
Automated theorem proving
in Simplicial Topology

with ACL2

Mirian Andrés

University of La Rioja (U.R.), Spain

ICTP, Trieste (Italy)
2008 August

AGENDAAGENDA
� Introduction

� Kenzo

� ACL2
� Our main proposal

� A concrete proposal
� An example

� Simplicial Topology in ACL2
� A developed example

� A direct proof
� A proof based on abstract reduction systems

� Conclusions and further work

IntroductionIntroduction

� Research group directed by Julio Rubio

� Different lines with different people working in
them

� My line: automatic theorem provers

KenzoKenzo

- tested but … not always

The Common Lisp system
Kenzo

to compute in Algebraic Topology

- its programs correctness has not been proved!

- we are concentrated now in increasing its reliability

Formal verification of programs

Instead of debugging a program, one should prove that it meets its

specifications, and this proof should be checked by a computer program

(John McCarthy, “A Basis for a Mathematical Theory of Computation” 1961)

• What do we need to formally verify a program?

◦ A programming language

◦ A logic

◦ A theorem prover

- A formal approach to increase our confidence in the
correctness of a computer program: verification

Use mathematical methods to prove that the program
meets its intended specification

TheThe ACL2 ACL2 systemsystem

� ACL2 stands for “A Computational Logic for an Applicative
Common Lisp”

� Developed in the University of Texas at Austin by J Moore and
Matt Kaufmann, since 1994

� Its predecessor is Nqthm, also (well) known as the Boyer-Moore
theorem prover

� Successfully used in the industry: hardware verification

� But also used in the verification of software and in formalization
of mathematics

Our main proposalOur main proposal

Our idea: using ACL2 to verify the actual Kenzo programs

But ... Kenzo uses higher order functional programming

How could we increase the reliability of Kenzo with ACL2?

Our proposal:

Choose, reprogram and verify in ACL2 first-order
fragments of Kenzo related with Simplicial Topology

- mechanized proofs in Isabelle for some theoretical algorithms used in
Kenzo (Aransay’s proof in Isabelle of the Basic Perturbation Lemma)

- distance from the Kenzo code to the theories and proofs in Isabelle

ACL2:ACL2: A Computational omputational Logic forogic for
Applicative pplicative Commonommon Lispisp

ACL2 is an extension of a part of Common Lisp

Common Lisp

Kenzo

ACL2

(1)

program1 program2

program1 program1 isisisisisisisis
- already written
- Common Lisp (not ACL2)

- efficient
- tested
- unproved

(1)

program2 program2 isisisisisisisis
- specially designed to be proved
- ACL2 (and Common Lisp)

- efficient or not : irrelevant
- tested
- proved in ACL2

program2

“is supposed to be equivalent to”

program1

(defun automated-testing ()
(let ((case (generate-test-case)))
(if (not (equal (program1 case)

(program2 case)))
(report-on-failure case))))

we do not expect to prove this equivalence

but to use it to do automated testing

It is a (unproved!!) Common Lisp (not ACL2) program !!

To obtainTo obtain thethe EilenbergEilenberg --ZilberZilber theorem automated prooftheorem automated proof
usingusing ACL2ACL2

A concrete A concrete proposalproposal

ChallengeChallenge ::

-- it is an important theoremit is an important theorem implementedimplemented in ain a Kenzo Kenzo
modul modul used used by by the systemthe system

-- itsits feasibilityfeasibility is not secureis not secure

Formalizing Simplicial Formalizing Simplicial
TopologyTopology in ACL2in ACL2

Mirian Andrés
Laureano Lambán
Julio Rubio

University of La Rioja (U.R.), Spain

ACL2 WORKSHOP 2007, Austin (Texas)
November 15th-16th, 2007

José Luis Ruiz Reina

University of Seville (U.S.), Spain

An exampleAn example

Simplicial Topology Simplicial Topology in ACL2in ACL2

Abstract topological spaces replaced by
simplicial sets (combinatorial artifacts)

- Motivation: algebraic invariants are computed in an e asier
way

Example: topological space

Simplicial Topology Simplicial Topology in ACL2in ACL2

Triangulating the space

Triangle can be described by(a 0,a 1,a 2) where the faces are obtained in this way:

∂0(a 0,a 1,a 2)=(a 1,a 2)

∂1(a 0,a 1,a 2)=(a 0,a 2)

∂2(a 0,a 1,a 2)=(a 0,a 1)

The faces of each edge are defined analogously :
∂0(a 1,a 2)=(a 2)

∂1(a 1,a 2)=(a 1)

.

