk. ϕ surjects onto the R–
module I := 〈f1, . . . , fk〉R and

syz(I) := syz(f1, . . . , fk) := Ker(ϕ)

is called the module of syzygies of I with respect to the generators f1, . . . , fk.

Theorem 2.4.2 (Hilbert’s Syzygy Theorem). Let R = K[x1, . . . , xn]. Then
any finitely generated R–module M has a free resolution

0→ Fm → Fm−1 → · · · → F0 →M → 0

of length m ≤ n, where the Fi are free R–modules.

Proof. For the proof we refer to [GP].

Algorithm 2.4.3 (syz(f1, . . . , fk)). Let > be any monomial ordering on
Mon(x1, . . . , xn) and R = K[x].

Input: f1, . . . , fk ∈ K[x]r.

Output: S={s1, . . . , s�} ⊂ K[x]k such that 〈S〉 = syz(f1, . . . , fk) ⊂ Rk.

• F := {f1 + er+1, . . . , fk + er+k}, where e1, . . . , er+k denote the canonical
generators of Rr+k = Rr ⊕Rk such that
f1, . . . , fk ∈ Rr =

⊕r
i=1 Rei;

• compute a standard basis G of 〈F 〉 ⊂ Rr+k with respect to (c,>);

• G0 := G ∩⊕r+k
i=r+1Rei = {g1, . . . , g�}, with

gi =
∑k
j=1 aijer+j , i = 1, . . . , 	;

• si := (ai1, . . . aik), i = 1, . . . , 	;

• return S = {s1, . . . , s�}.

Algorithm 2.4.4 (Resolution(I,m)). Let > be a global monomial ordering
on Mon(x1, . . . , xn) and R = K[x].
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Input: f1, . . . , fk ∈ K[x]r, I = 〈f1, . . . , fk〉 ⊂ Rr, and m a positive integer.

Output: A list of matrices A1, . . . , Am with Ai ∈Mat(ri−1× ri,K[x]), i =
1, . . . ,m, such that

. . . −→ Rrm
Am−−→ Rrm−1 −→ . . . −→ Rr1

A1−−→ Rr −→ Rr/I −→ 0

is the beginning of a free resolution of Rr/I.

• i := 1;

• A1 := matrix(f1, . . . , fk) ∈Mat(r × k,K[x]);

• while (i < m)
i := i+ 1;
Ai := syz(Ai−1);

• return A1, . . . , Am.

2.5 Operations on Modules and their Computation

Let K be a field, > a global monomial ordering on K[x], x = (x1, . . . , xn), and
R = K[x].

The module membership problem can be formulated as follows:
Problem: Given polynomial vectors f, f1, . . . , fk ∈ K[x]r, decide whether

f ∈ I := 〈f1, . . . , fk〉 ⊂ Rr

or not.

Solution: Compute a standard basis G = {g1, . . . , gs} of I with respect to >m
and choose a normal form NF on Rr. Then

f ∈ I ⇐⇒ NF(f | G) = 0 .

Additional Problem: If f ∈ I = 〈f1, . . . , fr〉 ⊂ Rr then express f as a linear

combination f =
∑k

i=1 gifi with gi ∈ K[x].

Solution: Compute a standard basis G of syz(f, f1, . . . , fk) ⊂ Rk+1 w.r.t.
the ordering (c,>). Now choose any vector h = (1,−g1, . . . ,−gk) ∈ G. Then

f =
∑k

i=1 gifi.

Intersection with Free Submodules (Elimination of Module Compo-
nents) Let Rr =

⊕r
i=1Rei, where {e1, . . . , er} denotes the canonical basis of

Rr, R = K[x].
Problem: Given f1, . . . , fk ∈ Rr, I = 〈f1, . . . , fk〉 ⊂ Rr, find a (polynomial)
system of generators for the submodule

I ′ := I ∩
r⊕

i=s+1

Rei .
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Elements of the submodule I ′ are said to be obtained from f1, . . . , fk by
eliminating e1, . . . , es.

Solution: Compute a standard basis G = {g1, . . . , gs}
of I w.r.t. (c,>). Then

G′ :=

{
g ∈ G

∣∣∣∣∣ LM(g) ∈
r⊕

i=s+1

K[x]ei

}

is a standard basis for I ′.
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3 Constructive Normalization of Affine Rings

3.1 Integral Closure of Rings and Ideals

Let K be a perfect field (e.g. char(K) = 0 or K finite) and A =
K[x1, . . . , xn]/〈f1, . . . , fk〉 reduced (i.e. if a ∈ A and ap = 0 for some p > 0
then a = 0).

We describe algorithms to compute

• the normalisation A of A, that is, the integral closure of A in the total
ring of fractions Q(A),

• an ideal IN ⊂ A describing the non-normal locus, that is,

V (IN ) = N(A) := {P ∈ SpecA | AP is not normal} ,

We can also compute for any ideal I ⊂ A, the integral closure I of I in A
(cf. [GP]).

Definition 3.1.1. For any ring A we define the total ring of fractions Q(A)
as the localization of A w.r.t. the multiplicatively closed set S = {s ∈ A |
sa = 0⇒ a = 0 ∀ a ∈ A} of non-zero divisors of A. That is

Q(A) = {a
s
| s ∈ S, a ∈ A}

with usual + and · of fractions. where a
s

is the equivalence class of pairs (a, s)
with (a, s) ∼ (a′, s′) iff as′ = a′s. (Q(A),+, ·) is a ring; if A is a domain (i.e.
S = A \ {0}), then Q(A) is a field, the field of fractions of A.

