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Introduction

The aims of this talk

I to outline a constructive theory of digital computation;

I to show that program extraction from proofs is a practical
method to obtain certified programs for digital computation.
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Introduction

Example: computing with signed digits

I := [−1, 1] ⊆ R
SD := {−1, 0, 1}
x ∈ I
a = (an)n∈N ∈ SDω

x ∼ a :⇔ x =
∞∑

n=0

an · 2−(n+1)

A function f : I→ I is represented by a function f̂ : SDω → SDω if

∀x , a ( x ∼ a⇒ f (x) ∼ f̂ (a) )
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Introduction

Power series as infinite composition

∞∑
n=0

an · 2−(n+1) =
1

2
(a0 +

1

2
(a1 + . . .))

avd : I→ I, avd(x) := 1
2(d + x) (d ∈ SD).

∞∑
n=0

an · 2−(n+1) = ava0(ava1(. . .)) = ava0 ◦ ava1 ◦ . . .

Therefore, x ∼ a ⇔ x = ava0 ◦ ava1 ◦ . . ..

AV := {av−1, av0, av1} ⊆ I→ I.

(I,AV) is an example of a digit space.
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Introduction

Digit spaces

We study digit spaces (X ,D), where X is a set and D ⊆ X → X ,
and characterise the functions f : X → Y that have a continuous
digital representation f̂ : Dω → Eω, without reference to infinite
objects (like streams of digits).

The characterisation uses inductive/coinductive definitions and
yields implementations of f̂ by finitely branching non-wellfounded
trees.

We also consider metric digit spaces (X , σ,P,D), where σ is a
metric on X and P ⊆ X is dense, and study the relation between
digital representability and uniform continuity.
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Induction and coinduction

Induction

Φ: P(U)→ P(U) is monotone if X ⊆ Y implies Φ(X ) ⊆ Φ(Y ).

A set X ⊆ U is Φ-closed if Φ(X ) ⊆ X .

µΦ, the set inductively defined by Φ, is the least Φ-closed set.

Closure Φ(µΦ) ⊆ µΦ

Induction if Φ(X ) ⊆ X , then µΦ ⊆ X
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Induction and coinduction

Example

Φ : P(R)→ P(R),

Φ(X ) := {0} ∪ {x + 1 | x ∈ X}

µΦ = N = {0, 1, 2, . . .}.

Induction:

If X (0) and ∀x (X (x)→ X (x + 1)),

then ∀x ∈ N X (x).
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Induction and coinduction

Coinduction

A set X ⊆ U is Φ-coclosed if X ⊆ Φ(X ).

νΦ, the set coinductively defined by Φ, is the largest Φ-coclosed
set.

Coclosure νΦ ⊆ Φ(νΦ)

Coinduction if X ⊆ Φ(X ), then X ⊆ νΦ
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Induction and coinduction

Example

Φ : P(R)→ P(R)

Φ(X ) := {x ∈ I | ∃d ∈ SD∃x ′ ∈ X x = avd(x ′)}

Lemma: νΦ = I.

Proof: νΦ ⊆ Φ(νΦ) ⊆ I.

I ⊆ Φ(νΦ) is shown by coinduction.

Need to show I ⊆ Φ(I): Let x ∈ I.

If x ≥ 0, take d := 1, otherwise d := −1. x ′ := 2 · x − 1
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Digit spaces

Digit spaces

A digit space is a pair (X ,D) consisting of
a set X and D ⊆ X → X .

The elements of D are called digits.

11 / 41



Digit spaces

Digital maps

Let (X ,D) and (Y ,E ) be digit spaces.
We define the set CD,E ⊆ X → Y of digital maps as follows.

Let F ,G range over subsets of X → Y
and let νF . . . . stand for νλF . . . e.t.c.

CD,E :=

νF .µG .{e ◦ f | e ∈ E , f ∈ F} ∪ {h : X → Y | ∀d ∈ D h ◦ d ∈ G}
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Digit spaces

Identity and composition

Identity Lemma

Let (X ,D) be a digit spaces.

(a) idX ∈ CD,D .

(b) D ⊆ CD,D .

Composition Lemma

Let (Xi ,Di ) (i=1,2,3) be digit spaces.

If f ∈ CD1,D2 and g ∈ CD2,D3 , then g ◦ f ∈ CD1,D3 .
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Digit spaces

The category of digit spaces

By the Identity Lemma and the Composition Lemma, digit spaces
and digital maps form a category.

Product Lemma

The category D has finite products.
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Digit spaces

Digital global elements

The set of global elements of a digit space (X ,D) is

CD := C1,(X ,D)

where 1 denotes the terminal object (1, {id1}) in D. We identify
CD with a subset of X .

