MAP 2008 Abdus Salam ICTP

A coinductive approach to digital computation

Ulrich Berger Swansea

Outline

- Introduction
- Induction and coinduction
- Digit spaces
- Metric digit spaces
- Applications: iterated maps, π , integration
- Program extraction
- Analytic functions
- Conclusion

The aims of this talk

to outline a constructive theory of digital computation;

to show that program extraction from proofs is a practical method to obtain certified programs for digital computation.

Example: computing with signed digits

$$egin{aligned} \mathbb{I} := [-1,1] \subseteq \mathbb{R} \ \mathrm{SD} := \{-1,0,1\} \ x \in \mathbb{I} \ a = (a_n)_{n \in \mathbb{N}} \in \mathrm{SD}^{\omega} \end{aligned}$$

$$x \sim a$$
 : \Leftrightarrow $x = \sum_{n=0}^{\infty} a_n \cdot 2^{-(n+1)}$

A function $f: \mathbb{I} \to \mathbb{I}$ is *represented* by a function $\hat{f}: SD^{\omega} \to SD^{\omega}$ if

$$\forall x, a \ (x \sim a \Rightarrow f(x) \sim \hat{f}(a))$$

Power series as infinite composition

$$\sum_{n=0}^{\infty} a_n \cdot 2^{-(n+1)} = \frac{1}{2} (a_0 + \frac{1}{2} (a_1 + \dots))$$
$$\operatorname{av}_d : \mathbb{I} \to \mathbb{I}, \quad \operatorname{av}_d(x) := \frac{1}{2} (d+x) \quad (d \in \operatorname{SD}).$$

$$\sum_{n=0} a_n \cdot 2^{-(n+1)} = \operatorname{av}_{a_0}(\operatorname{av}_{a_1}(\ldots)) = \operatorname{av}_{a_0} \circ \operatorname{av}_{a_1} \circ \ldots$$

Therefore, $x \sim a \Leftrightarrow x = \operatorname{av}_{a_0} \circ \operatorname{av}_{a_1} \circ \dots$ AV := $\{\operatorname{av}_{-1}, \operatorname{av}_0, \operatorname{av}_1\} \subseteq \mathbb{I} \to \mathbb{I}.$ (I, AV) is an example of a *digit space*.

Digit spaces

We study digit spaces (X, D), where X is a set and $D \subseteq X \to X$, and characterise the functions $f : X \to Y$ that have a continuous digital representation $\hat{f} : D^{\omega} \to E^{\omega}$, without reference to infinite objects (like streams of digits).

The characterisation uses inductive/coinductive definitions and yields implementations of \hat{f} by finitely branching non-wellfounded trees.

We also consider *metric digit spaces* (X, σ, P, D) , where σ is a metric on X and $P \subseteq X$ is dense, and study the relation between digital representability and uniform continuity.

Induction

 $\Phi \colon \mathcal{P}(U) \to \mathcal{P}(U)$ is monotone if $X \subseteq Y$ implies $\Phi(X) \subseteq \Phi(Y)$.

A set $X \subseteq U$ is Φ -closed if $\Phi(X) \subseteq X$.

 $\mu\Phi$, the set *inductively* defined by Φ , is the least Φ -closed set.

Closure $\Phi(\mu\Phi) \subseteq \mu\Phi$ Induction if $\Phi(X) \subseteq X$, then $\mu\Phi \subseteq X$

Example

$$\Phi:\mathcal{P}(\mathbb{R})
ightarrow\mathcal{P}(\mathbb{R}),$$
 $\Phi(X):=\{0\}\cup\{x+1\mid x\in X\}$

$$\mu \Phi = \mathbb{N} = \{0, 1, 2, \ldots\}.$$

Induction:

If X(0) and $\forall x (X(x) \rightarrow X(x+1))$, then $\forall x \in \mathbb{N} X(x)$.

Coinduction

A set $X \subseteq U$ is Φ -coclosed if $X \subseteq \Phi(X)$.

 $\nu\Phi,$ the set coinductively defined by $\Phi,$ is the largest $\Phi\text{-coclosed}$ set.