3.2 Key-Lemma

Definition 3.2.1. b ∈ Q(A) is integral over A if it satisfies a relation

bn + a1b
n−1 + · · ·+ an = 0 , ai ∈ A .

We define the normalisation of A as A :=
{
b ∈ Q(A)

∣∣ b is integral over A
}
,

that is, A is the integral closure of A in Q(A).

Lemma 3.2.2 (Key-lemma). Let J ⊂ A be an ideal, containing a non-
zerodivisor f of A. Then

A ⊂ HomA(J, J) ⊂ HomA(J,A) ∩A ⊂ HomA(J,
√
J)

with

HomA(J,A)
∼=−→ {

h ∈ Q(A)
∣∣ hJ ⊂ A

} ⊂ Q(A) , ϕ �−→ ϕ(f)
f

.

Remark 3.2.3.

(1) By the Cayley-Hamilton theorem, the characteristic polynomial of ϕ de-
fines an integral relation of ϕ ∈ HomA(J, J).

(2) HomA(J, J) ∼= 1
f
(fJ : J) ⊂ Ā.

Proof. For the proof we refer to [GP], Lemma 3.6.1. and Lemma 3.6.4.
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3.3 A Criterion for Normality

The following criterion is basically due to Grauert and Remmert (1971).

Proposition 3.3.1 (Criterion for normality). Let A be a reduced Noetherian
ring and J ⊂ A an ideal satisfying

(1) J contains a non-zerodivisor of A,

(2) J =
√
J ,

(3) V (J) ⊃ N(A) = V (C), C = AnnA(A/A).

Then
A = A ⇐⇒ A = HomA(J, J).

An ideal J with (1), (2), (3) is called test ideal for the normalization.

Proof. “⇐=” (3) ⇒ ∃ d ≥ 0 minimal s.th. AJd ⊂ A.

Assume d > 0

⇒ ∃ h ∈ A, a ∈ Jd−1 : ha �∈ A, haJ ⊂ hJd ⊂ AJd ⊂ A

⇒ ha ∈ A ∩HomA(J,A) = HomA(J, J)︸ ︷︷ ︸
= A

(key-lemma)

That is a contradiction and we conclude that d = 0 and thus A = A.

3.4 Test Ideals

Let R = K[x1, . . . , xn], A = R/I reduced, I = 〈f1, . . . , fk〉, K a perfect field.
Let

Sing(A) = {P ∈ SpecA | AP is not regular}
be the singular locus of A. We have N(A) ⊂ Sing(A).

If A is equidimensional of codimension c, then the Jacobian ideal

J =

〈
f1, . . . , fk, c-minors of

(
∂fi
∂xj

)〉
defines Sing(A).

In general, we can use an equidimensional or primary decomposition
to compute an ideal J s.th. V (J) = Sing(A). Since A is reduced, J contains a
non-zerodivisor of A.

Hence we can compute test ideals as follows (all steps are effective):

• compute J such that V (J) = Sing(A)

• compute
√
J

Then
√
J is a test ideal for the normalization. Note that we can as well compute

any ideal J ′ ⊂ J containing a non-zero divisor, then
√
J ′ is also a test ideal.
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3.5 Algorithm to Compute the Normalization

The idea of the algorithm is to compute the endomorphism ring A(1) =
HomA(J, J) for some test ideal J ⊂ A. If A = A(1) then A is already nor-
mal by Proposition 3.3.1. If not, we compute A(2) = HomA(1)(J (1), J (1)) for a
test ideal J (1) ⊂ A(1). If A(1) = A(2) then A = A(1), otherwise we continue in
the same way to obtain a sequence of rings

A ⊂ A(1) ⊂ . . . ⊂ A(i) ⊂ . . . ⊂ A.

The process must stop since A is affine, by a theorem of M. Noether. In order
to do the computations effectively, we must present A(i) as affine ring. This is
described in the following lemma.

Lemma 3.5.1. Let A be a reduced Noetherian ring, let J ⊂ A be an ideal and
x ∈ J a non–zerodivisor. Then

(1) A = HomA(J, J) if and only if xJ : J = 〈x〉.

Moreover, let {u0 = x, u1, . . . , us} be a system of generators for the A–module
xJ : J . Then we can write

(2) ui · uj =

s∑
k=0

xξijk uk with suitable ξijk ∈ A, 1 ≤ i ≤ j ≤ s.

Let (η
(k)
0 , . . . , η

(k)
s ) ∈ As+1, k = 1, . . . ,m, generate the syzygy module

syz(u0, . . . , us), and let I ⊂ A[t1, . . . , ts] be the ideal

I :=

〈{
titj −

s∑
k=0

ξijk tk

∣∣∣∣∣ 1 ≤ i ≤ j ≤ s

}
,

{
s∑

ν=0

η(k)
ν tν

∣∣∣∣∣ 1 ≤ k ≤ m

}〉
,

where t0 := 1. Then

(3) ti �→ ui/x, i = 1, . . . , s, defines an isomorphism

A[t1, . . . , ts]/I
∼=−→ HomA(J, J) ∼= 1

x
· (xJ : J) .

Proof. (1) follows immediately from Remark 3.2.3(2).
To prove (2), note that HomA(J, J) = (1/x) · (xJ : J) is a ring, which is

generated as A–module by u0/x, . . . , us/x. Therefore, there exist ξijk ∈ A such

that (ui/x) · (uj/x) =
∑s

k=0 ξ
ij
k · (uk/x).