Global Element Lemma

CD = νA.{d(x) | d ∈ D, x ∈ A}

Roughly, CD = {d0 ◦ d1 ◦ . . . | (dn)n∈N ∈ Dω}.
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Digit spaces

Application

Application Lemma

If f ∈ CD,E and x ∈ CD , then f (x) ∈ CE .

Proof: Composition Lemma.
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Metric digit spaces

Metric spaces

A metric space X = (X , σ,P) consists of a set X , a metric σ on X
and a dense set P ⊆ X .

For a rational number ε > 0 and p ∈ P we define

Bε(p) := {x ∈ X | σ(p, x) ≤ ε}

X is bounded if X ⊆ BM(p) for some M > 0 and p ∈ P.
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Metric digit spaces

Uniform continuity

Let X = (X ,P, σ) and Y = (Y ,Q, τ) be metric spaces.

A relation f ⊆ X × Y is uniformly continuous (u.c.) if

∀ε > 0∃δ > 0 Fδ,ε(f )

where
Fδ,ε(f ) := ∀p ∈ P ∃q ∈ Q f [Bδ(p)] ⊆ Bε(q).
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Metric digit spaces

Properties of uniform continuity

Lemma

A relation f ⊆ X × Y is u.c. iff it is a partial function which is
uniformly continuous on its domain,
dom(f ) := {x ∈ X | ∃y ∈ Y (x , y) ∈ f }, in the usual sense, i.e.

∀ε > 0 ∃δ > 0 ∀x , x ∈ dom(F ) (σ(x , x ′) ≤ δ ⇒ τ(f (x), f (x ′)) ≤ ε)

Composition Lemma

If g ⊆ Y × Z and f ⊆ X × Y are uniformly continuous, so is
g ◦ f ⊆ X × Z .
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Metric digit spaces

Lipschitz conditions and contractivity

A relation f ⊆ X × Y is called λ-Lipschitz if ∀δ > 0 (f ∈ Fδ,λ·δ).

Lemma

A relation f ⊆ X × Y is λ-Lipschitz iff it is a partial function and
τ(f (x), f (x ′)) ≤ λ · σ(x , x ′) for all x , x ′ ∈ dom(f ).

Lipschitz Lemma

If a relation is λ-Lipschitz for some λ, then it is uniformly
continuous.

If a relation is called λ-contracting if it is λ-Lipschitz with λ < 1.
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Metric digit spaces

Metric digit spaces

A metric digit space X = (X , σ,P,D) is a metric space (X , σ,P)
together with a set of digits D ⊆ X → X .
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Metric digit spaces

Metric digit spaces

A metric digit space X = (X , σ,P,D) is called

contracting if there is λ < 1 such that all d ∈ D are
λ-contracting.

invertible if d−1 is u.c. for all d ∈ D.

covering if there is an ε > 0 such that for all p ∈ P there
exists d ∈ D with Bε(p) ⊆ d [X ].

finitely covering if there is a finite subset of D which is
uniformly covering.

Example: (I,AV) has all these properties.
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Metric digit spaces

Characterisation of u.c.

Characterisation Lemma

Let X = (X , σ,P,D) and Y = (Y , τ,Q,E ) be metric digit spaces.
Set U := {f : X → Y | f u.c.} and C := CD,E .

(a) If X is bounded and contracting, and Y is invertible and
covering, then U ⊆ C.

(b) Assume D is finite. If X is invertible and finitely covering, and
Y is bounded and contracting, then C ⊆ U.

Corollary (change of digits)

Let (X , σ,P) be a bounded metric space. Let D,E ⊆ X → X . If
D is contracting, and E is invertible and covering, then CD ⊆ CE .
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Applications

Iterated maps

The family of logistic maps (transformed from [0, 1] to I = [−1, 1]):

fa : I→ I, f (x) = a ∗ (1− x2)− 1 (0 ≤ a ≤ 2).

fa is 2a-contracting, hence uniformly continuous (Contraction
Lemma), hence in C := CAV,AV ⊆ I→ I (Characterisation
Lemma (a)).

It follows that the iterated logistic maps f n
a : I→ I are in C

(Composition Lemma).

The program extracted from the proof of f n
a ∈ C will be discussed

later.
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Applications

π

For the metric digit space (I,AV) we have π/4 ∈ CD .

Proof We use the formula

π

4
=

1

2
+

1

3

(
1

2
+

2

5

(
1

2
+

3

7

(
1

2
+

4

9

(
1

2
+ . . .

))))
i.e. π/4 = f0(f1(. . .)) where

fn(x) :=
1

2
+

n x

2n + 1
.

