MAP 2008
 Abdus Salam ICTP

A coinductive approach to digital computation

Ulrich Berger
Swansea

Outline

- Introduction
- Induction and coinduction
- Digit spaces
- Metric digit spaces
- Applications: iterated maps, π, integration
- Program extraction
- Analytic functions
- Conclusion

The aims of this talk

- to outline a constructive theory of digital computation;
- to show that program extraction from proofs is a practical method to obtain certified programs for digital computation.

Example: computing with signed digits

$$
\begin{aligned}
& \mathbb{I}:=[-1,1] \subseteq \mathbb{R} \\
& \mathrm{SD}:=\{-1,0,1\} \\
& x \in \mathbb{I} \\
& a=\left(a_{n}\right)_{n \in \mathbb{N}} \in \mathrm{SD}^{\omega}
\end{aligned}
$$

$$
x \sim a \quad: \Leftrightarrow \quad x=\sum_{n=0}^{\infty} a_{n} \cdot 2^{-(n+1)}
$$

A function $f: \mathbb{I} \rightarrow \mathbb{I}$ is represented by a function $\hat{f}: \mathrm{SD}^{\omega} \rightarrow \mathrm{SD}^{\omega}$ if

$$
\forall x, a(x \sim a \Rightarrow f(x) \sim \hat{f}(a))
$$

Power series as infinite composition

$$
\begin{gathered}
\sum_{n=0}^{\infty} a_{n} \cdot 2^{-(n+1)}=\frac{1}{2}\left(a_{0}+\frac{1}{2}\left(a_{1}+\ldots\right)\right) \\
\operatorname{av}_{d}: \mathbb{I} \rightarrow \mathbb{I}, \quad \operatorname{av}_{d}(x):=\frac{1}{2}(d+x) \quad(d \in \mathrm{SD}) . \\
\sum_{n=0}^{\infty} a_{n} \cdot 2^{-(n+1)}=\operatorname{av}_{a_{0}}\left(\operatorname{av}_{a_{1}}(\ldots)\right)=\operatorname{av}_{a_{0}} \circ \operatorname{av}_{a_{1}} \circ \ldots
\end{gathered}
$$

Therefore, $x \sim a \Leftrightarrow x=\operatorname{av}_{a_{0}} \circ \operatorname{av}_{a_{1}} \circ \ldots$.
$\mathrm{AV}:=\left\{\mathrm{av}_{-1}, \mathrm{av}_{0}, \mathrm{av}_{1}\right\} \subseteq \mathbb{I} \rightarrow \mathbb{I}$.
$(\mathbb{I}, \mathrm{AV})$ is an example of a digit space.

Digit spaces

We study digit spaces (X, D), where X is a set and $D \subseteq X \rightarrow X$, and characterise the functions $f: X \rightarrow Y$ that have a continuous digital representation $\hat{f}: D^{\omega} \rightarrow E^{\omega}$, without reference to infinite objects (like streams of digits).

The characterisation uses inductive/coinductive definitions and yields implementations of \hat{f} by finitely branching non-wellfounded trees.

We also consider metric digit spaces (X, σ, P, D), where σ is a metric on X and $P \subseteq X$ is dense, and study the relation between digital representability and uniform continuity.

Induction

$\Phi: \mathcal{P}(U) \rightarrow \mathcal{P}(U)$ is monotone if $X \subseteq Y$ implies $\Phi(X) \subseteq \Phi(Y)$.

A set $X \subseteq U$ is Φ-closed if $\Phi(X) \subseteq X$.
$\mu \Phi$, the set inductively defined by Φ, is the least Φ-closed set.
Closure $\quad \Phi(\mu \Phi) \subseteq \mu \Phi$
Induction if $\Phi(X) \subseteq X$, then $\mu \Phi \subseteq X$

Example

$$
\begin{aligned}
& \Phi: \mathcal{P}(\mathbb{R}) \rightarrow \mathcal{P}(\mathbb{R}) \\
& \Phi(X):=\{0\} \cup\{x+1 \mid x \in X\} \\
& \mu \Phi=\mathbb{N}=\{0,1,2, \ldots\}
\end{aligned}
$$

Induction:
If $X(0)$ and $\forall x(X(x) \rightarrow X(x+1))$, then $\forall x \in \mathbb{N} X(x)$.

Coinduction

A set $X \subseteq U$ is Φ-coclosed if $X \subseteq \Phi(X)$.
$\nu \Phi$, the set coinductively defined by Φ, is the largest Φ-coclosed set.