(3) Obviously, I ⊂ Ker(φ), where φ : A[t1, . . . , ts]→ (1/x) · (xJ : J) is the
ring map defined by ti �→ ui/x, i = 1, . . . , s. On the other hand, let h ∈ Ker(φ).
Then, using the relations titj −

∑s
k=0 ξ

ij
k tk, 1 ≤ i ≤ j ≤ s, we can write

h ≡ h0 +
∑s

i=1 hiti mod I, for some h0, h1, . . . , hs ∈ A.
Now φ(h) = 0 implies h0 +

∑s
i=1 hi · (ui/x) = 0, hence, (h0, . . . , hs) is a

syzygy of u0 = x, u1, . . . , us and, therefore, h ∈ I.
Example 3.5.2. Let A := K[x, y]/〈x2− y3〉 and J := 〈x, y〉 ⊂ A. Then x ∈ J
is a non–zerodivisor in A with xJ : J = x〈x, y〉 : 〈x, y〉 = 〈x, y2〉, therefore,
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HomA(J, J) = 〈1, y2/x〉 (using Remark 3.2.3(2)). Setting u0 := x, u1 := y2, we
obtain u2

1 = y4 = x2y, that is, ξ110 = y. Hence, we obtain an isomorphism

A[t]/〈t2− y, xt− y2, yt− x〉 ∼=−→ HomA(J, J) .

of A–algebras. Note that A[t]/〈t2− y, xt− y2, yt− x〉 � K[t].

Now, using Proposition 3.3.1 and Lemma 3.5.1 we obtain an algorithm to
compute the integral closure. We describe the algorithm for the case that
A = K[x1, . . . , xn]/I is an integral domain over a field K of characteristic 0,
that is, especially I is prime.

Algorithm 3.5.3 (normalization(I)).

Input: I := 〈f1, . . . , fk〉 ⊂ K[x] a prime ideal, x = (x1, . . . , xn).

Output: A polynomial ring K[t], t = (t1, . . . , tN ), a prime ideal P ⊂ K[t] and
π : K[x]→ K[t] such that the induced map π : K[x]/I → K[t]/P is the
normalization of K[x]/I.

• if I = 〈0〉 then return (K[x], 〈0〉, idK[x]);

• compute r := dim(I);

• if we know that the singular locus of I is V (x1, . . . , xn)2

J := 〈x1, . . . , xn〉;
else

compute J := the ideal of the (n− r)–minors of the Jacobian matrix I;

• J := radical(I + J);

• choose a ∈ J � {0};
• if aJ : J = 〈a〉 return (K[x], I, idK[x]);

• compute a generating system u0 = a, u1, . . . , us for aJ : J ;

• compute a generating system
{
(η

(1)
0 , . . . , η

(1)
s ), . . . , (η

(m)
0 , . . . , η

(m)
s )

}
for the

module of syzygies syz(u0, . . . , us) ⊂ (K[x]/I)s+1;

• compute ξijk such that ui · uj =
∑s

k=0 a · ξijk uk, i, j = 1, . . . s;

• change ring to K[x1, . . . , xn, t1, . . . , ts], and set (with t0 := 1)

I1 :=
〈{titj −∑s

k=0 ξ
ij
k tk}1≤i≤j≤s , {

∑s
ν=0 η

(k)
ν tν}1≤k≤m

〉
+ IK[x, t];

• return normalization(I1).

Note that I1 is again a prime ideal, since

K[x1, . . . , xn, t1, . . . , ts]/I1 ∼= HomA(J, J) ⊂ Q(A)

is an integral domain.

Example 3.5.4 (normalization). Let us illustrate the normalization with Whit-
ney’s umbrella

2This is useful information because, in this case, we can avoid computing the minors of the
Jacobian matrix and the radical (which can be expensive). The property of being an isolated
singularity is kept during the normalization loops.

22



ring A = 0,(x,y,z),dp;

ideal I = y2-zx2;

LIB "surf.lib";

plot(I,"rot_x=1.45;rot_y=1.36;rot_z=4.5;");

list nor = normal (I);

def R = nor[1]; setring R;

norid;

//-> norid[1]=0

normap;

//-> normap[1]=T(1) normap[2]=T(1)*T(2) normap[3]=T(2)^2

Hence, the normalization of A/I is K[T1, T2] with normalization map x �→ T1,
y �→ −T 2

2 , z �→ −T1T2.

(t1, t2) �→ (t1, t1t2, t
2
2)

Figure 1: The normalization of Whitney’s umbrella.

3.6 Algorithm to Compute the Non-Normal Locus

As a corollary of the Grauert-Remmert criterion, we obtain:

Corollary 3.6.1. Let A be a reduced Noetherian ring, J ⊂ A a test ideal, f ∈ J
a non-zerodivisor of A, and set

IN := AnnA
(
HomA(J, J)/A

) ∼= (fJ : J) : f .

Then V (IN ) is the non-normal locus of A.

Algorithm 3.6.2 (non–normal locus).

Input: f1, . . . , fk ∈ S = K[x1, . . . , xn], I := 〈f1, . . . , fk〉.
Assume:

√
I = I, K perfect.

Output: Generators for IN s.th. V (IN ) = N(S/I).

• Compute an ideal J̃ s.th. V (J̃) = Sing(S/I).

• Compute a non-zerodivisor f ∈ J̃ : choose a linear combination f of the
generators of J̃ and test

f non-zerodivisor ⇐⇒ (I : f) :=
{
g ∈ S ∣∣ gf ∈ I} = {0}.

• Compute the radical
√〈f, I〉 =: J .
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• Compute generators g1, . . . , g� for (fJ : J) : f as S-module.

• Return {g1, . . . , g�}.

Example 3.6.3. We compute the non–normal locus of
A := K[x, y, z]/〈zy2− zx3− x6〉.