Hence we have π/4 ∈ CF where F := {fn | n ∈ N}. Since F is
contracting and AV is invertible and covering, it follows, by change
of digits, π/4 ∈ CD .
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Applications

Integration

For a continuous function f : I→ R we set∫
f :=

∫ 1
−1 f =

∫ 1
−1 f (t) dt ∈ R.

Lemma

(a)
∫

(avi ◦ f ) = av2·i (
∫

f )

(b)
∫

f = 1
2(
∫

(f ◦ av−1) +
∫

(f ◦ av1)).

Integration Lemma

Let (X , σ,P,D) be a covering and invertible metric digit system
and f ∈ CD⊗AV,AV . Then the function mapping (a, b, x) ∈ I2 × X

to
∫ b
a f (x , t) dt is well-defined and uniformly continuous.
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Program extraction

The type of a formula

To every formula A we assign the type τ(A) of its realisers, i.e. the
type a program extracted from a proof of A will have:

I τ(A) is the unit type if A contains neither ∨ nor predicate
variables (A may contain predicate constants like “=”, “≤”
and “∈ R”).

I The propositional connectives ∧, ∨, ⇒ are translated into the
type constructors ×, +, →.

I Quantifiers and terms are ignored.

I Predicate variables are translated into type variables.

I Inductive and coinductive definitions are translated into initial
algebras and terminal coalgebras, respectively.
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Program extraction

Example: τ(“f is uniformly continuous”)

Recall that f : I→ I is uniformly continuous if

∀0 < ε ∈ Q ∃0 < δ ∈ Q Fδ,ε(f )

where

Fδ,ε(f ) := ∀p ∈ Q ∩ I ∃q ∈ Q ∩ I f [Bδ(p)] ⊆ Bε(q).

We have τ(p ∈ Q) = Q.

Therefore

τ(f u.c) = Q→ Q× τ(Fδ,ε(f ))

= Q→ Q× (Q→ Q)
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Program extraction

Example: τ(CAV)
Recall the definition of CAV ⊆ I:

CAV = νA . {d(x) ∈ I | d ∈ AV, x ∈ A}
= νA . {y ∈ R | −1 ≤ y ≤ 1 ∧

∃d , x (d ∈ AV ∧ x ∈ A ∧ y = ava(x))}

where

AV = {ava | a ∈ SD} = {d : R→ R | ∃a ∈ SD d = ava}

SD = {−1, 0, 1} = {a | a = −1 ∨ a = 0 ∨ a = 1}:

Therefore

τ(CAV) = να .SD× α
= SDω
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Program extraction

Example: τ(CAV,AV)
Recall the definition of CAV,AV ⊆ I→ I:

CAV,AV = νF . µG .

{e ◦ f : I→ I | e ∈ AV, f ∈ F} ∪
{h : I→ I | ∀d ∈ AV h ◦ avd ∈ G}

= νF . µG .

{h : R→ R | h[I] ⊆ I ∧
(∃e, f (e ∈ AV ∧ f ∈ F ∧ h = e ◦ f ) ∨
(h ◦ d−1 ∈ G ∧ h ◦ d0 ∈ G ∧ h ◦ d1 ∈ G ))}

Therefore

τ(CAV,AV) = να . µβ . SD× α + β3

See also [Ghani,Hancock,Pattinson 2008]
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Program extraction

Understanding τ(CAV,AV) = να . µβ . SD× α + β3

Define T as the largest solution of the domain equation

T = SD× T + T 3

i.e. the elements of T are non-wellfounded trees with two kinds of
nodes:

I Writing nodes: W (d , t) where d ∈ SD and t ∈ T .

I Reading nodes: R(t−1, t0, t1) where ti ∈ T .

Classically, τ(CAV,AV) is the set of those trees in T that have on
every infinite path infinitely many writing nodes.

Constructively, τ(CAV,AV) is the set of those trees in T that have
for every n ∈ N only finitely many finite paths with less than n
writing nodes.
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Program extraction

Realising inductive definitions
Assume the set operator Φ corresponds to the type operator ϕ.

Then, the inductively defined set µΦ together with the axioms

Closure Φ(µΦ) ⊆ µΦ

Induction if Φ(X ) ⊆ X , then µΦ ⊆ X

are realised by the initial algebra (µϕ, Inϕ)
and the family Itϕ of universal arrows, i.e.

Inϕ : ϕ(µϕ)→ µϕ

Itϕ[s] : µϕ→ α (s : ϕ(α)→ α)

with the defining recursion equation expressing that Itϕ[s] is an
algebra morphism

Itϕ[s] ◦ Inϕ = s ◦ mapϕ(Itϕ[s])
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Program extraction

Realising coinductive definitions

For coinductive definitions the situation is dual.