.

.

∂∂∂∂i ∂∂∂∂j = ∂∂∂∂j-1 ∂∂∂∂i if i<j

Simplicial Topology Simplicial Topology in ACL2in ACL2

4 vertices

6 edges 14 elements

4 triangles

1 triangle

2 elements

1 collapsing point

Triangle faces:

∂∂∂∂0x = x = x = x = ∂∂∂∂1x = x = x = x = ∂∂∂∂2x = x = x = x = ηηηη0(*).

η0(*) is called degeneration of �

Simplicial Topology Simplicial Topology in ACL2in ACL2

η0 (a0, a1,, a2) := (a0 , a0 , a1 , a2)

η1 (a0, a1,, a2) := (a0 , a1 , a1 , a2)

η2 (a0, a1,, a2) := (a0 , a1 , a2 , a2)

The operator ηi is repeating the i-th element in the list

Simplicial Topology Simplicial Topology in ACL2in ACL2

Definition. A simplicial set K consists of a graded set {K q} q Є N and,
for each pair of integers (i,q) with 0<=i<=q, face and degeneracy
maps, ∂i :K q →Kq-1 and ηi :K q →Kq+1 , satisfying the simplicial identities:

∂i ∂j = ∂j-1 ∂i if i<j

ηi ηj = ηj+1 ηi if i<=j

∂i ηj = ηj-1 ∂i if i<j

∂i ηj = Id if i=j or i=j+1

∂i ηj = ηj ∂i-1 if i>j+1

The elements of Kq are called q-simplices

A q-simplex x is degenerate if x= ηi y with y Є Kq-1 , 0<=i<q

Otherwise x is called non-degenerate

0-simplices as vertices
Non-degenerate 1-simplices as edges
Non-degenerate 2-simplices as (filled) triangles
Non-degenerate 3-simplices as (filled) tetrahedra

...

Simplicial Topology Simplicial Topology in ACL2in ACL2

We focus our studies on the universal simplicial set ∆∆∆∆
� Reason: Any theorem proved on ∆ by using only the equalities of the previous
definition will be also true for any other simplicial set K

In ACL2
� a q-simplex of ∆ is any ACL2 list of length q
� face operators are defined by means of the function (del-nth i l) which

eliminates the i-th element in the list l
�degeneracy operators are defined by means of the function (deg i l) which

repeats the i-th element in the list l

We consider the simplicial set freely generated from the set of all ACL2 objects

A A developeddeveloped exampleexample

Theorem 1. Let K be a simplicial set. Any degenerate n-simplex x Є Kn can
be expressed in a unique way as a (possibly) iterated d egeneracy of a non-
degenerate simplex y in the following way:

x= ηjk … ηj1 y

with y Є Kr , k = n-r > 0,0<=j 1<...<= j k < n

Thinking in ACL2

- A non-degenerate simplex in ∆ is a list where any two consecutive elements are different
- A simplex in ∆ can be represented as a pair of lists, the first one a list of natural numbers (degeneracy list)

and the second one any ACL2 list.

Theorem 2. Any ACL2 list l can be expressed in a unique way as a p air
(dl,l’) such that l= degenerate (dl,l’) with l’ withou t two consecutive
elements equal and dl a strictly increasing degener acy list.

A A direct direct ACL2ACL2 proof proof of theorem of theorem 22

(defun generate (l)

(if (or (endp l) (endp (cdr l)))

(cons nil l)

(let ((gencdr (generate (cdr l))))

(if (equal (first l) (second l))

(cons (cons 0 (add-one (car gencdr)))

(cdr gencdr))

(cons (add-one (car gencdr))

(cons (car l) (cdr gencdr)))))))

(defthm existence

(let ((gen (generate l)))

(and (canonical gen)

(equal (degenerate (car gen) (cdr gen)) l))))

(defthm uniqueness

(implies

(and (canonical p1) (canonical p2)

(equal (degenerate (car p1) (cdr p1)) l)

(equal (degenerate (car p2) (cdr p2)) l))

(equal p1 p2)))

A A direct direct ACL2ACL2 proof proof of theorem of theorem 22

(defthm uniqueness-main-lemma

(implies (canonical (cons l1 l2))

(equal (generate (degenerate l1 l2))

(cons l1 l2))))

The lists obtained after rewriting (generate (degenerate l1 l2)) in
(generate (degenerate (cdr l1) (deg (car l1) l2))) do not satisfy the hypotheses of the theorem.