LIB"primdec.lib";

ring A = 0,(x,y,z),dp;

ideal I = zy2-zx3-x6;

ideal sing = I+jacob(I);

ideal J = radical(sing);

qring R = std(I);

ideal J = fetch(A,J);

ideal a = J[1];

ideal re = quotient(a,quotient(a*J,J));

re;

//-> re[1]=y

//-> re[2]=x

From the output, we read that the non–normal locus is the z–axis (the zero–set
of 〈x, y〉).
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4 Computation in Local Rings

4.1 What is meant by “local” computations ?

There are several concepts of “local” in algebraic geometry:

• sometimes it means just an affine neighbourhood of a point, the algebraic
counterpart being affine rings, that is, rings of the form C[x]/I, where
I ⊂ C[x] = C[x1, . . . , xn] is an ideal;

• sometimes it means the study of the localization at a prime ideal
p ⊂ C[x], C[x]p/I, with I ⊂ C[x]p some ideal;

• sometimes it means convergent power series rings C{x}/I, or even
formal power series rings C[[x]]/I.

Actually, we have for the maximal ideal 〈x〉 = 〈x1, . . . , xn〉

C[x] ⊂ C[x]〈x〉 ⊂ C{x} ⊂ C[[x]]

where the first ring is the “least local” and the last one the “most local”.3

Hence, when considering “local” properties of a variety V , that is, properties
of the germ (V, P ) (= the equivalence class of all open neighbourhoods of P
in V ) of the variety at a given point P , one has to specify what “local” should
mean, in particular, what is meant by “neighbourhood”.

4.2 An Example

We want to study the germ at 0 = (0, 0) of the plane curve with affine equation
y2− x2(1 + x) = 0:

The picture indicates:

• in a small Euclidean neighbourhood of 0 the curve has two irre-
ducible components, meeting transversally, but

• in the affine plane, and, hence, in each Zariski neighbourhood4 of 0 the
curve is irreducible.

3Note that C[x]/I is not a local ring (except when the variety defined by I consists of only
one point) while the other three rings are local.

4Such a neighbourhood consists of the curve minus finitely many points different from 0.
But a connected open subset of C minus finitely many points is irreducible (here, the above
real picture is misleading).
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Let’s prove this: consider f = y2− x2(1 + x) as element of C{x, y}. We have
a non-trivial decomposition5

f =
(
y − x√1 + x

)(
y + x

√
1 + x)

)
with y ± x√1 + x ∈ C{x, y}. The zero-sets of the factors correspond to the two
components of {f = 0} in a small neighbourhood of 0.

However, f is irreducible in C[x, y], even in C[x, y]〈x,y〉. Otherwise, there

would exist g, h ∈ C[x, y]〈x,y〉 satisfying f =
(
y + xg

)(
y + xh

)
, hence g = −h

and g2 = 1 + x. But, since 1 + x is everywhere defined, g2 and, hence, g must
be a polynomial which is impossible, since g2 has degree 1. �

4.3 Computational Aspects

We shall show in the following, that (and how) the concept of Gröbner basis
computations can be generalized to the local rings C[x]〈x〉, C{x} and C[[x]],
respectively.

In practice, however, we can basically treat only C[x] and C[x]〈x〉 (or
factor rings of those) in a computer algebra system6. In particular, we can
neither put a polynomial into Weierstraß normal form (cf. below), nor factorize
it in C[[x]] effectively (except for power series in two variables where the Newton
algorithm for computing Puiseux series provides a method) and we do not know
any algorithm which would be able to do this even if the input is a polynomial.

Nevertheless, many invariants of (analytic) germs can be computed in
C[x]〈x〉, since we have the following

Facts: Let K be any field and I ⊂ K[x]〈x〉 an ideal.

• If dimK(K[x]〈x〉/I) <∞, then, as local k–algebras,

K[x]〈x〉/I ∼= K[[x]]/IK[[x]] .

In particular, both vector spaces have the same dimension and a common
basis represented by monomials.

• The inclusion K[x]〈x〉/I ⊂ K[[x]]/IK[[x]] is faithfully flat, that is, a
sequence of K[x]〈x〉/I–modules

0 −→M ′ −→M −→M ′′ −→ 0

is exact if and only if the induced7 sequence of K[[x]]/IK[[x]]–modules is
exact.

4.4 Rings Associated to Monomial Orderings

To implement local rings in a computer algebra system one has to abort the
restriction that monomial orderings are well-orderings. Hence, we define:

5This is, up to units, also the factorization in C[[x, y]], since the factorization is unique.
6Singular is apparently the only existing computer algebra system which systematically

has incorporated standard basis algorithms in local rings.
7by applying ⊗K[x]〈x〉/I K[[x]]/IK[[x]]
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Definition 4.4.1. A monomial ordering is a total ordering > on the set of
monomials x

α := xα1
1 · . . . · xαn

n which is compatible with the semigroup struc-
ture, that is, satisfies

x
α > x

β =⇒ x
γ
x
α > x

γ
x
β for all α, β, γ ∈ Zn≥0.

To any such monomial ordering > we associate the multiplicatively closed set

S> := {u ∈ K[x] \ {0} | LM(u) = 1}
and the ring

K[x]> := S−1
> K[x] =

{
f

u

∣∣∣∣ f, u ∈ K[x], LM(u) = 1

}
.

The following lemma follows easily from Lemma 1.2.5.

Lemma 4.4.2.

(1) The following are equivalent:

(a) K[x]> = K[x].

(b) x
α > 1 for all α �= (0, . . . , 0), i.e. > is global.

(2) In genaral we have
K[x] ⊂ K[x]> ⊂ K[[x]].

