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1 Gröbner Technology

k denotes an arbitrary field, k denotes its algebraic closure and kq denotes a
finite field of size q (so q is implicitly understood to be a power of a prime) and
P := k[X] := k[x1, . . . , xn] the polynomial ring over the field k.

For any ideal I ⊂ P and any extension field E of k, let VE(I) be the rational
points of I over E. We also write V(I) = Vk(I).

Let T be the set of terms in P, id est

T := {xa1
1 · · ·xan

n : (a1, . . . , an) ∈ Nn},

which is a multiplicative version of the additive semigroup Nn, the relation
between these notations being obvious: given

α := (a1, . . . , an), β := (b1, . . . , bn), γ := (c1, . . . , cn)

and the terms

τa := Xα = xa1
1 · · ·xan

n , τb := Xβ = xb1
1 · · ·xbn

n , τc := Xγ = xc1
1 · · ·xcn

n ,

we have

τa · τb = τc ⇐⇒ ai + bi = ci for each i ⇐⇒ α + β = γ
τa | τb ⇐⇒ ai ≤ bi for each i ⇐⇒ α ≤P β

where <P is the natural partial ordering over Nn.
The assignement of a finite set of terms

G := {τ1, . . . , τν} ⊂ T , τi = x
a
(i)
1

1 · · ·xa(i)
n

n
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— or, equivalently of a finite set of integer vectors

{a(1), . . . , a(ν)} ⊂ Nn, a(i) = (a(i)
1 , . . . , a(i)

n ) ∈ Nn,

defines a partition of T (resp. Nn) in two parts (see Figure 1 where G :={
x7

1, x
5
1x

3
2, x

5
2

} ⊂ T ):

• T := {ττi : τ ∈ T , 1 ≤ i ≤ ν} ∼= {α + a(i) : α ∈ Nn, 1 ≤ i ≤ ν} =: Σ which is
a semigroup ideal, id est a subset T ⊂ T ( resp. Σ ⊂ Nn) such that

τ ∈ T, t ∈ T =⇒ tτ ∈ T, resp. a ∈ Σ, b ∈ Nn, a ≤P b =⇒ b ∈ Σ;

� N := T \ T ∼= Nn \ Σ =: Δ which is an order ideal, id est a subset N ⊂ T
(resp. Δ ⊂ Nn) such that

τ ∈ N, t ∈ T , t | τ =⇒ t ∈ N, resp. a ∈ Δ, b ∈ Nn, a ≥P b =⇒ b ∈ Δ.

Remark that the assignement of

• a finite monomial set G ⊂ T ,

• a semigroup ideal T ⊂ T ,

• an order ideal N ⊂ T
uniquely characterize the other data: in fact

- N and T are related by their being complementary in T ,

- each semigroup ideal T ⊂ T has a unique minimal basis G ⊂ T such that
T := {ττi : τ ∈ T , τi ∈ G}; the fact, whose proof is quite involved, that G
is finite is known as Dickson’s Lemma but actually was already proved by
Gordan [28].
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We recall that the well-orderings on T which are a semigroup ordering, id
est satysfy

τ1 < τ2 =⇒ ττ1 < ττ2 for each τ, τ1, τ2 ∈ T
are called term orderings, even if the old-fashioned notion of admissible ordering
can still be found somewhere.

For a free-module Pm, m ∈ N, denote {e1, . . . , em} its canonical basis,

T (m) = {tei, t ∈ T , 1 ≤ i ≤ m} =
= {xa1

1 · · ·xan
n ei, (a1, . . . , an) ∈ Nn, 1 ≤ i ≤ m}

its monomial k-basis and ≺ a well-ordering on T (m) which is compatible with
the term-ordering < on T , that is, satisfying

t1 ≤ t2, τ1 � τ2 =⇒ t1τ1 � t2τ2

for each t1, t2 ∈ T , τ1, τ2 ∈ T (m).
Note that T (1) = T .
For each f =

∑
τ∈T (m) c(f, τ)τ ∈ Pm, its support is

supp(f) := {τ ∈ T (m) : c(f, τ) �= 0},

its leading term is the term T≺(f) := max≺(supp(f)), its leading coefficient is
lc≺(f) := c(f,T≺(f)) and its leading monomial is M≺(f) := lc≺(f)T≺(f).

When ≺ is understood we will drop the subscript, as in T(f) = T≺(f).
For any set F ⊂ Pm, write

• T{F} := T≺{F} := {T(f) : f ∈ F};
• M{F} := M≺{F} := {M(f) : f ∈ F};
• T(F ) := T≺(F ) := {τT(f) : τ ∈ T , f ∈ F}, a monomial module1;

• N(F ) := N≺(F ) := T (m) \T≺(F ), an order module2;

• I(F ) = 〈F 〉 the module generated by F .

Remark that, if m = 1, the assignment of T{F} gives the partition T =
T(F ) � N(F ) discussed above, that the related semigroup ideal T(F ) is also
denoted Σ(F ) while the related order ideal N(F ) is also denoted Δ(F ) and
labelled Δ-set or footprint. When F is the Gröbner basis of the module I(F ) it
generates, N(F ) is called the Gröbner éscalier[25] of I(F ).

We can now however induce a finer partition of T (m) in terms of a module
M ⊂ Pm and a term-ordering ≺, by defining (see Figure 2 where again M =
I(x7

1, x
5
1x

3
2, x

5
2) ⊂ P)

� N≺(M) = T (m) \T<(M) its Gröbner éscalier;

1Id est a subset T ⊂ T (m) such that τ ∈ T, t ∈ T =⇒ tτ ∈ T.
2Id est a subset T ⊂ T (m) such that tτ ∈ T, t ∈ T =⇒ τ ∈ T.
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◦ B≺(M) := {xhτ : 1 ≤ h ≤ n, τ ∈ N≺(M)} \N≺(M), its border set;

• J≺(M) := T≺(M) \B≺(M),

∗ G≺(M) ⊂ B≺(M) the unique minimal basis of T≺(M),

· C≺(M) := {τ ∈ N≺(M) : xhτ ∈ T≺(M),∀h} its corner set.

Under this notation, the following properties are trivially satisfied:

Lemma 1 It holds

1. T≺(M) = {τ ∈ T : ∃g ∈ M : T≺(g) = τ} ;

2. J≺(M) =
{

τ ∈ T≺(M) : xi | τ =⇒ τ
xi
∈ T≺(M)

}
;

3. B≺(M) =
{

τ ∈ T≺(M) : ∃xi | τ, τ
xi
∈ N≺(M)

}
;

4. G≺(M) =
{

τ ∈ T≺(M) : ∀xi | τ, τ
xi
∈ N≺(M)

}
;

5. C≺(M) = {τ ∈ N≺(M) : ∀i, xiτ ∈ B≺(M)};
6. N≺(M) = {τ ∈ T :� ∃g ∈ M : T≺(g) = τ} ;

7. C≺(M) ∪T≺(M) is a monomial module;

8. N≺(M) ∪G≺(M) and N≺(M) ∪B≺(M) are order modules.

9. τ ∈ J≺(M) ⇐⇒ ∀xi | τ, τ
xi
∈ T≺(M);

10. τ ∈ B≺(M) \G≺(M) ⇐⇒ ∃h, H : τ
xh
∈ N≺(M), τ

xH
∈ B≺(M) ⊂ T≺(M);

11. τ ∈ B≺(M) \G≺(M) =⇒ ∀xi | τ, τ
xi
∈ N≺(M) ∪B≺(M);

12. τ ∈ N≺(M) ∪G≺(M) ⇐⇒ ∀xi | τ, τ
xi
∈ N≺(M);

13. τ ∈ T≺(M) ∪C≺(M) ⇐⇒ ∀i, xiτ ∈ T≺(M);

14. τ ∈ N≺(M) \C≺(M) ⇐⇒ ∃h : xhτ ∈ N≺(M). ��

Lemma 2 Let N be a finitely generated P-module, Φ : Pm �→ N be any surjec-
tive morphism and set M := ker(Φ). Then

1. Pm ∼= M⊕ Spank(N(M));

2. N ∼= Spank(N(M));

3. for each f ∈ Pm, there is a unique g := Can(f,M,≺) ∈ Spank(N(M))
such that f − g ∈ M.

Such g is called the canonical form of f w.r.t. M and satisfies also:
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(a) Can(f1, M,≺) = Can(f2, M,≺) ⇐⇒ f1 − f2 ∈ M;

(b) Can(f,M,≺) = 0 ⇐⇒ f ∈ M. ��

Definition 3 Let N be a finitely generated P-module, Φ : Pm �→ N be any
surjective morphism and set M := ker(Φ).