Coclosure $\quad \nu \Phi \subseteq \Phi(\nu \Phi)$
Coinduction if $X \subseteq \Phi(X)$, then $X \subseteq \nu \Phi$

Example

$\Phi: \mathcal{P}(\mathbb{R}) \rightarrow \mathcal{P}(\mathbb{R})$
$\Phi(X):=\left\{x \in \mathbb{I} \mid \exists d \in \operatorname{SD} \exists x^{\prime} \in X \quad x=\operatorname{av}_{d}\left(x^{\prime}\right)\right\}$

Lemma: $\nu \Phi=\mathbb{I}$.
Proof: $\nu \Phi \subseteq \Phi(\nu \Phi) \subseteq \mathbb{I}$.
$\mathbb{I} \subseteq \Phi(\nu \Phi)$ is shown by coinduction.
Need to show $\mathbb{I} \subseteq \Phi(\mathbb{I})$: Let $x \in \mathbb{I}$.
If $x \geq 0$, take $d:=1$, otherwise $d:=-1 . x^{\prime}:=2 \cdot x-1$

Digit spaces

A digit space is a pair (X, D) consisting of a set X and $D \subseteq X \rightarrow X$.

The elements of D are called digits.

Digital maps

Let (X, D) and (Y, E) be digit spaces.
We define the set $\mathrm{C}_{D, E} \subseteq X \rightarrow Y$ of digital maps as follows.
Let F, G range over subsets of $X \rightarrow Y$ and let $\nu F \ldots$ stand for $\nu \lambda F \ldots$ e.t.c.
$\mathrm{C}_{D, E}:=$
$\nu F . \mu G .\{e \circ f \mid e \in E, f \in F\} \cup\{h: X \rightarrow Y \mid \forall d \in D h \circ d \in G\}$

Identity and composition

Identity Lemma
Let (X, D) be a digit spaces.
(a) $\mathrm{id}_{X} \in \mathrm{C}_{D, D}$.
(b) $D \subseteq \mathrm{C}_{D, D}$.

Composition Lemma

Let $\left(X_{i}, D_{i}\right)(i=1,2,3)$ be digit spaces.
If $f \in \mathrm{C}_{D_{1}, D_{2}}$ and $g \in \mathrm{C}_{D_{2}, D_{3}}$, then $g \circ f \in \mathrm{C}_{D_{1}, D_{3}}$.

The category of digit spaces

By the Identity Lemma and the Composition Lemma, digit spaces and digital maps form a category.

Product Lemma

The category \mathcal{D} has finite products.

Digital global elements

The set of global elements of a digit space (X, D) is

$$
\mathrm{C}_{D}:=\mathrm{C}_{\mathbf{1},(X, D)}
$$

where $\mathbf{1}$ denotes the terminal object $\left(\mathbf{1},\left\{\mathrm{id}_{\mathbf{1}}\right\}\right)$ in \mathcal{D}. We identify C_{D} with a subset of X.

Global Element Lemma

$$
\mathrm{C}_{D}=\nu A .\{d(x) \mid d \in D, x \in A\}
$$

Roughly, $\mathrm{C}_{D}=\left\{d_{0} \circ d_{1} \circ \ldots \mid\left(d_{n}\right)_{n \in \mathbb{N}} \in D^{\omega}\right\}$.

Application

Application Lemma
If $f \in \mathrm{C}_{D, E}$ and $x \in \mathrm{C}_{D}$, then $f(x) \in \mathrm{C}_{E}$.
Proof: Composition Lemma.

Metric spaces

A metric space $X=(X, \sigma, P)$ consists of a set X, a metric σ on X and a dense set $P \subseteq X$.

For a rational number $\epsilon>0$ and $p \in P$ we define

$$
\mathrm{B}_{\epsilon}(p):=\{x \in X \mid \sigma(p, x) \leq \epsilon\}
$$

X is bounded if $X \subseteq \mathrm{~B}_{M}(p)$ for some $M>0$ and $p \in P$.