 $\begin{array}{ll} \textit{Coclosure} & \nu \Phi \subseteq \Phi(\nu \Phi) \\ \textit{Coinduction} & \textit{if } X \subseteq \Phi(X), \textit{ then } X \subseteq \nu \Phi \end{array}$

Example

$$\Phi : \mathcal{P}(\mathbb{R}) \to \mathcal{P}(\mathbb{R})$$
$$\Phi(X) := \{ x \in \mathbb{I} \mid \exists d \in SD \ \exists x' \in X \ x = \operatorname{av}_d(x') \}$$

Lemma: $\nu \Phi = \mathbb{I}$.

Proof: $\nu \Phi \subseteq \Phi(\nu \Phi) \subseteq \mathbb{I}$.

 $\mathbb{I} \subseteq \Phi(\nu \Phi)$ is shown by coinduction.

Need to show $\mathbb{I} \subseteq \Phi(\mathbb{I})$: Let $x \in \mathbb{I}$.

If $x \ge 0$, take d := 1, otherwise d := -1. $x' := 2 \cdot x - 1$

Digit spaces

A *digit space* is a pair (X, D) consisting of a set X and $D \subseteq X \rightarrow X$.

The elements of *D* are called *digits*.

Digital maps

Let (X, D) and (Y, E) be digit spaces. We define the set $C_{D,E} \subseteq X \to Y$ of *digital maps* as follows.

Let F, G range over subsets of $X \rightarrow Y$ and let $\nu F \dots$ stand for $\nu \lambda F \dots$ e.t.c.

 $C_{D,E} :=$

 $\nu F.\mu G.\{e \circ f \mid e \in E, f \in F\} \cup \{h : X \to Y \mid \forall d \in D \ h \circ d \in G\}$

Identity and composition

Identity Lemma

Let (X, D) be a digit spaces. (a) $id_X \in C_{D,D}$. (b) $D \subseteq C_{D,D}$.

Composition Lemma

Let (X_i, D_i) (i=1,2,3) be digit spaces.

If $f \in \mathrm{C}_{D_1,D_2}$ and $g \in \mathrm{C}_{D_2,D_3}$, then $g \circ f \in \mathrm{C}_{D_1,D_3}$.

The category of digit spaces

By the Identity Lemma and the Composition Lemma, digit spaces and digital maps form a category.

Product Lemma

The category \mathcal{D} has finite products.

Digital global elements

The set of global elements of a digit space (X, D) is

$$\mathbf{C}_D := \mathbf{C}_{\mathbf{1}, (X, D)}$$

where **1** denotes the terminal object $(1, {id_1})$ in \mathcal{D} . We identify C_D with a subset of X.

Global Element Lemma

$$C_D = \nu A.\{d(x) \mid d \in D, x \in A\}$$

Roughly, $C_D = \{ d_0 \circ d_1 \circ \ldots \mid (d_n)_{n \in \mathbb{N}} \in D^{\omega} \}.$

Application

Application Lemma

If $f \in C_{D,E}$ and $x \in C_D$, then $f(x) \in C_E$.

Proof: Composition Lemma.

Metric spaces

A metric space $X = (X, \sigma, P)$ consists of a set X, a metric σ on X and a dense set $P \subseteq X$.

For a rational number $\epsilon > 0$ and $p \in P$ we define

$$\mathbf{B}_{\epsilon}(\boldsymbol{p}) := \{ x \in X \mid \sigma(\boldsymbol{p}, x) \leq \epsilon \}$$

X is bounded if $X \subseteq B_M(p)$ for some M > 0 and $p \in P$.

Uniform continuity

Let $X = (X, P, \sigma)$ and $Y = (Y, Q, \tau)$ be metric spaces.