Recall that in Singular the global orderings are indicated by p as 2nd letter
(referring to “polynomial ring”): lp, dp, etc.

4.5 Local Monomial Orderings

The following Lemma follows again from Lemma 1.2.5.

Lemma 4.5.1. The following are equivalent:

(a) K[x]> = K[x]〈x〉.

(b) x
α < 1 for all α �= (0, . . . , 0), i.e. > is local.

(c) the inverse ordering
(
x
α >′ xβ :⇔ x

α < x
β
)

is global.

Example 4.5.2. The following are (the probably most important) local mono-
mial orderings:

• Negative degree reverse lexicographical ordering >ds:

x
α >ds x

β :⇐⇒ deg x
α < deg x

β ,

or
(
deg x

α = deg x
β and ∃ 1 ≤ i ≤ n :

αn = βn, . . . , αi+1 = βi+1, αi < βi
)
.

• Weighted negative degree reverse lexicographical orderings >ws(w), defined
as >ds, but replacing the degree of x

α by the weighted degree

wdeg(xα) = w1α1 + . . .+ wnαn,

where w1 > 0, w2, . . . , wn ≥ 0

• Negative lexicographical ordering >ls, which is defined to be the inverse of
the lexicographical ordering.

• Product orderings of the latter.
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4.6 Rings Associated to Mixed Orderings

If the monomial ordering is neither local nor global then we call it a mixed
ordering. In this case:

K[x] � K[x]> � K[x]〈x〉 ,

and (K[x]>)∗ ∩K[x] = S> = {u ∈ K[x] \ {0} | LM(u) = 1}, where R∗ denotes
the group of units in the ring R.

Example 4.6.1. Consider K[x,y] = K[x1, . . . , xn, y1, . . . , ym], equipped with a
product ordering (>1, >2). Then we have

(1) >1 global , >2 local :

K[x,y]> = (K[y]〈y〉)[x] = K[y]〈y〉 ⊗K K[x] .

(2) >1 local , >2 global :

(K[x]〈x〉)[y] � K[x,y]> � K[x,y]〈x〉 ,

(3) >1 global , >2 arbitrary :

K[x,y]> = (K[y]>2)[x] .

Definition 4.6.2 (Ring maps). Let >1, >2 be monomial orderings on K[x],
respectively K[y]. Then f1, . . . , fn ∈ K[y]>2 define a unique ring map

ϕ : K[x]>1 → K[y]>2 , xi �→ fi ,

provided that h(f1, . . . , fn) ∈ S>2 for all h ∈ S>1 .

4.7 Leading Data

Let > be any monomial ordering and f ∈ K[x]>. Then we can (and do) choose
a u ∈ K[x] such that LM(u) = 1 and uf ∈ K[x] and define

LM(f) := LM(uf) , the leading monomial of f,

LC(f) := LC(uf) , the leading coefficient of f,

LT(f) := LT(uf) , the leading term of f,

and tail(f) := f − LT(f).

Moreover, we define for any G ⊂ K[x]> the leading ideal

L>(G) := L(G) := 〈LM(g) | g ∈ G \ {0}〉K[x] .

Note that these definitions are independent of the choice of u.

It is useful to consider K[x]> as a subring of K[[x]], the formal power se-
ries ring. Then LT(f) corresponds to the largest (w.r.t. >) term in the
power series expansion of f and tail(f) is the power series of f with the lead-
ing term deleted. In particular, these notions are compatible with the obvious
extension of leading data to formal power series rings (w.r.t. a local monomial
ordering).
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Example 4.7.1. Let f = 2x
1−x + x = 3x+

∑∞
k=2 2xk, then

LT(f) = LT((1 + x)f) = 3x .

As in the polynomial ring, the leading ideal L(I) encodes much information
about the ideal I, for instance:

Theorem 4.7.2. Let > be any monomial ordering on K[x], and let I ⊂ K[x]
be an ideal. Then

(a) dim(K[x]>/IK[x]>) = dim(K[x]/L(I)) ,

(b) dimK(K[x]>/IK[x]>) = dim(K[x]/L(I)) .

Moreover, if dim(K[x]>/IK[x]>) < ∞, then the monomials in K[x] \ L(I)
represent a K-basis of K[x]>/IK[x]>.

Since the leading ideal of an ideal is finitely generated, we can transfer the
concept of Gröbner bases to R = K[x]>, respectively to R = K[[x]], and obtain
the notion of a standard basis (as introduced independently by Hironaka (1964)
and Grauert (1972)): a finite set G ⊂ R is called a standard basis (SB) of I if

G ⊂ I, and L(I) = L(G) .

Moreover, we can extend the latter notions without further modifications to free
R-modules with finite basis e1, . . . , er.

4.8 Division with Remainder

The Division Theorems by Weierstraß and Grauert generalize division with re-
mainder to free modules over formal power series rings:

Theorem 4.8.1 (Division Theorem (Grauert)). Let F be a free K[[x]]-module
with a finite basis e1, . . . , er, let > be a local monomial ordering on F , and let
f, f1, . . . , fm ∈ F \ {0}. Then there exist g1, . . . , gr ∈ K[[x]] and a remainder

h ∈ F such that

f =
m∑
j=1

gjfj + h

and, for all j = 1, . . . ,m,

(a) LM(f) ≥ LM(gjfj) ;

(b) if h �= 0 then no monomial of h is divisible by LM(fj).

Again, we call any such expression a standard expression for f in terms
of the fi and h the reduced normal form of f with respect to I. As before,
for a “normal form” we weaken the condition (b) to LM(h) is not divisible by
any LM(fj).
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4.9 Normal Forms and Standard Bases

The existence of a reduced normal form is the basis to obtain, in the formal
power series ring K[[x]], the properties of standard bases already proved for GB
in K[x]:

• If S, S′ are two standard bases of the ideal I, then the reduced normal
forms with respect to S and S′ coincide.