Not possible to apply a simplified induction scheme.

An abstract reduction systems approachAn abstract reduction systems approach

An alternative proof because:

• The direct proof does not explicitly use the face operators

• The direct proof is not directly based on the combinatorial properties which relate
the face and degeneracy maps

Idea:

To consider the elimination of a consecutive repetition in a list (face operator)

as a simple reduction step
Another type of reduction step to “fix” disorders in the degeneracy list

Formalizing :
� We define the reduction system →S where:

• o-reduction: if the list l1 has a “disorder” at position i, i.e., l1(i)>= l1 (i+1), then

(l1, l2) →S (l’1, l2), where l’1(i)= l1 (i+1) and l’1(i+1)= l1 (i)+1, (here l(j) denotes the
j-th element of l)

An abstract reduction systems approachAn abstract reduction systems approach

� two types of rules are considered in →S :

•r-reduction: if at index i there is a repetition in l2 , i.e. , l2(i)= l2 (i+1), then

(l1, l2) →S (l’1, l’2), where l’1=cons(i, l1) and l’2 =del-nth (i, l2)

ηi ηj = ηj+1 ηi if i<=j

∂i ηj = Id if i=j or i=j+1

� the set of S-terms is the set of pairs (l1, l2) where

l1 a list of natural numbers

l2 any list

An abstract reduction systems approachAn abstract reduction systems approach

- Model →S in the framework of Ruiz Reina’s ACL2 formalization about abstract reduction systems

Operators are pairs (t,i) where
t is ‘o or ‘r
i is the position in the list where the corresponding reduction takes place

The relation →S is represented by two functions :

(s-legal x op)
(s-reduce-one-step x op)

They suffice to represent a reduction and other related concepts:
noetherianity, equivalence closures, normal forms or confluence

- Modeling our reduction system in ACL2

An abstract reduction systems approachAn abstract reduction systems approach

- We proved that the reduction is noetherian (there is no infinite sequence of S-reductions)
using a suitable lexicographic measure

- We defined a function to compute a normal form with respect to →S

(defun s-normal-form (x)
(let ((red (s-reducible x)))

(if red
(s-normal-form (s-reduce-one-step x red))

x)))

- We proved that →S is locally confluent (whenever there is a local peak, there is a valley)

- Newman’s Lemma: every noetherian and locally confluent reduction is convergent.
It means that two equivalent elements have a common normal form

(defthm s-reduction-convergent
(implies (s-equiv-p x y p)

(equal (s-normal-form x) (s-normal-form y)))

(defthm local-confluence
(implies (and (s-equiv-p x y p) (local-peak-p p))

(and (s-equiv-p x y (s-transform-local-peak p))
(steps-valley (s-transform-local-peak p)))))

An abstract reduction systems approachAn abstract reduction systems approach

- We define (generate l) as (s-normal-form (cons nil l)))

- The main relation between →S and the function degenerate is given by

a) If (l1, l2) →S (l3, l4), then degenerate (l1, l2)= degenerate (l3, l4)

b) If degenerate (l1, l2)=l then (nil,l)=S (l1, l2)

- We prove the theorems existence and uniqueness exactly as stated previously

- Corollary: both definitions of generate are equivalent

(defthm degenerate-s-equivalent
(implies …

(s-equiv-p (cons l m)
(cons nil (degenerate l m))
(degenerate-steps l m))))

ConclusionsConclusions

� We have presented some ideas to apply ACL2 in Simplicial Topology. Main contributions:

� Increase the reliability of a real Computer Algebra program (Kenzo)

Further workFurther work

� Formalize and prove more difficult results from Simplicial Topology in ACL2

� ACL2 proof of the Eilenberg-Zilber theorem

�analysis of feasibility
�relation of ACL2 proofs in Simplicial Topology with abstract rewriting systems

Automated theorem proving
in Simplicial Topology

with ACL2

Mirian Andrés

University of La Rioja (U.R.), Spain

ICTP, Trieste (Italy)
2008 August