A relation $f \subseteq X \times Y$ is uniformly continuous (u.c.) if

 $\forall \epsilon > 0 \, \exists \delta > 0 \, \mathrm{F}_{\delta, \epsilon}(f)$

where

$$\mathrm{F}_{\delta,\epsilon}(f):=orall p\in P\, \exists q\in Q\, f[\mathrm{B}_{\delta}(p)]\subseteq \mathrm{B}_{\epsilon}(q).$$

Properties of uniform continuity

Lemma

A relation $f \subseteq X \times Y$ is u.c. iff it is a partial function which is uniformly continuous on its domain, $dom(f) := \{x \in X \mid \exists y \in Y (x, y) \in f\}$, in the usual sense, i.e.

$$\forall \epsilon > \mathsf{0} \, \exists \delta > \mathsf{0} \, \forall x, x \in \mathrm{dom}(\mathsf{F}) \, (\sigma(x, x') \leq \delta \Rightarrow \tau(f(x), f(x')) \leq \epsilon)$$

Composition Lemma

If $g \subseteq Y \times Z$ and $f \subseteq X \times Y$ are uniformly continuous, so is $g \circ f \subseteq X \times Z$.

Lipschitz conditions and contractivity

A relation $f \subseteq X \times Y$ is called λ -Lipschitz if $\forall \delta > 0$ ($f \in F_{\delta, \lambda \cdot \delta}$).

Lemma

A relation $f \subseteq X \times Y$ is λ -Lipschitz iff it is a partial function and $\tau(f(x), f(x')) \leq \lambda \cdot \sigma(x, x')$ for all $x, x' \in \text{dom}(f)$.

Lipschitz Lemma

If a relation is λ -Lipschitz for some λ , then it is uniformly continuous.

If a relation is called λ -contracting if it is λ -Lipschitz with $\lambda < 1$.

Metric digit spaces

A metric digit space $X = (X, \sigma, P, D)$ is a metric space (X, σ, P) together with a set of digits $D \subseteq X \rightarrow X$.

Metric digit spaces

A metric digit space $X = (X, \sigma, P, D)$ is called

contracting if there is $\lambda < 1$ such that all $d \in D$ are λ -contracting.

invertible if d^{-1} is u.c. for all $d \in D$.

covering if there is an $\epsilon > 0$ such that for all $p \in P$ there exists $d \in D$ with $B_{\epsilon}(p) \subseteq d[X]$.

finitely covering if there is a finite subset of D which is uniformly covering.

Example: (I, AV) has all these properties.

Characterisation of u.c.

Characterisation Lemma

Let $X = (X, \sigma, P, D)$ and $Y = (Y, \tau, Q, E)$ be metric digit spaces. Set $U := \{f : X \to Y \mid f \text{ u.c.}\}$ and $C := C_{D,E}$.

- (a) If X is bounded and contracting, and Y is invertible and covering, then $U \subseteq C$.
- (b) Assume D is finite. If X is invertible and finitely covering, and Y is bounded and contracting, then $C \subseteq U$.

Corollary (change of digits)

Let (X, σ, P) be a bounded metric space. Let $D, E \subseteq X \to X$. If D is contracting, and E is invertible and covering, then $C_D \subseteq C_E$.

Iterated maps

The family of logistic maps (transformed from [0,1] to $\mathbb{I} = [-1,1]$):

$$f_a: \mathbb{I} \to \mathbb{I}, \quad f(x) = a * (1 - x^2) - 1 \qquad (0 \le a \le 2).$$

 f_a is 2*a*-contracting, hence uniformly continuous (Contraction Lemma), hence in $C := C_{AV,AV} \subseteq \mathbb{I} \to \mathbb{I}$ (Characterisation Lemma (a)).

It follows that the iterated logistic maps $f_a^n : \mathbb{I} \to \mathbb{I}$ are in C (Composition Lemma).

The program extracted from the proof of $f_a^n \in C$ will be discussed later.

 π

For the metric digit space (I, AV) we have $\pi/4 \in C_D$.

Proof We use the formula

$$\frac{\pi}{4} = \frac{1}{2} + \frac{1}{3} \left(\frac{1}{2} + \frac{2}{5} \left(\frac{1}{2} + \frac{3}{7} \left(\frac{1}{2} + \frac{4}{9} \left(\frac{1}{2} + \dots \right) \right) \right) \right)$$

i.e. $\pi/4 = f_0(f_1(\ldots))$ where

$$f_n(x) := \frac{1}{2} + \frac{nx}{2n+1}$$

Hence we have $\pi/4 \in C_F$ where $F := \{f_n \mid n \in \mathbb{N}\}$. Since F is contracting and AV is invertible and covering, it follows, by change of digits, $\pi/4 \in C_D$.