Let G ⊂ M, f, h, f1, f2 ∈ Pm. Then

1. G will be called a Gröbner basis of M if

T(G) = T(M),

that is, T{G} := {T(g) : g ∈ G} generates T(M) = T{M}.
2. For each f1, f2 ∈ Pm such that

T(f1) = t1ei1 ,T(f2) = t2ei2 ,

the S-polynomial of f1 and f2 exists only if ei1 = ei2 := ε, in which case
it is

S(f1, f2) := lc(f2)−1 δ(f1, f2)
t2

f2 − lc(f1)−1 δ(f1, f2)
t1

f1,

where δ := δ(f1, f2) := lcm(t1, t2); δε is called the formal term of S(f1, f2).

3. f has a Gröbner representation
∑μ

i=1 pigi in terms of G if 3

f =
μ∑

i=1

pigi, pi ∈ P, gi ∈ G,T(pi)T(gi) � T(f), for each i.

3note that here, unilike in (4), we are not assuming i �= j =⇒ T(pi)T(gi) �= T(pj)T(gj);
moreover both here, in (4) and in (5) a same element of G can repeatedly appear.
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4. f has the (strong) Gröbner representation
∑μ

i=1 citigi in terms of G if

f =
μ∑

i=1

citigi, ci ∈ k \ {0}, ti ∈ T , gi ∈ G,

with T(f) = t1T(g1) � · · · � tiT(gi) � · · · .

5. f has the weak Gröbner representation
∑μ

i=1 citigi in terms of G if

f =
μ∑

i=1

citigi, ci ∈ k \ {0}, ti ∈ T , gi ∈ G,

with T(f) = t1T(g1) � · · · � tiT(gi) � · · · .

6. For any f1, f2 ∈ Pm, whose S-polynomial exists and has δε as formal
term, we say that S(f1, f2) has a quasi-Gröbner representation in terms
of G if it can be written as S(g, f) =

∑μ
k=1 pkgk, with pk ∈ P, gk ∈

G and T(pk)T(gk) ≺ δε for each k.

7. h := NF≺(f,G) is called a normal form of f w.r.t. G, if

• f − h ∈ I(G) has a strong Gröbner representation in terms of G and

• h �= 0 =⇒ T(h) /∈ T(G).

8. The reduced Gröbner basis of M wrt ≺ is the set

{τ − Can(τ, M,≺) : τ ∈ G≺(M)}.

9. The border basis of M w.r.t. ≺ is the set

{τ − Can(τ, M,≺) : τ ∈ B≺(M)}.

10. A Gröbner representation of M is the assignment of

• a linearly independent set q = {q1, . . . , qs} (q1 = 1), where s =
#(N(M)), such that Pm/M = Spank(q),

• the set
M = M(q) :=

{(
a
(h)
lj

)
∈ ks2

, 1 ≤ h ≤ n
}

of the s× s square matrices
(
a
(h)
lj

)
defined by the equalities

xhql =
∑

j

a
(h)
lj qj ,∀l, j, h, 1 ≤ l, j ≤ s, 1 ≤ h ≤ n

in Pm/M = Spank(q).
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11. For each f ∈ P the Gröbner description of f in terms of a Gröbner
representation (q,M) is the unique vector

Rep(f,q) := (γ(f, q1,q), . . . , γ(f, qs,q)) ∈ ks

such that f −∑
j γ(f, qj ,q)qj ∈ M.

12. The linear representation of M w.r.t. ≺ is the Gröbner representation
(N≺(M),M(N≺(M))) where q = N≺(M). ��

With these definitions, if N≺(M) = {τ1, . . . , τs}, the Gröbner description

Rep(f,N≺(M)) := (γ(f, τ1,N≺(M)), . . . , γ(f, τs,N≺(M)))

of f in terms of the linear representation of M w.r.t. ≺ is a convoluted synonym
of the notion of the canonical form

Can(f,M,≺) =
s∑

j=1

γ(f, τj ,≺)τj =
s∑

j=1

γ(f, τj ,N≺(M))τj

of f in terms of ≺.

2 Duality (1)

Denote P∗ := Homk(P, k) the k-vector space of all k-linear functionals 	 : P �→ k
and remark that it holds f ∈ P, 	 ∈ P∗ =⇒ 	(f) =

∑
τ∈T c(f, τ)	(τ) and that

P∗ is made a P-module defining 	 · f ∈ P∗, for each 	 ∈ P∗, f ∈ P, as

(	 · f)(g) := 	(fg) for each g ∈ P.

Two sets L = {	1, . . . , 	r} ⊂ P∗ and q = {q1, . . . , qs} ⊂ P are said to be

• triangular if r = s, 	i(qj) = 0, for each i < j and 	j(qj) �= 0, for each j;

• biorthogonal if r = s and 	i(qj) =

{
1 if i = j

0 if i �= j.

For each k-vector subspace L ⊂ P∗, let

P(L) := {g ∈ P : 	(g) = 0,∀	 ∈ L}

and, for each k-vector subspace P ⊂ P, let

L(P ) := {	 ∈ P∗ : 	(g) = 0,∀g ∈ P}.

Lemma 4 For each k-vector subspaces P, P1, P2 ⊂ P and each k-vector sub-
spaces L,L1, L2 ⊂ P∗ it holds

1. if P is an ideal then L(P ) is a P-module;
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2. if L is a P-module then P(L) is an ideal.

3. P1 ⊂ P2 =⇒ L(P1) ⊃ L(P2);

4. L1 ⊂ L2 =⇒ P(L1) ⊃ P(L2);

5. L(P1 ∩ P2) ⊃ L(P1) + L(P2);

6. P(L1 ∩ L2) ⊃ P(L1) + P(L2);

7. L(P1 + P2) = L(P1) ∩ L(P2);

8. P(L1 + L2) = P(L1) ∩P(L2).

9. P = PL(P ).

10. L ⊂ LP(L);

11. dimk(L) <∞ =⇒ L = LP(L). ��
Id est P and L define a duality between finite dimensional P-modules of func-
tionals and zero-dimensional ideals.

3 Möller’s Algorithm

Let L = {	1, . . . , 	s} ⊂ P∗ be a (not necessarily linearly independent) set of
k-linear functionals such that L := Spank(L) is a P-module, and let us denote,
for each f ∈ P, v(f, L) := (	1(f), . . . , 	s(f)) ∈ ks. Since dimk(L) < ∞ then
I := P(L) is a zero-dimensional ideal and

#(N(I)) = deg(I) = dimk(L) =: r ≤ s;

therefore, denoting

N(I) = {t1, . . . , tr}, 1 = t1 < . . . < ti < ti+1 < . . . < tr,

we can consider the s × r matrix 	i(tj) whose columns are the vectors v(tj , L)
and are linearly independent, since any relation

∑
j cjv(tj , L) = 0 would imply

	i(
∑

j

cjtj) =
∑

j

cj	i(tj) = 0 and
∑

j

cjtj ∈ P(L) = I

contradicting the definition of N(I).
The matrix 	i(tj) has rank r ≤ s and it is possible to extract an ordered sub-

set Λ := {λ1, . . . , λr} ⊂ L, satisfying Spank{Λ} = Spank{L} and to renumber
the terms in N(I) in such a way that each principal minor λi(tj), 1 ≤ i, j ≤ σ ≤ r
is invertible. Therefore, if we consider a set

q := {q1, . . . , qr} ⊂ P
which is triangular w.r.t. L, and (aij) denotes the invertible matrix such that
qi =

∑r
j=1 aijtj ,∀i ≤ r, then for each σ ≤ r

8



• {q1, . . . , qσ} and {λ1, . . . , λσ} are triangular;

• Spank{t1, . . . , tσ} = Spank{q1, . . . , qσ};
• (aij) is lower triangular.

If we now further assume that

1. dimk(L) = r = s and

2. each subvectorspace Lσ := Spank({	1, . . . , 	σ}) is a P-module

so that each Iσ = P(Lσ) is a zero-dimensional ideal and there is a chain

I1 ⊃ I2 ⊃ · · · ⊃ Is = I,

then we have, for each σ

• λσ = 	σ,

• N(Iσ) = {t1, . . . , tσ} is an order ideal,

• Iσ ⊕ Spank{q1, . . . , qσ} = P,

• T(qσ) = tσ.

In conclusion we have proved

Theorem 5 (Möller) Let P := k[x1, . . . , xn], and < be any termordering. Let
L = {	1, . . . , 	s} ⊂ P∗ be a set of k-linear functionals such that P(Spank(L)) is
a zero-dimensional ideal.