The coinductively defined set νΦ and its axioms

Coclosure νΦ ⊆ Φ(νΦ)

Coinduction if X ⊆ Φ(X ), then X ⊆ νΦ

are realised by the terminal coalgebra (νϕ,Outϕ)
and the family Coitϕ[s] of universal arrows

Outϕ : νϕ→ ϕ(νϕ)

Coitϕ[s] : α→ νϕ (s : α→ ϕ(α))

with the equation expressing that Coitϕ[s] is a coalgebra morphism

Outϕ ◦ Coitϕ[s] = mapϕ(Coitϕ[s]) ◦ s
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Program extraction

Computing the iterated logistic maps

fa : I→ I, fa(x) = a ∗ (1− x2)− 1 (0 ≤ a ≤ 2).

Testing program:

If f : I→ I with slope not exceeding s, then

testit s f = f n(p)

where p and n are given interactively.

The results are computed using the extracted program and
compared with floating point and exact rational arithmetic.

The main point of this example is to demonstrate the memoizing
effect of the tree representation of u.c. functions. See also [Hinze,
Proc. WGP 2000] and [Altenkirch, TLCA 2001, LNCS 2044].
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Program extraction

Computing π/4 = 0.785398163397448

pi4M m

computes m signed digits of π/4 and displays it as a Float.
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Program extraction

Integrating the logistic map

fa : I→ I, fa(x) = a ∗ (1− x2)− 1 (0 ≤ a ≤ 2).∫
fa =

∫ 1
−1 (a ∗ (1− x2)− 1) dx = 4

3a− 2

For example,
∫

f2 = 2
3 ,
∫

f1.5 = 0,
∫

f1 = −2
3 ,
∫

f0 = −2.

defint (lmaC a) ε

computes the integral of fa with error ≤ ε as an exact rational.
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Analytic functions

Digits of higher type

Higher Type Digit Lemma

Let q > 0 and an ∈ R (n ∈ N) such that |an+1| ≤ q · |an| for all
n ∈ N. Let u, v ≥ 0 such that |a0|, u ≤ q · v2 and q · (u + v) < 1.
Set X := Bu(0) and Y := Bv (0). Then f : X → Y ,

f (x) :=
∞∑

n=0

an · xn

is well-defined, and f ∈ CP where

P := {pn : (X → Y )→ X → Y | n ∈ N},

p(f )(x) := an/qn + q · x · f (x).
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Analytic functions

The Curry Lemma

In order to obtain a digital implementation of an analytic function
f we need to show f ∈ CD,E for suitable D,E .

But we only got f ∈ P where P is defined as in the
Higher Digit Lemma.

Curry Lemma

Let (X ,D) and (Y ,E ) be digit spaces, and assume that
A ⊆ (X → Y )→ (X → Y ) is such that uncurry(A) ⊆ CA⊗D,E .
Then CA ⊆ CD,E .

Hence it suffices to find a set A ⊆ (X → Y )→ (X → Y ) such
that P ⊆ A and uncurry(A) ⊆ CA⊗D,E .
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Analytic functions

The Contraction Lemma

Contraction Lemma
Let D ⊆ X → X uniformly contracting, E ⊆ Y → Y uniformly
covering and s.t. all e ∈ E are injective with a uniform Lipschitz
constant for the inverses.

For p : X × Y → Y and q : X → X define

ϕp,q : (X → Y )× X → Y , ϕp,q(f , x) := p(x , f (q(x)))

Let λ < 1 and γ ≥ 0. Define

A := {ϕp,q : p λ-contracting, q γ-Lipschitz } ⊆ (X → Y )×X → Y

Then A ⊆ Ccurry(A)⊗D,E .
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Conclusion

Further work
We would like to apply the general theory to compute
approximations to the compact subsets of a compact metric space,
viewed as elements of the compact metric space of non-empty
compact sets with the Hausdorff metric.

Unfortunately, on that space no finite system of contracting and
uniformly covering digits exists.

This non-existence holds for a large class of metric spaces.

We are working on a further generalisation of digital computation
that covers such situations.

Joint work with Dieter Spreen.
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Conclusion

Conclusion

I Case studies show that “proofs as programs” works.

I New (correct!) programs extracted that would have been
difficult to “guess”.

I Using a fine tuning of realisability (see Helmut
Schwichtenberg’s talk) it is possible to do abstract
mathematics as usual, and still get computational content.

I To do: implementation (in Minlog).

I Related work by Edalat, Potts, Heckmann, Ciaffaglione,
Gianantonio, Niqui, Escardo, Scriven, Hutchinson, Altenkirch,
Hinze, Ghani, Hancock, Pattinson.

I A lot of interesting work on program extraction and program
verification in constructive analysis has been done in the Coq
community (Bertot, O’Connor,. . . , see Bas Spitter’s talk).
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