Uniform continuity

Let $X=(X, P, \sigma)$ and $Y=(Y, Q, \tau)$ be metric spaces.
A relation $f \subseteq X \times Y$ is uniformly continuous (u.c.) if

$$
\forall \epsilon>0 \exists \delta>0 \mathrm{~F}_{\delta, \epsilon}(f)
$$

where

$$
\mathrm{F}_{\delta, \epsilon}(f):=\forall p \in P \exists q \in Q f\left[\mathrm{~B}_{\delta}(p)\right] \subseteq \mathrm{B}_{\epsilon}(q)
$$

Properties of uniform continuity

Lemma

A relation $f \subseteq X \times Y$ is u.c. iff it is a partial function which is uniformly continuous on its domain, $\operatorname{dom}(f):=\{x \in X \mid \exists y \in Y(x, y) \in f\}$, in the usual sense, i.e.
$\forall \epsilon>0 \exists \delta>0 \forall x, x \in \operatorname{dom}(F)\left(\sigma\left(x, x^{\prime}\right) \leq \delta \Rightarrow \tau\left(f(x), f\left(x^{\prime}\right)\right) \leq \epsilon\right)$

Composition Lemma

If $g \subseteq Y \times Z$ and $f \subseteq X \times Y$ are uniformly continuous, so is $g \circ f \subseteq X \times Z$.

Lipschitz conditions and contractivity

A relation $f \subseteq X \times Y$ is called λ-Lipschitz if $\forall \delta>0\left(f \in \mathrm{~F}_{\delta, \lambda \cdot \delta}\right)$.

Lemma

A relation $f \subseteq X \times Y$ is λ-Lipschitz iff it is a partial function and $\tau\left(f(x), f\left(x^{\prime}\right)\right) \leq \lambda \cdot \sigma\left(x, x^{\prime}\right)$ for all $x, x^{\prime} \in \operatorname{dom}(f)$.

Lipschitz Lemma

If a relation is λ-Lipschitz for some λ, then it is uniformly continuous.

If a relation is called λ-contracting if it is λ-Lipschitz with $\lambda<1$.

Metric digit spaces

Metric digit spaces

A metric digit space $X=(X, \sigma, P, D)$ is a metric space (X, σ, P) together with a set of digits $D \subseteq X \rightarrow X$.

Metric digit spaces

A metric digit space $X=(X, \sigma, P, D)$ is called
contracting if there is $\lambda<1$ such that all $d \in D$ are λ-contracting.
invertible if d^{-1} is u.c. for all $d \in D$.
covering if there is an $\epsilon>0$ such that for all $p \in P$ there exists $d \in D$ with $\mathrm{B}_{\epsilon}(p) \subseteq d[X]$.
finitely covering if there is a finite subset of D which is uniformly covering.

Example: $(\mathbb{I}, \mathrm{AV})$ has all these properties.

Characterisation of u.c.

Characterisation Lemma
Let $X=(X, \sigma, P, D)$ and $Y=(Y, \tau, Q, E)$ be metric digit spaces.
Set $\mathrm{U}:=\{f: X \rightarrow Y \mid f$ u.c. $\}$ and $\mathrm{C}:=\mathrm{C}_{D, E}$.
(a) If X is bounded and contracting, and Y is invertible and covering, then $\mathrm{U} \subseteq \mathrm{C}$.
(b) Assume D is finite. If X is invertible and finitely covering, and Y is bounded and contracting, then $\mathrm{C} \subseteq \mathrm{U}$.

Corollary (change of digits)
Let (X, σ, P) be a bounded metric space. Let $D, E \subseteq X \rightarrow X$. If
D is contracting, and E is invertible and covering, then $\mathrm{C}_{D} \subseteq \mathrm{C}_{E}$.

Iterated maps

The family of logistic maps (transformed from $[0,1]$ to $\mathbb{I}=[-1,1]$):
$f_{a}: \mathbb{I} \rightarrow \mathbb{I}, \quad f(x)=a *\left(1-x^{2}\right)-1 \quad(0 \leq a \leq 2)$.
f_{a} is $2 a$-contracting, hence uniformly continuous (Contraction Lemma), hence in $\mathrm{C}:=\mathrm{C}_{\mathrm{AV}, \mathrm{AV}} \subseteq \mathbb{I} \rightarrow \mathbb{I}$ (Characterisation Lemma (a)).

It follows that the iterated logistic maps $f_{a}^{n}: \mathbb{I} \rightarrow \mathbb{I}$ are in C (Composition Lemma).

The program extracted from the proof of $f_{a}^{n} \in \mathrm{C}$ will be discussed later.

For the metric digit space $(\mathbb{I}, \mathrm{AV})$ we have $\pi / 4 \in \mathrm{C}_{D}$.
Proof We use the formula

$$
\frac{\pi}{4}=\frac{1}{2}+\frac{1}{3}\left(\frac{1}{2}+\frac{2}{5}\left(\frac{1}{2}+\frac{3}{7}\left(\frac{1}{2}+\frac{4}{9}\left(\frac{1}{2}+\ldots\right)\right)\right)\right)
$$

i.e. $\pi / 4=f_{0}\left(f_{1}(\ldots)\right)$ where

$$
f_{n}(x):=\frac{1}{2}+\frac{n x}{2 n+1}
$$

Hence we have $\pi / 4 \in \mathrm{C}_{F}$ where $F:=\left\{f_{n} \mid n \in \mathbb{N}\right\}$. Since F is contracting and AV is invertible and covering, it follows, by change of digits, $\pi / 4 \in \mathrm{C}_{D}$.