Integration

For a continuous function $f : \mathbb{I} \to \mathbb{R}$ we set $\int f := \int_{-1}^{1} f = \int_{-1}^{1} f(t) \, \mathrm{d}t \in \mathbb{R}.$

Lemma

(a)
$$\int (\operatorname{av}_i \circ f) = \operatorname{av}_{2\cdot i} (\int f)$$

(b) $\int f = \frac{1}{2} (\int (f \circ \operatorname{av}_{-1}) + \int (f \circ \operatorname{av}_1)).$

Integration Lemma

Let (X, σ, P, D) be a covering and invertible metric digit system and $f \in C_{D \otimes AV, AV}$. Then the function mapping $(a, b, x) \in \mathbb{I}^2 \times X$ to $\int_a^b f(x, t) dt$ is well-defined and uniformly continuous.

The type of a formula

To every formula A we assign the type $\tau(A)$ of its *realisers*, i.e. the type a program extracted from a proof of A will have:

- τ(A) is the unit type if A contains neither ∨ nor predicate
 variables (A may contain predicate constants like "=", "≤"
 and "∈ ℝ").
- The propositional connectives ∧, ∨, ⇒ are translated into the type constructors ×, +, →.
- Quantifiers and terms are ignored.
- Predicate variables are translated into type variables.
- Inductive and coinductive definitions are translated into initial algebras and terminal coalgebras, respectively.

Example: $\tau("f \text{ is uniformly continuous"})$

Recall that $f : \mathbb{I} \to \mathbb{I}$ is uniformly continuous if

$$\forall 0 < \epsilon \in \mathbb{Q} \ \exists 0 < \delta \in \mathbb{Q} \ \mathrm{F}_{\delta,\epsilon}(f)$$

where

 $\mathrm{F}_{\delta,\epsilon}(f):=orall p\in\mathbb{Q}\cap\mathbb{I}\ \exists q\in\mathbb{Q}\cap\mathbb{I}\ f[\mathrm{B}_{\delta}(p)]\subseteq\mathrm{B}_{\epsilon}(q).$

We have $\tau(p \in \mathbb{Q}) = \mathbb{Q}$.

Therefore

$$egin{array}{rl} au(f \ {\sf u.c}) &=& \mathbb{Q}
ightarrow \mathbb{Q} imes au({
m F}_{\delta,\epsilon}(f)) \ &=& \mathbb{Q}
ightarrow \mathbb{Q} imes (\mathbb{Q}
ightarrow \mathbb{Q}) \end{array}$$

Example: $\tau(C_{AV})$

Recall the definition of $C_{AV}\subseteq \mathbb{I}:$

$$C_{AV} = \nu A \cdot \{ d(x) \in \mathbb{I} \mid d \in AV, x \in A \}$$

= $\nu A \cdot \{ y \in \mathbb{R} \mid -1 \le y \le 1 \land \exists d, x (d \in AV \land x \in A \land y = av_a(x)) \}$

where

$$AV = \{av_a \mid a \in SD\} = \{d : \mathbb{R} \to \mathbb{R} \mid \exists a \in SD \ d = av_a\}$$
$$SD = \{-1, 0, 1\} = \{a \mid a = -1 \lor a = 0 \lor a = 1\}:$$

Therefore

$$\tau(\mathbf{C}_{\mathrm{AV}}) = \nu \alpha . \mathrm{SD} \times \alpha$$
$$= \mathrm{SD}^{\omega}$$

Example: $\tau(C_{AV,AV})$ Recall the definition of $C_{AV,AV} \subseteq \mathbb{I} \to \mathbb{I}$: $C_{AV,AV} = \nu F \cdot \mu G$. $\{e \circ f : \mathbb{I} \to \mathbb{I} \mid e \in AV, f \in F\} \cup$ $\{h : \mathbb{I} \to \mathbb{I} \mid \forall d \in AV \ h \circ av_d \in G\}$ $= \nu F \cdot \mu G$. $\{h: \mathbb{R} \to \mathbb{R} \mid h[\mathbb{I}] \subseteq \mathbb{I} \land$ $(\exists e, f (e \in AV \land f \in F \land h = e \circ f) \lor$ $(h \circ d_{-1} \in G \land h \circ d_0 \in G \land h \circ d_1 \in G))$