Then there are

• an integer r ∈ N,

• an order ideal N := {t1, . . . , tr} ⊂ T ,

• an ordered subset Λ := {λ1, . . . , λr} ⊂ L,

• an ordered set q := {q1, . . . , qr} ⊂ P,

such that, denoting L := Spank(L) and I := P(L), it holds:

1. r = deg(I) = dimk(L),

2. N(I) = N,

3. Spank(Λ) = Spank(L),

4. Spank{t1, . . . , tσ} = Spank{q1, . . . , qσ},∀σ ≤ r,

5. {q1, . . . , qσ}, {λ1, . . . , λσ} are triangular, ∀σ ≤ r.

If, moreover, we have
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• dimk(L) = r = s and

• Lσ := Spank({	1, . . . , 	σ}) is a P-module, ∀σ,

then it further holds

6. λσ = 	σ,

7. N(Iσ) = {t1, . . . , tσ} is an order ideal,

8. Iσ ⊕ Spank{q1, . . . , qσ} = P,

9. T(qσ) = tσ

for each σ ≤ r, where Iσ = P(Lσ). ��

Corollary 6 (Lagrange Interpolation Formula) Let P := k[x1, . . . , xn],
< be any termordering. L = {	1, . . . , 	s} ⊂ P∗ be a set of k-linear functionals
such that I := P(Spank(L)) is a 0-dim. ideal.

There exists a set q = {q1, . . . , qs} ⊂ P such that

1. qi = Can(qi, I) ∈ Spank(N(I));

2. L and q are triangular;

3. P/I ∼= Spank(q).

There exists a set q′ = {q′1, . . . , q′s} ⊂ P such that

1. q′i = Can(q′i, I) ∈ Spank(N(I));

2. L and q′ are biorthogonal;

3. P/I ∼= Spank(q′).

Let c1, . . . , cs ∈ k and let q :=
∑

i ciq
′
i ∈ P. Then, if {g1, . . . , gt} denotes a

Gröbner basis of I, one has

1. q is the unique polynomial in Spank(N(I)) such that 	i(q) = ci, for each i;

2. for each p ∈ P it is equivalent

(a) 	i(p) = ci, for each i,

(b) q = Can(p, I),

(c) exist hj ∈ P such that

p = q +
t∑

j=1

hjgj ,T(hj)T(gj) ≤ T(p− q).

��
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Möller’s Algorithm [45, 22, 40, 2] is a procedure which, given a set of k-linear
functionals L = {	1, . . . , 	s} ⊂ P∗ such that P(Spank(L)) is a zero-dimensional
ideal, allows to compute the data whose existence is stated in Theorem 5. The
stronger version of the algorithm (Figure 3) assumes that, for each σ ≤ s Lσ :=
Spank({	1, . . . , 	σ}) is a P-module, is performed by induction on σ and gives
the complete structure of each ideal Iσ = P(Lσ).

Its correctness is based on the following

Lemma 7 Let

P := k[x1, . . . , xn],

< be any termordering;

L = {	1, . . . , 	r} ⊂ P∗ be a set of linearly independent k-linear functionals such
that I := P(Spank(L)) is a zero-dimensional ideal

and let

N := {t1, . . . , tr} ⊂ T ,

q := {q1, . . . , qr} ⊂ P,

G := {g1, . . . , gt} ⊂ P,

be such that

• N is an order ideal,

• Spank{t1, . . . , tr} = Spank{q1, . . . , qr},
• {q1, . . . , qr} and {	1, . . . , 	r} are triangular,

• 	(g) = 0 for each g ∈ G and each 	 ∈ L ,

• N �T<(G) = T ,

• for each g ∈ G, g − lc(g)T<(g) ∈ Spank (N) ,

then G is a reduced Gröbner basis of P(Spank(L)) w.r.t. <.

The assumption that for each σ ≤ s, Lσ := Spank({	1, . . . , 	σ}) can be
satisfied if for instance the 0-dimensional ideal I = P(Spank(L)) is described in
terms of a Macaulay representation (cf. [3]), but often 4 is not satisfied, thus
requiring an alternative version (Figure 4) performed by induction on the terms
and not on the functionals and which returns also a basis of Spank(L).

Remark 8 If, in the algorithm of Figure 3, we define p in instruction � as
p := xhf instead of p := xht, we have two counterbalancing effects:

4mainly in the solution of the FGLM-Problem, where in any case the functionals are
properly reordered so they satisfy such property
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Figure 3: Möller’s Algorithm (1)

(G1, . . . , Gs,N,q) := G-basis(L, <)

where

L = {	1, . . . , 	s} ⊂ P∗ is s.t.

Lσ := Spank({	1, . . . , 	σ})

is a P-module, for each σ ≤ s,

Iσ = P(Lσ), for each σ ≤ s,

Gσ ⊂ Iσ is the reduced Gröbner basis of Iσ,∀σ ≤ s,

N := {t1, . . . , ts} is an order ideal,

q := {q1, . . . , qs} ⊂ P is a set triangular to L,

Nσ := {t1, . . . , tσ} = N(Iσ), ∀σ ≤ s,

qσ ∈ Spank{Nσ}, and T(qσ) = tσ,∀σ ≤ s,

Spank{t1, . . . , tσ} = Spank{q1, . . . , qσ},∀σ ≤ s,

{q1, . . . , qσ} and {	1, . . . , 	σ} are triangular ∀σ.

σ := 1, t1 := 1,N := {t1}, q1 := 	1(1)−1t1,

q := {q1}, G1 := {xh − 	1(xh), 1 ≤ h ≤ n},
%% Nσ �T(Gσ) = T .

%% 	j(f) = 0 for all f ∈ Gσ, 1 ≤ j ≤ σ.

For σ := 2..s do

◦ t := min{T(f) : f ∈ Gσ, 	σ(f) �= 0},
Let f ∈ Gσ : T(f) = t,

tσ := t, qσ := 	σ(f)−1f, N := N ∪ {tσ},
• q := q ∪ {qσ},
� Gσ := {f − 	σ(f)qσ : f ∈ Gσ−1}.

For each h = 1..n : xht /∈ T(Gσ) do

� p := xht,
∗ For i = 1..σ do p := p− 	i(p)qi,

Gσ := Gσ ∪ {p};
%% Nσ �T(Gσ) = T ,

%% 	j(f) = 0 for all f ∈ Gσ, 1 ≤ j ≤ σ.

12



• the final output, while still a Gröbner basis, is not, in principle, reduced;

• since f ∈ Iσ, we have xhf ∈ Iσ and 	i(p) = 0 for each i ≤ σ so that one can
perform the instruction ∗ for the single value i := σ.

Equivalently, defining, in the algorithm of Figure 3, p in instruction � as

p := xhf − 	σ(xhf)qσ =
(
xh − 	σ(xhf)	σ(f)−1

)
f (1)

we can simply remove the instruction ∗.
Finally note that the algorithm discussed in [31] is the generalization to

modules of the version of the algorithm of Figure 3 where, in instruction �, p is
defined as in (1) and the instructions ∗ and • are removed. ��

4 The FGLM Problem

For its elimination property, the lex ordering is a good tool for solving [Gianni–
Kalkbrener Algorithm [28, 30, 51], Lazard’s triangular sets[35, 34, 4, 5]] or for
applications [see the CRHT-like algorithms in BCH codes[51]] but both practical
experience and theoretical argument show that, in general, lex is a very bad
choice for applying Buchberger Algorithm. On the other side the degrevlex
ordering is the optimal choice for applying it. This suggests [22] the

Problem 9 (FGLM Problem) Given

• a termordering < on the polynomial ring P := k[x1, . . . , xn],

• a zero-dimensional ideal I ⊂ P and

• its reduced Gröbner basis G≺ w.r.t. the term-ordering ≺,

to deduce the Gröbner basis G< of I w.r.t. <. ��

5 The FGLM Matrix

Let ≺ be a termordering and N≺(I) = {τ1, . . . , τs}; in order to apply Möller
Algorithm to the FGLM Problem, we just need to choose as functionals L :=
{	1, . . . , 	s} the coefficients of the canonical forms 	i(·) := γ(·, τi,N≺(I)) so that
we need to compute

Rep(f,N≺(I)) := (γ(f, τ1,N≺(I)), . . . , γ(f, τs,N≺(I)))

for each f ∈ B := {xiτj , 1 ≤ i ≤ n, 1 ≤ j ≤ s}.
The key idea of FGLM is to treat such elements by ≺-increasing ordering,

so that, when the loop is treating a term xhτl, we have previously managed

13



Figure 4: Möller’s Algorithm (2)

(G, r,N, Λ,q) := G-basis(L, <)

where

L = {�1, . . . , �s} ⊂ P∗ is s.t. I := P(Spank(L)) is a zero-dimensional ideal;

G ⊂ I is the reduced Gröbner basis of I w.r.t. <;

r = deg(I) = dimk(Spank(L));

N := {t1, . . . , tr} = N(I);

1 = t1 < t2 < . . . < ti < ti+1 < . . . < tr,

Λ := {λ1, . . . , λr} ⊂ L, is a linearly independent basis of Spank(L);

q := {q1, . . . , qr} ⊂ P is a set triangular to Λ;

qi ∈ Spank{t1, . . . , ti},T(qi) = ti, for each i ≤ r;

Spank{t1, . . . , ti} = Spank{q1, . . . , qi}, for each i ≤ r;

{q1, . . . , qi} and {λ1, . . . , λi} are triangular, for each i ≤ r.