Integration

For a continuous function $f: \mathbb{I} \rightarrow \mathbb{R}$ we set
$\int f:=\int_{-1}^{1} f=\int_{-1}^{1} f(t) \mathrm{d} t \in \mathbb{R}$.

Lemma

(a) $\int\left(\mathrm{av}_{i} \circ f\right)=\operatorname{av}_{2 \cdot i}\left(\int f\right)$
(b) $\int f=\frac{1}{2}\left(\int\left(f \circ \mathrm{av}_{-1}\right)+\int\left(f \circ \mathrm{av}_{1}\right)\right)$.

Integration Lemma

Let (X, σ, P, D) be a covering and invertible metric digit system and $f \in \mathrm{C}_{D \otimes \mathrm{AV}, \mathrm{AV}}$. Then the function mapping $(a, b, x) \in \mathbb{I}^{2} \times X$ to $\int_{a}^{b} f(x, t) \mathrm{d} t$ is well-defined and uniformly continuous.

The type of a formula

To every formula A we assign the type $\tau(A)$ of its realisers, i.e. the type a program extracted from a proof of A will have:

- $\tau(A)$ is the unit type if A contains neither V nor predicate variables (A may contain predicate constants like " $=$ ", " \leq " and " $\in \mathbb{R}^{\prime}$ ").
- The propositional connectives $\wedge, \vee, \Rightarrow$ are translated into the type constructors $\times,+, \rightarrow$.
- Quantifiers and terms are ignored.
- Predicate variables are translated into type variables.
- Inductive and coinductive definitions are translated into initial algebras and terminal coalgebras, respectively.

Example: $\tau($ " f is uniformly continuous" $)$

Recall that $f: \mathbb{I} \rightarrow \mathbb{I}$ is uniformly continuous if

$$
\forall 0<\epsilon \in \mathbb{Q} \exists 0<\delta \in \mathbb{Q} \mathrm{F}_{\delta, \epsilon}(f)
$$

where

$$
\mathrm{F}_{\delta, \epsilon}(f):=\forall p \in \mathbb{Q} \cap \mathbb{I} \exists q \in \mathbb{Q} \cap \mathbb{I} f\left[\mathrm{~B}_{\delta}(p)\right] \subseteq \mathrm{B}_{\epsilon}(q)
$$

We have $\tau(p \in \mathbb{Q})=\mathbb{Q}$.
Therefore

$$
\begin{aligned}
\tau(f \text { u.c }) & =\mathbb{Q} \rightarrow \mathbb{Q} \times \tau\left(\mathrm{F}_{\delta, \epsilon}(f)\right) \\
& =\mathbb{Q} \rightarrow \mathbb{Q} \times(\mathbb{Q} \rightarrow \mathbb{Q})
\end{aligned}
$$

Example: $\tau\left(\mathrm{C}_{\mathrm{AV}}\right)$

Recall the definition of $\mathrm{C}_{\mathrm{AV}} \subseteq \mathbb{I}$:

$$
\begin{aligned}
\mathrm{C}_{\mathrm{AV}}= & \nu A \cdot\{d(x) \in \mathbb{I} \mid d \in \mathrm{AV}, x \in A\} \\
= & \nu A \cdot\{y \in \mathbb{R} \mid-1 \leq y \leq 1 \wedge \\
& \left.\exists d, x\left(d \in \mathrm{AV} \wedge x \in A \wedge y=\operatorname{av}_{a}(x)\right)\right\}
\end{aligned}
$$

where

$$
\begin{aligned}
& \mathrm{AV}=\left\{\mathrm{av}_{a} \mid a \in \mathrm{SD}\right\}=\left\{d: \mathbb{R} \rightarrow \mathbb{R} \mid \exists a \in \mathrm{SD} d=\mathrm{av}_{a}\right\} \\
& \mathrm{SD}=\{-1,0,1\}=\{a \mid a=-1 \vee a=0 \vee a=1\}
\end{aligned}
$$

Therefore

$$
\begin{aligned}
\tau\left(\mathrm{C}_{\mathrm{AV}}\right) & =\nu \alpha \cdot \mathrm{SD} \times \alpha \\
& =\mathrm{SD}^{\omega}
\end{aligned}
$$