• Buchberger’s criterion holds.

• Reduced standard bases are uniquely determined.

The following theorem is one further reason, why for many computations in
local analytic geometry it is sufficient to compute in K[x]〈x〉.

Theorem 4.9.1. Let > be a local degree ordering on K[[x]] and let I be an
ideal in K[x]. Then

S is a standard basis of I (w.r.t. >) =⇒ S is a standard basis of IK[[x]].

So far everything was a straight forward transition from polynomial rings
to power series rings. But it was theoretical. From the computational point of
view there are several problems:

Example 4.9.2. Consider in R = K[x, y]〈x,y〉 with >=>ls.

f = y , g = (y − x)(1 − y) , G = {g} .
Assume h ∈ K[x, y] is a normal form of f w.r.t. G. We have:

f �∈ 〈G〉R = 〈y − x〉R =⇒ h �= 0

=⇒ LM(h) �∈ L(G) = 〈y〉 .
Moreover, h− y = h− f ∈ 〈G〉R = 〈y − x〉R =⇒ LM(h) < 1.
Therefore, h = xh′ for some h′ (because of the chosen ordering >ls). However,
y − xh′ �∈ 〈(y − x)(1 − y)〉K[x,y] (substitute (0, 1) for (x, y)) and, therefore no
polynomial normal form of f w.r.t. G exists.

4.10 Weak Normal Forms

The fact that for polynomial input data there does not necessarily exist a poly-
nomial normal form leads to the following

Definition 4.10.1. Let R = K[x]> for some monomial ordering >. Let G =
{g1, . . . , gs} be a finite subset of the free R–module F . A polynomial vector
h ∈ F is called a (polynomial) weak normal form for f with respect to G if
there exists a polynomial unit u ∈ R∗ such that h is a normal form for uf w.r.t.
G, that is uf satisfies a relation (with ai polynomials)

uf =
s∑
i=1

aigi + h, LM(u) = 1,

with LM(
∑s

i=1 aigi) ≥ LM(akgk) for all k such that akgk �= 0 and, if h �= 0 then
LM(h) is not divisible by any LM(gi).
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Example 4.10.2 (Example 4.9.2 continued). Setting u := (1 − y) and
h := x(1− y), we obtain uy = (y − x)(1 − y) + h, hence, h is a (polynomial)
weak normal form.

The same difficulty arises when trying to generalize Buchberger’s algorithm.
Look at the following

Example 4.10.3. Consider in K[x]〈x〉 the polynomial f := x and the standard
basis G := {g = x− x2}. The analogue to the Buchberger algorithm in K[[x]]
“computes” the normal form 0 as

x−
(
∞∑
i=0

xi

)
(x− x2) = 0 ,

hence it will produce infinitely many terms (and not the finite expression
1/(1− x)). Again, this problem would be solved when computing

(1 − x) · x− g = 0 .

In the following we present the general (weak) normal form algorithm (due
to Greuel and Pfister) as implemented in Singular. The basic idea for this
algorithm for local rings is due to Mora, but our algorithm is slightly different
and more general (works for any monomial ordering).

4.11 The Weak Normal Form Algorithm

Definition 4.11.1. Let f ∈ K[x] \ {0}. Then we set

ecart(f) := deg f − deg LM(f).

Algorithm 4.11.2 (weakNF). Let > be any monomial ordering.

Input: f ∈ K[x], G = {f1, . . . , fr} ⊂ K[x].

Output: h ∈ K[x], a weak normal form of f .

• h := f ;

• T := G;

• while(h �= 0 and Th := {g ∈ T | LM(g) divides LM(h)} �= ∅)
{

choose g ∈ Th with ecart(g) minimal;
if (ecart(g) > ecart(h)) {T := T ∪ {h}};
h := spoly(h, g);

}
• return h;

Note 4.11.3. The latter algorithm also applies to free K[x]>-modules with a
finite base. Moreover:

• If the input is homogeneous, then the ecart is always 0, hence, we
obtain Buchberger’s Algorithm.

• If > is global, then LM(g) | LM(h) implies LM(g) ≤ LM(h). Hence, even
if added to T during the algorithm, h cannot be used in further reductions.

• The reduce command in Singular returns h while the division com-
mand also returns the factors u, g1, . . . , gr.
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4.12 Standard Basis Algorithm

Having the above (weak) normal form algorithm, we can proceed as in K[x] to
compute a standard basis of a given ideal:

Algorithm 4.12.1 (std). Let > be any monomial ordering, and R := K[x]>.

Input: G = {f1, . . . , fr} ⊂ K[x].

Output: S ⊂ K[x], such that S is a standard basis for 〈G〉R.

• S := G;

• P := {(f, g) | f, g ∈ S, f �= g}, the pair–set;

• while (P �= ∅)
{

choose (f, g) ∈ P ;
P := P \ {(f, g)};
h := weakNF

(
spoly(f, g), S

)
;

if (h �= 0)
{

P := P ∪ {(h, f) | f ∈ S};
S := S ∪ {h};

}
}

• return S;

The algorithm terminates, since otherwise we would obtain a strictly in-
creasing sequence of monomial ideals L(S) in K[x]. Correctness follows from
Buchberger’s criterion.

The generalization to submodules of a finitely generated free module over R
is immediate.
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5 Singularities

5.1 Factorization, Primary Decomposition

Note 5.1.1. In Singular the factorization of polynomials, and, more generally,
the primary decomposition of ideals, are implemented only for the polyno-
mial ring K[x1, . . . , xn] and not for the localization K[x1, . . . , xn]〈x〉.