G := ∅, r := 1, t1 := 1,N := {t1},
v := (�1(t1), . . . , �s(t1)),

μ := min{j : �j(1) �= 0},
λ1 := �μ, Λ := {λ1},
q1 := λ1(1)−1t1,q := {q1}, vect(1) := λ1(1)−1v,

%% vect(1) = (�1(q1), . . . , �s(q1)),

While N �T(G) �= T do

t := min<{τ ∈ T , τ /∈ N �T(G)},
q := t, v := (�1(q), . . . , �s(q))

For j = 1..r do

v := v − λj(q) vect(j), q := q − λj(q)qj ,

%% v = (�1(q), . . . , �s(q)).

If v = 0 then

G := G ∪ {q},
else

r := r + 1

tr := t,N := N ∪ {tr},
μ := min{j : �j(q) �= 0},
λr := �μ, Λ := Λ ∪ {λr},
qr := λr(q)

−1q,q := q ∪ {qr}, vect(r) := λr(q)
−1v

%% vect(i) = (�1(qi), . . . , �s(qi)) for each i, 1 ≤ i ≤ r

G, r,N, Λ,q

14



the term τl and thus previously computed Rep(τl,N≺(I)) which satisfies the
relation

τl −
s∑

j=1

γ(τl, τj ,N≺(I))τj = τl − Can(τl, I,≺) ∈ I,

so that xhτl −
∑s

j=1 γ(τl, τj ,N≺(I))xhτj ∈ I, and

Can(xhτl, I,≺) =
s∑

j=1

γ(τl, τj ,N≺(I)) Can(xhτj , I,≺)

=
s∑

i=1

⎛
⎝ s∑

j=1

γ(τl, τj ,N≺(I))γ(xhτj , τi,N≺(I))

⎞
⎠ τi.

For the ≺-minimal ω := xhτl ∈ B under consideration we have the following
three cases:

• if ω �∈ T≺(I) then ω ∈ N≺(I), so that we add ω to N and {ωxh : 1 ≤ h ≤ n}
to B;

• if there is g ∈ G≺ such that

T≺(g) = ω and g = ω −
∑

τ∈N≺(I)

γ(ω, τ,N≺(I))τ,

since the procedure iterates on ≺-increasing values of ω, we have

γ(ω, τ,N≺(I)) �= 0 =⇒ τ ≺ ω =⇒ τ ∈ N;

• if there is H, 1 ≤ H ≤ n, τ ∈ T≺(I) such that ω = xHτ ; thus τ ≺ ω has
been already treated so that we have obtained a representation

Can(τ, I,≺) =
s∑

j=1

γ(τ, τj ,N≺(I))τj ;

since in such representation we have

γ(τ, τj ,N≺(I)) �= 0 =⇒ τj ≺ τ =⇒ τj ∈ N, xHτj ≺ xHτ = ω = xhτl

and τ = xhτι for τι := τl

xH
, we also have the representation

Can(xHτ, I,≺) =
s∑

j=1

γ(τ, τj ,N≺(I)) Can(xHτj , I,≺)

and we can use the same formula as above to derive

γ(xhτl, τi,N≺(I)) = γ(xHτ, τi,N≺(I))

=
s∑

j=1

γ(τ, τj ,N≺(I))γ(xHτj , τi,N≺(I))

=
s∑

j=1

γ(xhτι, τj ,N≺(I))γ(xHτj , τi,N≺(I)).
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These remarks can be formalized in the algorithm descriped in Figure 5;
Figure 6 proposes the instantiation of Möller’s Algorithm (Figure 4) to the
setting of the FGLM Problem.

6 Pointers

Remark (Compare [31]) that the Berlekamp-Massey Algorithm can be inter-
preted as a sort of FGLM Algorithm on modules with functionals depending on
the state of the computation5.

However, the earliest instance of the FGLM Algorithm goes back to 1936: in
fact, Todd-Coxeter Algorithm [54] can be easily read [52] as a re-formulation of
FGLM-Matrix (Figure 5) over groups view as quotients of a non-commutative
polynomial rings modulo a bimonomial ideal.

The FGLM Problem was already solved essentially by means of the FGLM
Algorithm in [14].

Möller’s Algorithm was introduced for the first time in [45]: in that setting
the considered functionals were point evaluation, the aim being multivariate
interpolation; the same procedure was proposed in [27] as a tool to efficiently
perform change of coordinate into a 0-dimensional ideal.

[22] introduced the FGLM Problem and solved it by means of Figure 6; the
paper gives also a precise complexity analysis and introduced both the FGLM
Matrix and the efficient algorithm (Figure 5) computing it.

[40] reconsidered Möller’s and FGLM Algorithms, merging them and inter-
preting them in the setting of functionals; [2] is a survey which discusses also
Macaulay’s Algorithm to describe the structure of the canonical module L(I).

The FGLM Algorithm proper solves the FGLM Problem only for a 0-dim.
ideal; [37] explains how to extend it to a multi-dimensional ideal; the correspond-
ing algorithm is however far from being fast. The same weakness is shared by
the Gröbner Walk Algorithm [20].

The most efficient algorithm for the solution of the FGLM-Problem, at least
in the multidimensional case, is the Hilbert Driven Algorithm [55]: assuming

5in fact, with Berlekamp’s [9] notation we assume to have found the basis
n

(σ(k), ω(k)), (τ (k), γ(k))
o

of the module

Mk :=
n

(a(z), b(z)) ∈ Z2[z]2 : (1 + S)a(z) ≡ b(z) mod zk+1
o
⊂ Z2[z]2

and we consider the new functional λk+1 : Z2[z]2 → Z2 defined by λk+1(a(z), b(z)) := Δ
(k)
1

where Δ
(k)
1 ∈ Z2 is the value for which (1 + S)a(z)− b(z) ≡ Δ

(k)
1 zk+1 mod zk+2.

In other words we can consider the functionals λk : Z2[z]2 → Z2, 0 ≤ k ≤ 2t defined by
λk+1(a(z), b(z)) := ck where

P
k ckzk = (1 + S)a(z) − b(z) ∈ Z2[[z]] and each module Mk

satisfies

Mk :=
˘
(a(z), b(z)) ∈ Z2[z]2 : λi(a(z), b(z)) = 0, 0 ≤ i ≤ k

¯ ⊂ Z2[z]2.

For this interpretation I am strongly indepted to [24, 29].
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Figure 5: The FGLM Matrix

(N≺,M) := FGLM-Matrix(G≺)

where

G≺ ⊂ I is the reduced Gröbner basis of I w.r.t. ≺;

s = deg(I),

N≺ := {τ1, . . . , τs} = N≺(I),

1 = τ1 ≺ τ2 ≺ . . . ≺ τj ≺ τj+1 ≺ . . . ≺ τs,

M = M(N≺) =
{(

a
(h)
lj

)
∈ ks2

, 1 ≤ h ≤ n
}

is the set of the square

matrices defined by the equalities xhτl =
∑

j a
(h)
lj τj in P/I =

Spank(N≺);

r := 1, τ1 := 1,N≺ := {τ1}, B := {xh : 1 ≤ h ≤ n},
While B �= ∅ do

ω := min≺(B), B := B \ {ω},
h, l : ω := xhτl

If ω /∈ T≺(I) then

r := r + 1
τr := ω,N≺ := N≺ ∪ {τr}, B := B ∪ {xhτr : 1 ≤ h ≤ n},
a
(k)
lr := 1;

else

if ∃g := T≺(g) −∑r
j=1 γ(ω, τj ,N≺)τj ∈ G≺ : T≺(g) = ω = xhτl

then

For j = 1..r do a
(h)
lj := γ(ω, τj ,N≺)

else

Let H, ι : 1 ≤ H ≤ n, 1 ≤ ι ≤ r : xhτι ∈ T≺(G≺), τl = xHτι;

For i = 1..r do a
(h)
li :=

∑r
j=1 a

(h)
ιj a

(H)
ji

For each H, i : xHτi = ω do

For j = 1..r do a
(H)
ij := a

(h)
lj ;