Therefore

$$\tau(C_{AV,AV}) = \nu \alpha . \mu \beta . SD \times \alpha + \beta^3$$

See also [Ghani, Hancock, Pattinson 2008]

Understanding $\tau(C_{AV,AV}) = \nu \alpha . \mu \beta . SD \times \alpha + \beta^3$

Define T as the largest solution of the domain equation

$$T = SD \times T + T^3$$

i.e. the elements of ${\mathcal T}$ are non-wellfounded trees with two kinds of nodes:

- Writing nodes: W(d, t) where $d \in SD$ and $t \in T$.
- Reading nodes: $R(t_{-1}, t_0, t_1)$ where $t_i \in T$.

Classically, $\tau(C_{AV,AV})$ is the set of those trees in T that have on every infinite path infinitely many writing nodes.

Constructively, $\tau(C_{AV,AV})$ is the set of those trees in T that have for every $n \in \mathbb{N}$ only finitely many finite paths with less than n writing nodes.

Realising inductive definitions

Assume the set operator Φ corresponds to the type operator φ .

Then, the inductively defined set $\mu\Phi$ together with the axioms

Closure $\Phi(\mu\Phi) \subseteq \mu\Phi$

Induction if
$$\Phi(X) \subseteq X$$
, then $\mu \Phi \subseteq X$

are realised by the initial algebra $(\mu\varphi, \ln_{\varphi})$ and the family It_{φ} of universal arrows, i.e.

$$\begin{aligned} & \ln_{\varphi} : \varphi(\mu\varphi) \to \mu\varphi \\ & \operatorname{It}_{\varphi}[\mathbf{s}] : \mu\varphi \to \alpha \quad (\mathbf{s}:\varphi(\alpha) \to \alpha) \end{aligned}$$

with the defining recursion equation expressing that $\mathrm{It}_{\varphi}[s]$ is an algebra morphism

$$\operatorname{It}_{\varphi}[s] \circ \operatorname{In}_{\varphi} = s \circ \operatorname{\mathsf{map}}_{\varphi}(\operatorname{It}_{\varphi}[s])$$

Realising coinductive definitions

For coinductive definitions the situation is dual.

The coinductively defined set $\nu\Phi$ and its axioms

Coclosure $\nu \Phi \subseteq \Phi(\nu \Phi)$

Coinduction if $X \subseteq \Phi(X)$, then $X \subseteq \nu \Phi$

are realised by the terminal coalgebra $(\nu\varphi, \operatorname{Out}_{\varphi})$ and the family $\operatorname{Coit}_{\varphi}[s]$ of universal arrows

$$\begin{array}{rcl} \operatorname{Out}_{\varphi} & : & \nu\varphi \to \varphi(\nu\varphi) \\ \operatorname{Coit}_{\varphi}[\boldsymbol{s}] & : & \alpha \to \nu\varphi \quad (\boldsymbol{s} : \alpha \to \varphi(\alpha)) \end{array}$$

with the equation expressing that $\operatorname{Coit}_{\varphi}[s]$ is a coalgebra morphism

$$\operatorname{Out}_{\varphi} \circ \operatorname{Coit}_{\varphi}[s] = \operatorname{map}_{\varphi}(\operatorname{Coit}_{\varphi}[s]) \circ s$$

Computing the iterated logistic maps

$$f_a: \mathbb{I} \to \mathbb{I}, \quad f_a(x) = a * (1 - x^2) - 1 \qquad (0 \le a \le 2).$$

Testing program:

If $f : \mathbb{I} \to \mathbb{I}$ with slope not exceeding *s*, then

```
testit s f = f^n(p)
```

where p and n are given interactively.

The results are computed using the extracted program and compared with floating point and exact rational arithmetic.

The main point of this example is to demonstrate the **memoizing** effect of the tree representation of u.c. functions. See also [Hinze, Proc. WGP 2000] and [Altenkirch, TLCA 2001, LNCS 2044].