However, this is not a restriction, since after the factorization in
K[x1, . . . , xn] we can pass to the local ring, where all factors not vanishing
at 0 become units (see also Application 2).

ring r0=0,(x,y),ls;

poly f=(1-y)*(x^2-y^3)*(x^3-y^2)*(y^2-x^2-x^3);

f;

factorize(f);

//-> [1]:

//-> _[1]=1

//-> _[2]=-y2+x2+x3

//-> _[3]=-y2+x3

//-> _[4]=-y3+x2

//-> _[5]=-1+y

//-> [2]:

//-> 1,1,1,1,1

Warning: Factorization in the power series ring K[[x1, . . . , xn]] is not pos-
sible except for K[[x, y]] (using Hamburger–Noether expansion, implemented in
Singular in hnoether.lib).

5.2 Singularities

An (affine) algebraic variety in Kn is the set

X = V (I) = {x ∈ Kn | f(x) = 0 ∀ f ∈ I}

where I ⊂ K[x1, . . . , xn] is any ideal (I is part of the structure).
K[x1, . . . , xn]/I =: OX(X) is called the coordinate ring of X and OX the ideal
sheaf of X .

From now on we assume that K is an algebraically closed field.

Definition 5.2.1. Let X ⊂ Kn be an affine algebraic variety and p ∈ X.
The analytic local ring of X at p is the factor ring of the ring of formal

power series, centered at p = (p1, . . . , pn),

OanX,p := K[[x1−p1, . . . , xn−pn]]/I(X) ·K[[x1−p1, . . . , xn−pn]] .

The ring
OX,p = K[x1, . . . , xn]〈x1−p1,...,xn−pn〉

is called the algebraic local ring of X at the point p = (p1, . . . , pn).
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Lemma 5.2.2. Let OX,p be the algebraic local ring and let I ⊂ OX,p be an ideal
such that dimK(OX,p/I) <∞. Then

OX,p/I ∼= OanX,p/IOanX,p.

In particular, both vector spaces have the same dimension and a common basis
represented by monomials.

Note 5.2.3. In general,

dimK OX,0/I = dimK K[[x1, . . . , xn]]/〈f1, . . . , fn〉
�= dimK K[x1, . . . , xn]/〈f1, . . . , fk〉.

5.3 Milnor and Tjurina Number

Definition 5.3.1.

(1) f ∈ K[x], x = (x1, . . . , xn), has an isolated critical point at p if p is an
isolated point of V (∂f/∂x1, . . . , ∂f/∂xn). Similarly, we say that p is an
isolated singularity of f , or of the hypersurface V (f) ⊂ AnK , if p is an
isolated point of V (f, ∂f/∂x1, . . . , ∂f/∂xn).

(2) We call the number

μ(f, p) := dimK

(
K〈x1−p1, . . . , xn−pn〉

/〈
∂f

∂x1
, . . . ,

∂f

∂xn

〉)
the Milnor number, and

τ(f, p) := dimK

(
K 〈x1−p1, . . . , xn−pn〉

/〈
f,

∂f

∂x1
, . . . ,

∂f

∂xn

〉)
the Tjurina number of f at p. We write μ(f) and τ(f) if p = 0.

Note 5.3.2. The Milnor number μ(f, p) is finite iff p is an isolated critical point
of f . Similarly, p is an isolated singularity of V (f) iff the Tjurina number τ(f, p)
is finite.

By Lemma 5.2.2 we can compute the Milnor number μ(f), resp. the Tjurina
number τ(f), by computing a standard basis of 〈∂f/∂x1, . . . , ∂f/∂xn〉, respec-
tively 〈f, ∂f/∂x1, . . . , ∂f/∂xn〉 with respect to a local monomial ordering and
then apply the Singular command vdim.

5.4 Local Versus Global Ordering

We can use the interplay between local and global orderings to check the exis-
tence of critical points and of singularities outside 0. For this we use the (easy)
facts for a polynomial f ∈ K[x1, . . . , xn]:

• μ(f, p) = 0 if and only if p is a non–critical point of f , that is,

p �∈ V
(
∂f

∂x1
, . . . ,

∂f

∂xn

)
=: Crit(f) ,
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• τ(f, p) = 0 if and only if p is a non–singular point point of V (f), that
is,

p �∈ V
(
f,

∂f

∂x1
, . . . ,

∂f

∂xn

)
=: Sing(f) .

Note 5.4.1. We have the following equalities for the total Milnor number,
respectively the total Tjurina number, of f :

dimK

(
K[x1, . . . , xn]

/〈
∂f

∂x1
, . . . ,

∂f

∂xn

〉)
=

∑
p∈Crit(f)

μ(f, p) ,

dimK

(
K[x1, . . . , xn]

/〈
f,

∂f

∂x1
, . . . ,

∂f

∂xn

〉)
=

∑
p∈ Sing(f)

τ(f, p) ,

5.5 Using Milnor and Tjurina Numbers

We compute the local and the total Milnor, respectively Tjurina, number and
check in this way, whether there are further critical, respectively singular,
points outside 0. We use first the commands milnor and tjurina from
sing.lib:

We first compute the local Milnor and Tjurina number at 0:

LIB "sing.lib";

ring r = 0,(x,y,z),ds; //local ring

poly f = x7+y7+(x-y)^2*x2y2+z2;

milnor(f);

//-> 28 //Milnor number at 0

tjurina(f);