N≺,M

17



Figure 6: The FGLM Algorithm

(G, N, q) := FGLM(G≺, <)

where

< and ≺ are termorderings on P,

I ⊂ P is a zero-dimensional ideal,

G≺ ⊂ I is the reduced Gröbner basis of I w.r.t. ≺;

s = deg(I),

N≺ := {τ1, . . . , τs} = N≺(I),

1 = τ1 ≺ τ2 ≺ . . . ≺ τj ≺ τj+1 ≺ . . . ≺ τs,

M = M(N≺) =
j„

a
(h)
lj

«
∈ ks2 , 1 ≤ h ≤ n

ff
is the set of the square matrices defined by the

equalities xhτl =
P

j a
(h)
lj

τj in P/I = Spank(N≺);

G ⊂ I is the reduced Gröbner basis of I w.r.t. <,

N := {t1, . . . , ts} = N<(I),

1 = t1 < t2 < . . . < tj < tj+1 < . . . < ts,

μ : {1, . . . , s} �→ {1, . . . , s} is a permutation,

q := {q1, . . . , qs} ⊂ P is a set triangular to
n

γ(·, τμ(1), N≺), . . . , γ(·, τμ(s), N≺)
o

qi ∈ Spank{t1, . . . , ti}, T<(qi) = ti, for each i ≤ s,

{q1, . . . , qi} and {γ(·, τμ(1), N≺), . . . , γ(·, τμ(i), N≺)} are triangular for all i ≤ s.

(N≺, M) := FGLM-Matrix(G≺)

G := ∅, r := 1, t1 := 1, N := {t1}, q1 := 1, q := {q1},

B := {xh, 1 ≤ h ≤ n}

vect(1) := (1, 0, . . . , 0), μ(1) := 1,

%% vect(1) = Rep(q1, N≺), μ(1) = min{j : γ(q1, τj , N≺) 	= 0}

While B 	= ∅ do

t := min<(B), B := B \ {t},

l, h : t = xhtl = xhT<(ql)

If t /∈ T<(G) then

q := xhtl

For i = 1..s do vi :=
Ps

j=1 γ(ql, τj , N≺)a
(h)
ji

;

v := (v1, . . . , vs)

%% v = Rep(q, N≺)

For j = 1..r do

v := v − γ(q, τμ(j), N≺) vect(j), q := q − γ(q, τμ(j), N≺)qj,

%% v = Rep(q, N≺)

If v = 0 then

G := G ∪ {q},

else

r := r + 1

tr := t, N := N ∪ {tr},

μ(r) := min{j : γ(q, τj, N≺) 	= 0},

qr := γ(q, τμ(r), N≺)−1q, vect(r) := γ(q, τμ(r), N≺)−1v

%%vect(i) = Rep(qi, N≺), ∀i, 1 ≤ i ≤ r

q := q ∪ {qr},

B := B ∪ {xhtr, 1 ≤ h ≤ n},

G, N, q
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wlog that I is homogeneous, the knowledge of the basis G≺ allows to compute
the Hilbert function of I and thus, at each step, to predict how many new
generators of a fixed degree are needed in the basis G<; when such generators are
produced, all other S-pairs of same degree are discarded and the Hilbert function
of the monomial ideal (T<(g) : g ∈ G<) is re-evaluated and the computation is
performed in higher degree.

Recently new ideas have been proposed which, in my opinion, promise to be
more efficient than the FGLM and the Hilbert Driven Algorithms [7, 53].

Möller’s Algorithm has been generalized to projective spaces [1] and to non-
commutative setting [10].

[11, 12, 13] use an improved version of the FGLM algorithm for binomial
ideals in order to correct binary linear codes.

7 Duality (2)

Let us begin by remarking that a Gröbner representation of a 0-dimensional
ideal I ⊂ P := k[X1, . . . , Xn] allows to deduce easily the P-module structure of
its canonical module L(I).

In fact

Lemma 10 Let

L := {	1, . . . , 	r} ⊂ P∗ be a linearly indipendent set of k-linear functionals
such that

L := Spank(L) is a P-module so that

I := P(L) is a zero-dimensional ideal;

N(I) := {t1, . . . , tr},
q := {q1, . . . , qr} ⊂ P the set triangular to L, obtained via Möller’s Algorithm;(
q
(h)
ij

)
∈ kr2

, 1 ≤ k ≤ r be the matrices defined by Xhqi =
∑

j q
(h)
ij qj mod I,

Λ := {λ1, . . . , λr} be the set biorthogonal to q, which can be trivially deduced
by Gaussian reduction.

Then

Xhλj =
r∑

i=1

q
(h)
ij λi,∀i, j, h.

��
Denoting m := (X1, . . . , Xn) the maximal at the origin we recall that, given

an ideal I ⊂ P, its m-closuse is the ideal
⋂

d I + md, and I is called m-closed iff
I =

⋂
d I + md.
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We can produce a natural representation of P∗, if we associate, to each term
τ ∈ T , the functional M(τ) : P → k defined by

M(τ) = c(f, τ),∀f =
∑
t∈T

c(f, t)t ∈ P;

in fact, denoting M := {M(τ) : τ ∈ T }, we obtain P∗ ∼= k[[M]].
Remark that, with this notation, for all

f :=
∑
t∈T

att ∈ P and 	 :=
∑
τ∈T

cτM(τ) ∈ k[[M]] ∼= P∗

it holds 	(f) =
∑

t∈T atct.
The P-module structure of P∗ ∼= k[[M]] is described by

∀τ ∈ T , Xi ·M(τ) =

{
M( τ

Xi
) if Xi | τ

0 if Xi � τ
.

We will say that a k-vector subspace Λ ⊂ Spank(M) is stable if λ ∈ Λ =⇒
Xi · λ ∈ Λ i.e. Λ is a P-module.

Clearly P∗ ∼= k[[M]]; however in order to have reasonable duality6 we must
restrict ourselves to Spank(M) ∼= k[M].

Under this restriction, for each k-vector subspace Λ ⊂ Spank(M) we denote

I(Λ) := P(Λ) = {f ∈ P : 	(f) = 0,∀	 ∈ Λ}
and for each k-vector subspace P ⊂ P we denote

M(P ) := L(P ) ∩ Spank(M)
= {	 ∈ Spank(M) : 	(f) = 0,∀f ∈ P}

and we obtain

Lemma 11 [38, 39, 32, 46, 40, 3] The mutually inverse maps I(·) and M(·)
give a biunivocal, inclusion reversing, correspondence between the set of the m-
closed ideals I ⊂ P and the set of the stable k-vector subspaces Λ ⊂ Spank(M).

They are the restriction of, respectively, P(·) to m-closed ideals I ⊂ P, and
L(·) to stable k-vector subspaces Λ ⊂ Spank(M).

Moreover, for any m-primary ideal q ⊂ P, M(q) is finite k-dimensional and
we have

deg(q) = dimk(M(q));

conversely for any finite k-dim. stable k-vector subspace Λ ⊂ Spank(M), I(Λ)
is an m-primary ideal and we have

dimk(Λ) = deg(I(Λ)).

��
6Recall that LP (L) = L holds only if dimk(L) < ∞.
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8 Macaulay Bases

Let < be a semigroup ordering on T and I ⊂ P an m-closed ideal. We have

Can(t, I, <) =:
∑

τ∈N<(I)

γ(t, τ, <)τ ∈ k[[N<(I)]] ⊂ k[[X1, . . . , Xn]]

so that

t−∑
τ∈N<(I) γ(t, τ, <)τ ∈ I,

t < τ =⇒ γ(t, τ, <) = 0.

Define, for each τ ∈ N<(I),

	(τ) := M(τ) +
∑

t∈T<(I)

γ(t, τ, <)M(t) ∈ k[[M]]

and remark that 	(τ) ∈M(I) requires 	(τ) ∈ k[M] which holds iff

# {t : γ(t, τ, <) �= 0} <∞
and is granted if {t : t > τ} is finite.

To obtain this, we must choose as < a standard ordering i.e. a semigroup
ordering such that

• Xi < 1,∀i,
• for each infinite decreasing sequence in T

τ1 > τ2 > · · · τν > · · ·
and each τ ∈ T there is ν : τ > τn.

In this setting the generalization of the notion of Gröbner basis is called
Hironoka/standard basis and deals with series instead of polynomials. The
choice of this setting is natural, since a Hironaka basis of an ideal I returns its
m-closure.