Computing $\pi/4 = 0.785398163397448$

pi4Mm

computes *m* signed digits of $\pi/4$ and displays it as a Float.

Integrating the logistic map

$$f_a : \mathbb{I} \to \mathbb{I}, \quad f_a(x) = a * (1 - x^2) - 1 \qquad (0 \le a \le 2).$$
$$\int f_a = \int_{-1}^1 (a * (1 - x^2) - 1) \, \mathrm{d}x = \frac{4}{3}a - 2$$
For example, $\int f_2 = \frac{2}{3}, \ \int f_{1.5} = 0, \ \int f_1 = -\frac{2}{3}, \ \int f_0 = -2.$

defint (lmaC a) ϵ

computes the integral of f_a with error $\leq \epsilon$ as an exact rational.

Digits of higher type

Higher Type Digit Lemma

Let q > 0 and $a_n \in \mathbb{R}$ $(n \in \mathbb{N})$ such that $|a_{n+1}| \le q \cdot |a_n|$ for all $n \in \mathbb{N}$. Let $u, v \ge 0$ such that $|a_0|, u \le q \cdot v^2$ and $q \cdot (u + v) < 1$. Set $X := B_u(0)$ and $Y := B_v(0)$. Then $f : X \to Y$,

$$f(x) := \sum_{n=0}^{\infty} a_n \cdot x^n$$

is well-defined, and $f \in C_P$ where

$$P := \{p_n : (X \to Y) \to X \to Y \mid n \in \mathbb{N}\},\$$
$$p(f)(x) := a_n/q^n + q \cdot x \cdot f(x).$$

The Curry Lemma

In order to obtain a digital implementation of an analytic function f we need to show $f \in C_{D,E}$ for suitable D, E.

But we only got $f \in P$ where P is defined as in the Higher Digit Lemma.

Curry Lemma

Let (X, D) and (Y, E) be digit spaces, and assume that $A \subseteq (X \to Y) \to (X \to Y)$ is such that $\operatorname{uncurry}(A) \subseteq C_{A \otimes D, E}$. Then $C_A \subseteq C_{D, E}$.

Hence it suffices to find a set $A \subseteq (X \to Y) \to (X \to Y)$ such that $P \subseteq A$ and $\operatorname{uncurry}(A) \subseteq C_{A \otimes D, E}$.

The Contraction Lemma

Contraction Lemma

Let $D \subseteq X \to X$ uniformly contracting, $E \subseteq Y \to Y$ uniformly covering and s.t. all $e \in E$ are injective with a uniform Lipschitz constant for the inverses.

For $p: X \times Y \rightarrow Y$ and $q: X \rightarrow X$ define

$$\varphi_{p,q}: (X \to Y) \times X \to Y, \quad \varphi_{p,q}(f,x) := p(x, f(q(x)))$$

Let $\lambda < 1$ and $\gamma \ge 0$. Define

 $A := \{\varphi_{p,q} : p \ \lambda \text{-contracting}, \ q \ \gamma \text{-Lipschitz} \ \} \subseteq (X \to Y) \times X \to Y$ Then $A \subseteq C_{\operatorname{currv}(A) \otimes D, E}$.

Further work

We would like to apply the general theory to compute approximations to the compact subsets of a compact metric space, viewed as elements of the compact metric space of non-empty compact sets with the Hausdorff metric.

Unfortunately, on that space no finite system of contracting and uniformly covering digits exists.

This non-existence holds for a large class of metric spaces.

We are working on a further generalisation of digital computation that covers such situations.

Joint work with Dieter Spreen.

Conclusion

- Case studies show that "proofs as programs" works.
- New (correct!) programs extracted that would have been difficult to "guess".
- Using a fine tuning of realisability (see Helmut Schwichtenberg's talk) it is possible to do abstract mathematics as usual, and still get computational content.
- ► To do: implementation (in Minlog).
- Related work by Edalat, Potts, Heckmann, Ciaffaglione, Gianantonio, Niqui, Escardo, Scriven, Hutchinson, Altenkirch, Hinze, Ghani, Hancock, Pattinson.
- A lot of interesting work on program extraction and program verification in constructive analysis has been done in the Coq community (Bertot, O'Connor,..., see Bas Spitter's talk).