//-> 24 //Tjurina number at 0

Without using milnor and tjurina, we have to compute

vdim (std(jacob (f))); //the same as milnor

vdim (std(ideal(f)+jacob(f))); //the same as tjurina

Now we compute the total Milnor and Tjurina number by choosing a global
ordering.

ring R = 0,(x,y,z),dp; //affine ring

poly f = x7+y7+(x-y)^2*x2y2+z2;

milnor(f);

//-> 36 //total Milnor number

tjurina(f);

//-> 24 //total Tjurina number

We see that the difference between the total and the local Milnor number is 8;
hence, f has eight critical points (counted with their respective Milnor numbers)
outside 0. On the other hand, since the total Tjurina number coincides with
the local Tjurina number, V (f) ⊂ A3 has no other singular points except 0, i.e.
f(p) �= 0 for all critical points p �= 0. In other words, the extra critical points of
f do not ly on the zero-set V (f) of f .
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5.6 Application to Projective Singular Plane Curves

Problem: Let

f(x, y) := y2 − 2x28y − 4x21y17 + 4x14y33 − 8x7y49 + x56 + 20y65 + 4x49y16.

Determine the local Tjurina number

τloc(f) := dimC C{x, y}/〈f, ∂f
∂x
, ∂f
∂y

〉
of the singularity at the origin and check whether this is the only singularity of
the corresponding complex plane projective curve C.

Note 5.6.1. The projective curve C ⊂ P2 is the curve defined by F = 0, where
F is the homogenization of f w.r.t. a new variable.

ring s = 0,(x,y),ds; // the local ring

poly f = y2-2x28y-4x21y17+4x14y33-8x7y49+x56+20y65+4x49y16;

ideal I = f,jacob(f);

vdim(std(I));

//-> 2260 // the local Tjurina number of f at 0

From 5.4.1 we know that the global Milnor number

τ(f) := dimC C[x, y]
/〈
f, ∂f

∂x
, ∂f
∂y

〉
equals the sum of the local Tjurina number of all affine singular points of C.
We compute

ring r = 0,(x,y),dp; // the affine ring

ideal I = fetch(s,I);

vdim(std(I));

//-> 2260

We see that the global (affine) and local Tjurina number of f coincide.
Hence, the affine singular locus consists only of the origin (0, 0), at all other
points V (f) is smooth.

Now, we check singularities at infinity:

ring sh = 0,(x,y,z),dp;

poly f = fetch(s,f);

poly F = homog(f,z); // homogeneous polynomial

// defining C

ring r1 = 0,(y,z),dp;

map phi = sh,1,y,z;

poly g = phi(F); // F in affine chart (x=1)

ideal J = g,jacob(g);

vdim(std(J));

//-> 120 // the global Tjurina number in the

// chart x=1

ring r2 = 0,(y,z),ds; // local ring at (1:0:0)

ideal J = fetch(r1,J);

vdim(std(J));

//-> 120 // the local Tjurina number at (1:0:0)
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We have considered all points at infinity except (0:1:0) which is obviously
not on C. Hence, we can conclude that there is (precisely) 1 singularity of C at
infinity (at (1 : 0 : 0)) with Tjurina number 120. A closer analysis shows that
it is of topological type x9 − y16 = 0.

5.7 Computing the Genus of a Projective Curve

Recall: Let C be a projective curve, then the Hilbert polynomial is of the form

HC(t) = deg(C) · t− pa(C) + 1 ,

where deg(C) is called the degree of the curve and pa(C) the arithmetic
genus. The procedure hilbPoly from poly.lib computes the Hilbert polyno-
mial.

Definition 5.7.1. The geometric genus g(C) is the arithmetic genus of the

normalization C̃ of C:
g(C) := pa(C̃).

If we are able to compute the normalization, we can compute the geometric
genus. But this is often very time consuming.

Facts. Let δ(C) :=
∑
p∈C dimK

(
O eC,p

/OC,p
)

=
∑
p∈C δ(C, p).

• pa(C) = g(C)+δ(C), where δ(C) is the sum over the local delta invariants
in the singular points.

• For a generic projection C −→ D to a plane curve D which has the same
degree d and normalization as C, we have

g(C) = pa(D) − δ(D) =
(d− 1)(d− 2)

2
− δ(D)

.

Let D ⊂ P2 be a (reduced) plane projective curve given by the homogeneous
polynomial F (x, y, z). To compute δ(D) we have to compute the singularities
of D and then compute δ(D, p) for each singular point p ∈ D (by using the
library hnoether.lib in Singular) or to use the normalization.

The procedure genus in normal.lib offers both possibilities (genus( ); and
genus( ,1);):

ring R = 0,(x,y,z),dp;

poly f = (y3-x2)*(y-1); // a cuspidal cubic with a transversal

// line

poly F = homog(f,z); // defining the projective closure D

LIB "all.lib"; // loads all libraries

hilbPoly(F);

//-> -2,4 // p_a(D)=3, deg(D)=4

genus(F); // computes delta at the singular points

//-> -1 // hence D is reducible,

// delta(D)=p_a(D)-g(D)=4

genus(F,1); // uses the normalization

//-> -1
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Remark 5.7.2. The computation shows that δ(D) = 4. We can compute in this
example δ(D) by applying some theory without using Singular:

By construction f has a cusp singularity (δ = 1) at (0, 0) and two nodes at
(±1, 1), the two intersection points of y3 − x2 = 0 and y − 1 = 0 (both having
δ = 1). By Bézout’s theorem the line y = 1 intersects the cubic y3 = x2 at ∞
with multiplicity 1. Hence, D must have a node at ∞ = (0 : 0 : 1), counting
with δ = 1. Hence, the sum of the deltas is δ(D) = 4.
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