Thus let < be a standard ordering on T and I ⊂ P an m-closed ideal;
denoting

Can(t, I, <) =:
∑

τ∈N<(I)

γ(t, τ, <)τ ∈ k[[N<(I)]]

and, for each τ ∈ N<(I),

	(τ) := M(τ) +
∑

t∈T<(I)

γ(t, τ, <)M(t) ∈ k[M],

we have
M(I) = Spank{	(τ), τ ∈ N<(I)}.
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Definition 12 [3]
The set {	(τ), τ ∈ N<(I)} is called the Macaulay basis of I; each element

	(τ) is called a Noetherian equation. ��

There is an algorithm [40, 3] which, given a finite basis (not necessarily
Gröbner/standard) of an m-primary ideal I, computes its Macaulay basis. Such
algorithm can be extended to an infinite procedure which, given a finite basis
of an ideal I ⊂ m, returns the infinite Macaulay basis of its m-closure.

Definition 13 [44] Let

I ⊂ P be a 0-dimensional ideal;

Z := {a ∈ kn : f(a) = 0,∀f ∈ I};
for each a ∈ Z

• λa : P �→ P the translation λa(Xi) = Xi + ai,∀i,
• ma = (X1 − a1, . . . , Xn − an),

• qa the ma-primary component of I,

• Λa := M(λa(qa)) ⊂ Spank(M),

• 	υa, for each υ ∈ N<(λa(qa)), the Noetherian equation 	υa := 	(υ) so
that

• {	υa : υ ∈ N<(λa(qa))} is the Macaulay basis of Λa.

A Macaualy representation of I =
⋃

a∈Z qa is the data

• Z := {a ∈ kn : f(a) = 0,∀f ∈ I},
• for each a ∈ Z the Macaulay basis {	υa : υ ∈ N<(λa(qa))} of Λa

so that the lineraly independent set

L := {	υaλa : υ ∈ N<(λa(qa)), a ∈ Z} ⊂ P∗

satisfies Spank(L) = L(L). ��

9 Cerlienco–Mureddu Correspondence

Cerlienco and Mureddu [15, 16, 17] solve the following

Problem 14 Given a finite set of points,

{a1, . . . , as} ⊂ kn, ai := (ai1, . . . , ain),

to compute N<(I) w.r.t. the lexicographical ordering < induced by X1 < · · · <
Xn where I := {f ∈ P : f(ai) = 0, 1 ≤ i ≤ s}. ��
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by means of an efficient combinatorial algorithm which to each ordered finite set
of points

X := {a1, . . . , as} ⊂ kn, ai := (ai1, . . . , ain),

associates

• an order ideal N := N(X) and

• a bijection Φ := Φ(X) : X �→ N

satisfying

Theorem 15 [15] N(I) = N(X) holds for each finite set of points X ⊂ kn. ��
Since they do so by induction on s = #(X) let us consider the subset X′ :=
{a1, . . . , as−1}, and the corresponding order ideal N′ := N(X′) and bijection
Φ′ := Φ(X′).

If s = 1 the only possible solution is N = {1}, Φ(a1) = 1.
Denoting

T [1,m] := T ∩ k[X1, . . . , Xm]
= {Xa1

1 · · ·Xam
m : (a1, . . . , am) ∈ Nm},

πm : kn �→ km, πm(x1, . . . , xn) = (x1, . . . , xm),

πm : T ∼= Nn �→ Nm ∼= T [1,m],

πm(Xa1
1 · · ·Xan

n ) = Xa1
1 · · ·Xam

m ,

Cerlinco–Mureddu Algorithm sets

m := max (j : ∃i < s : πj(ai) = πj(as));

d := #{ai, i < s : πm(ai) = πm(as)};
W := {ai : Φ′(ai) = τiX

d
m+1, τi ∈ T [1,m]} ∪ {as};

Z := πm(W);

τ := Φ(Z)(πm(as));

ts := τXd
m+1;

N := N′ ∪ {ts},

Φ(ai) :=

{
Φ′(ai) i < s

ts i = s

where N(Z) and Φ(Z) are the result of the application of the present algorithm
to Z, which can be inductively applied since #(Z) ≤ s− 1.
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Example 16 For the following sequence of points we iteratively obtain

a1 := (0, 0, 1),

Φ(a1) := t1 := 1;

a2 := (0, 1,−2),

m = 1, d = 1, W = {(0, 1)}, τ = 1,Φ(a2) := t2 := X2,

a3 := (2, 0, 2),

m = 0, d = 1, W = {(2, 0)}, τ = 1,Φ(a3) := t3 := X1,

a4 := (0, 2,−2),

m = 1, d = 2, W = {(0, 2)}, τ = 1, Φ(a4) := t4 := X2
2 ,

a5 := (1, 0, 3),

m = 0, d = 2, W = {(1, 0)}, τ = 1,Φ(a5) := t5 := X2
1 ,

a6 := (1, 1, 3),

m = 1, d = 1, W = {(0, 1), (1, 1)}, τ = X1,Φ(a6) := t6 := X1X2.

(0, 2,−2)
(0, 1,−2) (1, 1, 3)
(0, 0, 1) (2, 0, 2) (1, 0, 3)

a7 := (1, 1, 1),

m = 2, d = 1, W = {(1, 1, 1)}, τ = 1,Φ(a7) := t7 := X3.

a8 := (2, 0, 1),

m = 2, d = 1, W = {(1, 1, 1), (2, 0, 1)}, τ = X1,Φ(a8) := t8 := X1X3,

a9 := (2, 0, 0),

m = 2, d = 2, W = {(2, 0, 0))}, τ = 1,Φ(a9) := t9 := X2
3 ,

��

Remark 17 [15] Once, the set N(I(X)) := {t1, . . . , ts} is obtained via Cerlien-
co–Mureddu Algorithm and Theorem 15, one deduces

G<(I(X)) := {τ1, . . . , τr} , τ1 < τ2 < . . . < τr, τi := X
d
(i)
1

1 · · ·Xd(i)
n

n

and can obtain the lex Gröbner basis of I(X) by interpolation: for each τj ∈
G(I(X)) we have just to find the unknowns aij ∈ F which satisfy the linear
equalities v(X, τj) =

∑s
i=1 aijv(X, ti). ��
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[26] and [23] give a combinatorial reformulation of Cerlienco–Mureddu Al-
gorithm which

– builds a tree on the basis of the point coordinates,

– cominatorially recombines the tree,

– reeds on this tree the monomial structure.

Their formulation returns N but not Φ; more important,apparently it is not
iterative.

A recent [36] Cerlienco—Mureddu-like proposal, very similar to those of [26]
and [23], while still not iterative, suggests a clever interpolation formula which
successfully makes effective the weak proposal of Remark 17.

[44] extends Cerlienco–Mureddu Algorithm to multiple points described via
Macaulay representation.

10 Macaulay’s Algorithm

Let

< be a standard-ordering on T ,

I ⊂ P an m-closed ideal,

C<(I) := {ω1, . . . , ωs} the finite corner set of I wrt <,

{	(τ) : τ ∈ N<(I)}, the (not-necessarily finite) Macaulay basis of I,

the k-vectorspace Λ ⊂ Spank(M) generated by it,

∀j, 1 ≤ j ≤ s,Λj := Spank{υ · 	(ωj) : υ ∈ T },
∀j, 1 ≤ j ≤ s, qj := I(Λj),

∀j, 1 ≤ j ≤ s,Λj := Spank{υ · 	(ωj) : υ ∈ T },
∀j, 1 ≤ j ≤ s, qj := I(Λj).

Let J ⊂ {1, . . . , s} be the set such that {qj : j ∈ J} is the set of the minimal
elements of {qj : 1 ≤ j ≤ s} and remark that qi ⊂ qj ⇐⇒ Λi ⊃ Λj .

Lemma 18 (Macaulay) [38, 39] With the notation above, for each j, denoting

Λ′j := Spank{υ · 	(ωj) : υ ∈ T ∩m}

we have

dimk(Λ′j) = dimk(Λj)− 1,

	(ωj) /∈ Λ′j = M(qj : m),
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q′ ⊃ qj =⇒ M(q′) ⊆ Λ′j . ��

Corollary 19 (Macaulay) [38, 39] Let I be a zero-dimensional ideal, deg(I) =
s. Then the Macaulay representation L = {	1, . . . , 	s} of I can be properly
ordered so that

L := Spank(L) = L(I),

each subvectorspace Lσ := Spank{	1, . . . , 	σ} is a P-module so that

each Iσ = P(Lσ) is a zero-dimensional ideal and

there is a chain I1 ⊃ I2 ⊃ · · · ⊃ Is = I. ��

Macaulay’s construction allowsw, as it was remarked by Gröbner[32, 50], to
compute an irreducible decomposition of primaries ideals7:

Theorem 20 (Gröbner) If I is m-primary, then:

1. each Λj is a finite-dim. stable vectorspace;

2. each qj is an m-primary ideal,

3. is reduced

4. and irreducible.

5. I := ∩j∈Jqj is a reduced representation of I.

11 Reduced Irreducible Decomposition

It is well known [Lasker-Noether Decomposition Theorem] that

• each ideal I ⊂ P is the finite intersection of irreducible ideals;

• irreducible ideals are primaries, but the converse, in general, is false;

• if, into such a representation, each primaries associated to a same prime
are substituted by their intersection, then I ⊂ P has a representation as
intersection of finite primary8 ideals;

• the primes associated to such primaries are unique as well as the isolated
primaries.

It is instead less known that this formulation given by Noether [49] is an
adapatation of a preliminary formulation with respect to which irreducibility
and reduceness are sacrified in order to obtain uniqueness.

In fact Noether introduced the following
7For the definitions see the section below
8but not necessarily irreducible
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Definition 21 (Noether) [49]

A representation a = ∩r
j=1ij of an ideal a in a noetherian ring R as intersection

of finitely many irreducible ideals is called a reduced representation if

• ∀ j ∈ {1, . . . , r}, ij �⊃
r⋂

h=1
j 	=h

ih and

• there is no irreducible ideal ij
′ ⊃ ij such that a =

⎛
⎝ r⋂

h=1
j 	=h

ih

⎞
⎠ ∩ ij

′.

A primary component qj of an ideal a contained in a noetherian ring R, is called

reduced if there is no primary ideal qj
′ ⊃ qj such that a =

⎛
⎝ r⋂

i=1
j 	=i

qi

⎞
⎠∩qj

′.

��

and proved that

Theorem 22 (Noether) [49] In a noetherian ring R, each ideal a ⊂ R has

a reduced representation a =
r⋂

i=1

qi as intersection of finitely many irreducible

ideals.
In an irredundant primary decomposition of an ideal of a noetherian ring,

each primary component can be chosen to be reduced. ��

Example 23 The decomposition

(X2, XY ) = (X) ∩ (X2, XY, Y λ),∀λ ∈ N, λ ≥ 1,

where
√

(X2, XY, Y λ) = (X, Y ) ⊃ (X), shows that embedded components are
not unique; however,

(X2, XY, Y ) = (X2, Y ) ⊇ (X2, XY, Y λ),∀λ > 1,

shows that (X2, Y ) is a reduced embedded irreducible component and that

(X2, XY ) = (X) ∩ (X2, Y )

is a reduced representation. ��

Example 24 The decompositions

(X2, XY ) = (X) ∩ (X2, Y + aX),∀a ∈ Q,

where
√

(X2, Y + aX) = (X, Y ) ⊃ (X) and, clearly, each (X2, Y + aX) is
reduced, show that also reduced representations are not unique; remark that,
setting in this decomposition a = 0, we find again the previous decomposition
(X2, XY ) = (X) ∩ (X2, Y ). ��
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For an m-primary ideal, Theorem 20 give an algorithm to compute its re-
duced representation.

If I is not m-primary, its reduced representation can be obtained in the
following way: let

∇ρ := {M(ω) : ω ∈ T , deg(ω) < ρ},
C<(I) := {ω1, . . . , ωt},
ρ := max{deg(ωj) + 1 : ωj ∈ C<(I)}+ 1 so that

q′ := I + mρ is an m-primary component of I,

Λ ∩∇ρ = M(q′);

I = ∩r
i=1qi be an irredundant primary representation of I where

√
q1 = m,

J := ∩r
i=2qi,

J = ∩u
i=1ii, a reduced representation of J;

C<(q′) := {ω1, . . . , ωt, ωt+1, . . . , ωs} ⊃ C<(I),

for each j, 1 ≤ j ≤ s, Λj := Spank{υ	(ωj) : υ ∈ T } and

qj := I(Λj);

q := ∩t
j=1qj .

Then

Corollary 25 With the notation above, it holds:

1. J := I : m∞ = ∩r
i=2qi,

2. q ⊂ q′ is a reduced m-primary component of I,

3. q′ := ∩s
j=1qj is a reduced representation of q′,

4. q := ∩t
j=1qj is a reduced representation of q,

5. qi ⊃ J ⇐⇒ i > t,

6. I = ∩u
i=1ii

⋂∩t
j=1qj is a reduced representation of I. ��

Example 26 For I := (X2, XY ) we have

Λ = Spank{M(1),M(X)} ∪ {M(Y i), i ∈ N},
C<(I) = {X};
I : m∞ = (X)

ρ = 3, q′ = I + m3 = (X2, XY, Y 3), C<(q′) = {X, Y 2};
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ω1 := X, Λ1 = Spank{M(1),M(X)}, q1 = (X2, Y );

ω2 := Y 2, Λ2 = {M(1),M(Y ),M(Y 2)}, q2 = (X, Y 3) ⊃ (X);

whence (X2, XY ) = (X) ∩ (X2, Y ). ��
Both the reduced representation and the notion of Macaulay basis strongly

depend on the choice of a frame of coordinates.
In fact, considering, for each a ∈ Q, a �= 0,

Λ = Spank{M(1),M(X)− aM(Y )} ∪ {M(Y i), i ∈ N},
we obtain

ρ = 3, Λ ∩∇ρ = {M(1),M(X)− aM(Y ),M(Y ),M(Y 2)},
ω1 := X, Λ1 = {M(1),M(X)− aM(Y )}, q1 = (X2, Y + aX);

ω2 := Y 2, Λ2 = {M(1),M(Y ),M(Y 2)}, q2 = (X, Y 3) ⊃ (X);

whence (X2, XY ) = (X) ∩ (X2, Y + aX).

Example 27 Let us now discuss deeply the same example by performing the
generic change of coordinate

Φ : Q[X, Y ] �→ Q[X, Y ] : Φ(X) = aX + bY, Φ(Y ) = cX + dY, ad− bc �= 0 �= a :

for I := (X2, XY ), we obtain

Φ(I) =
(
aXY + bY 2, a2X2 − bY 2

)
,

Λ := Spank{M(1),M(X),M(Y ), a2M(Y 2)− abM(XY ) + b2M(X2), · · · }
J = I : m∞ = (aX + bY ),

ρ = 3, C<(q′) = {X, Y 2};
Λ ∩∇ρ = Spank{M(1),M(X),M(Y ), a2M(Y 2)− abM(XY ) + b2M(X2)};
ω1 := X, Λ1 = {M(1),M(X)}, q1 = (X2, Y );

ω2 := Y 2, Λ2 = {M(1), aM(Y )− bM(X), a2M(Y 2)− abM(XY ) + b2M(X2)},
q2 = (aX + bY, Y 3) ⊃ (aX + bY );

whence Φ(I) = (aX + bY ) ∩ (X2, Y ).
We have chosen {M(1),M(X),M(Y )} as basis of ∇2; however, what we

have to do is to extend the basis {M(1), aM(Y ) − bM(X)} of M(J) ∩ ∇2, in
order to obtain a basis of ∇2.

Any choice eM(Y ) + fM(X), af + be �= 0 is acceptable giving the reduced
primary

I({M(1), eM(Y ) + fM(X)}) = (X2, eX − fY )

and the decomposition Φ(I) = (aX + bY ) ∩ (X2, eX − fY ). ��
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12 Lazard Structural Theorem

Lazard Structural Theorem [33] is one of earlier important results within Gröb-
ner Theory; it describes the structure of the lex Gröbner basis of a generic
ideal in 2 variables; Gianni–Kalkbrenner’s Theorem can be seen as its ultimate
generalization.

Theorem 28 (Lazard) Let P := k[X1, X2] and let < be the lex. ordering
induced by X1 < X2.

Let I ⊂ P be an ideal and let {f0, f1, . . . , fk} be a Gröbner basis of I ordered
so that

T(f0) < T(f1) < · · · < T(fk).

Then

• f0 = PG1 · · ·Gk+1,

• fj = PHjGj+1 · · ·Gk+1, 1 ≤ j ≤ k,

where

P is the primitive part of f0 ∈ k[X1][X2];

Gi ∈ k[X1], 1 ≤ i ≤ k + 1;

Hi ∈ k[X1][X2] is a monic polynomial of degree d(i), for each i;

d(1) < d(2) < · · · < d(k);

Hi+1 ∈ (G1 · · ·Gi, . . . , HjGj+1 · · ·Gi, . . . , Hi−1Gi, Hi), ∀i . ��

To remark that k[X1] is a principal ideal domain is all one needs in order
to extend Lazard’s proof of his Structural Theorem obtaining a description of
strong Gröbner bases of ideals in R[X], R a principal ideal domain:

Theorem 29 Let R a principal ideal domain and P := R[X].
Let I ⊂ P be an ideal and let {f0, f1, . . . , fk} be a minimal strongGröbner

basis of I ordered so that

deg(f0) ≤ deg(f1) < · · · ≤ deg(fk).

Then

• f0 = PG1 · · ·Gk+1,

• fj = PHjGj+1 · · ·Gk+1, 1 ≤ j ≤ k,

where

P is the primitive part of f0 ∈ R[X];

Gi ∈ R, 1 ≤ i ≤ k + 1;
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Hi ∈ R[X] is a monic polynomial of degree d(i), for each i;

d(1) < d(2) < · · · < d(k);

Hi+1 ∈ (G1 · · ·Gi, H1G2 · · ·Gi, . . . , HjGj+1 · · ·Gi, . . . , Hi−1Gi, Hi) for all i.

��

More interesting is the generalization by Gianni–Kalkbrener which describes
the structure of the lexicographical Gröbner basis of each 0-dimensional ideal

I ⊂ P = k[X1, . . . , Xn].

In order to describe the structure of the Gröbner basis of such an ideal,
we needs to consider P also as a univariate polynomial in the variable Xn with
coefficients in the polynomial ring k[X1, . . . , Xn−1]. In this way for each element
f ∈ P we have:

f =
h∑

k=0

bk(X1, . . . , Xn−1)Xk
n = Tp(f) + · · ·+ Lp(f)Xh

n ,

where we will denote by Lp(f) = bh(X1, . . . , Xn−1) the leading polynomial and
by Tp(f) = b0(X1, . . . , Xn−1) the trailing polynomial of f .

Definition 30 Let I ⊂ P be an ideal and d an integer such that d ≤ n. The d–th
elimination ideal Id is the ideal of k[X1, . . . , Xd] defined by Id = I∩k[X1, . . . , Xd].

We will consider a zero dimensional ideal I ⊂ P and we name Z(Id) ⊂ k
d

the
set of the roots of Id.

Let G = {g1, . . . , gs} be a Gröbner basis of I ⊂ P, w.r.t. the lexicographical
ordering< induced by X1 < . . . ,X −n and let us order it so that T (g1) < · · · <
T (gs).

For each ι ≤ n, let Gι be G ∩ k[X1, . . . , Xι], and

∀	 ∈ N, Gι� := {g ∈ Gι \Gι−1 | degXι
(g) = 	}

so that each Gι can be decomposed into blocks of polynomials according to their
degree with respect to the variable Xι: Gι = ��Gι�. In this way if g ∈ Gι�, we
have

• g ∈ k[X1, . . . , Xι−1][Xι] \ k[X1, . . . , Xι−1];

• degXι
(g) = 	, i.e. g = Lp(g)X�

ι + . . . + Tp(g).

Theorem 31 ([28, 30]) Let α := (a1, . . . , ad) ∈ Z(Id) and

Φα : P → K[Xd+1, . . . , Xn] f(X) → f(α, Xd+1, . . . , Xn).

Let σ be the minimal value such that Φα(Lp(gσ)) �= 0 and j, δ the values such
that gσ ∈ Gjδ. Then

31



1. j = d + 1;

2. for each g ∈ Gι�:

• if ι ≤ d then Φα(g) = 0;

• if ι = d + 1 = j, 	 < δ then Φα(g) = 0;

3. Φα(gσ) = gcd (Φα(g) : g ∈ Gd+1) ∈ k[Xd+1];

4. for each a ∈ k;

(a1, . . . , ad, a) ∈ Z(Id+1) ⇐⇒ Φα(gσ)(a) = 0.

13 Axis-of-Evil Theorem

The Axis-of-Evil Theorem [42, 43, 44] describes the combinatorial structure
[Gröbner and border basis, linear and Gröbner representation] wrt the lex or-
dering of a 0-dimensional ideal I ⊂ P, in terms of its Macaulay representation.

Such description is ”algorithmical” in terms of elementary combinatorial
tools and linear interpolation and extends Cerlienco–Mureddu Correspondence
and Lazard’s Structural Theorem; the proof is essentially a direct application
of Möller’s Algorithm [45, 22].

It is summarized into 229 statements.
We report here one of its extreme statements:

Theorem 32 Let

< the lex ordering induced by X1 < · · · , Xn,

I ⊂ P be a zero-dimensional radical ideal;

Z := {a1, . . . ,as} ⊂ kn its roots;

N := N<(I);

G<(I) := {t1, . . . , tr} , t1 < t2 < . . . < tr, ti := X
d
(i)
1

1 · · ·Xd(i)
n

n the minimal basis
of its associated monomial ideal T<(I);

G := {f1, . . . , fr},T(fi) = ti∀i, the unique reduced lexicographical Gröbner
basis of I.

There is a combinatorial algorithm which, given Z, returns sets of points

Zmδi ⊂ km,∀m, δ, i : 1 ≤ i ≤ r, 1 ≤ m ≤ n, 1 ≤ δ ≤ d(i)
m ,

thus allowing to compute
9in honour of Trythemius, the founder of cryptography (Steganographia [1500], Polygraphia

[1508]) which introdiced in german the 22th letter W in order to perform german gematria.
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• by means of Cerlienco–Mureddu Algorithm the corresponding order ideal

Fmδi := N(Zmδi) ⊂ T ∩ k[X1, . . . , Xm−1]

• and, by interpolation10 unique polynomials

γmδi := Xm −
∑

ω∈Fmδi

cωω

which satisfy the relation

fi =
∏
m

∏
δ

γmδi (mod (f1, . . . , fi−1)∀i.

Moreover, setting

ν the maximal value such that d
(i)
ν �= 0, d

(i)
m = 0,m > ν so that

fi ∈ k[X1, . . . , Xν ] \ k[X1, . . . , Xν−1],

Li :=
∏ν−1

m=1

∏
δ γmδi and

Pi :=
∏

δ γνδi

we have fi = LiPi where Li is the leading polynomial of fi. ��
Example 33 For the nine points considered in Example 16 the corresponding
Gröbner basis is G = {g1, g2, g3, g4, f1, f2, f3, f4} where

g1 := X3
1 − 3X2

1 + 2X1 = (X1 − 2)(X1 − 1)X1

g2 := X2
1X2 −X1X2 = X2(X1 − 1)X1,

g3 := X1X
2
2 −X1X2 = X2(X2 − 1)X1,

g4 := X3
2 − 3X2

2 + 2X2 = X2(X2 − 1)(X2 − 2),

perfectly illustrating Lazard Structural Theorem, and

f1 := X3X
2
1 − 3X3X1 + 2X3 − 3X2

2 − 6X2X1 + 9X2 −X2
1 + 3X1 − 2,

f2 := X3X2 + X3X1 − 2X3 + 3X2
2 + X2X1 − 7X2 − 2X2

1 + 3X1 + 2,

f3 := X2
3X1 − 2X2

3 − 4X3X1 + 8X3 − 15X2
2 − 30X2X1 + 45X2 + 3X1 − 6,

f4 := X3
3 − 3X2

3 + 3X3X1 − 4X3 − 3X2
2 − 6X2X1 + 9X2 − 3X1 + 6,

satisfy (mod (g1, . . . , g4)

f1 = (X1 − 2)(X1 − 1)(X3 − 3
2
X2

2 +
9
2
X2 − 1)

f2 = (X2 + X1 − 2)(X3 + 3X2 − 2X1 − 1)
f3 = (X1 − 2)(X3 − 1)(X3 − 5X1 + 2)
f4 = (X3 − 1)X3(X3 + 3X2

1 − 8X1 + 2)

where
10Xm(a) =

P
ω∈Fmδi

cωω(a), a ∈ Zmδi.
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• (X2
1 −3X1 +2, X2 +X1−2, X3−1) is the Gröbner basis of the ideal whose

roots are {π2(a7), π2(a8)},
• {a ∈ X : (X2

1−3X1+2)(a) �= 0} = {a1, a2, a4} to which Cerlienco–Mureddu
Correspondence associates {1, X2, X

2
2}

• {a ∈ X : (X2 +X1− 2)(a) �= 0} = {a1, a2, a5} to which Cerlienco–Mureddu
Correspondence associates {1, X1, X2}

• {a ∈ X : (X1 − 2)(X3 − 1)(a) �= 0} = {a2, a4, a5, a6} to which Cerlienco–
Mureddu Correspondence associates {1, X1, X2, X1X2}.

• {a ∈ X : (X2
3 −X3))(a) �= 0} = {a2, a3, a4, a5, a6} to which Cerlienco–Mu-

reddu Correspondence associates {1, X1, X
2
1 , X2, X1X2}.

��
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