Example: $\tau\left(\mathrm{C}_{\mathrm{AV}, \mathrm{AV}}\right)$

Recall the definition of $\mathrm{C}_{\mathrm{AV}, \mathrm{AV}} \subseteq \mathbb{I} \rightarrow \mathbb{I}$:

$$
\begin{aligned}
\mathrm{C}_{\mathrm{AV}, \mathrm{AV}}= & \nu F \cdot \mu G . \\
& \{e \circ f: \mathbb{I} \rightarrow \mathbb{I} \mid e \in \mathrm{AV}, f \in F\} \cup \\
& \left\{h: \mathbb{I} \rightarrow \mathbb{I} \mid \forall d \in \mathrm{AV} h \circ \mathrm{av}_{d} \in G\right\} \\
= & \nu F \cdot \mu G . \\
& \{h: \mathbb{R} \rightarrow \mathbb{R} \mid h[\mathbb{I}] \subseteq \mathbb{I} \wedge \\
& (\exists e, f(e \in \mathrm{AV} \wedge f \in F \wedge h=e \circ f) \vee \\
& \left.\left.\left(h \circ d_{-1} \in G \wedge h \circ d_{0} \in G \wedge h \circ d_{1} \in G\right)\right)\right\}
\end{aligned}
$$

Therefore

$$
\tau\left(\mathrm{C}_{\mathrm{AV}, \mathrm{AV}}\right)=\nu \alpha \cdot \mu \beta \cdot \mathrm{SD} \times \alpha+\beta^{3}
$$

See also [Ghani,Hancock,Pattinson 2008]

Understanding $\tau\left(\mathrm{C}_{\mathrm{AV}, \mathrm{AV}}\right)=\nu \alpha \cdot \mu \beta \cdot \mathrm{SD} \times \alpha+\beta^{3}$
Define T as the largest solution of the domain equation

$$
T=\mathrm{SD} \times T+T^{3}
$$

i.e. the elements of T are non-wellfounded trees with two kinds of nodes:

- Writing nodes: $W(d, t)$ where $d \in \mathrm{SD}$ and $t \in T$.
- Reading nodes: $R\left(t_{-1}, t_{0}, t_{1}\right)$ where $t_{i} \in T$.

Classically, $\tau\left(\mathrm{C}_{\mathrm{AV}, \mathrm{AV}}\right)$ is the set of those trees in T that have on every infinite path infinitely many writing nodes.

Constructively, $\tau\left(\mathrm{C}_{\mathrm{AV}, \mathrm{AV}}\right)$ is the set of those trees in T that have for every $n \in \mathbb{N}$ only finitely many finite paths with less than n writing nodes.

Realising inductive definitions

Assume the set operator Φ corresponds to the type operator φ.
Then, the inductively defined set $\mu \Phi$ together with the axioms
Closure $\quad \Phi(\mu \Phi) \subseteq \mu \Phi$
Induction if $\Phi(X) \subseteq X$, then $\mu \Phi \subseteq X$
are realised by the initial algebra $\left(\mu \varphi, \operatorname{In}_{\varphi}\right)$ and the family It_{φ} of universal arrows, i.e.

$$
\begin{aligned}
\operatorname{In}_{\varphi} & : \varphi(\mu \varphi) \rightarrow \mu \varphi \\
\mathrm{It}_{\varphi}[s] & : \mu \varphi \rightarrow \alpha \quad(s: \varphi(\alpha) \rightarrow \alpha)
\end{aligned}
$$

with the defining recursion equation expressing that $\mathrm{It}_{\varphi}[s]$ is an algebra morphism

$$
\mathrm{It}_{\varphi}[s] \circ \operatorname{In}_{\varphi}=s \circ \operatorname{map}_{\varphi}\left(\operatorname{It}_{\varphi}[s]\right)
$$

Realising coinductive definitions

For coinductive definitions the situation is dual.
The coinductively defined set $\nu \Phi$ and its axioms
Coclosure $\quad \nu \Phi \subseteq \Phi(\nu \Phi)$
Coinduction if $X \subseteq \Phi(X)$, then $X \subseteq \nu \Phi$
are realised by the terminal coalgebra ($\nu \varphi, \mathrm{Out}_{\varphi}$) and the family $\operatorname{Coit}_{\varphi}[s]$ of universal arrows

$$
\begin{aligned}
\operatorname{Out}_{\varphi} & : \nu \varphi \rightarrow \varphi(\nu \varphi) \\
\operatorname{Coit}_{\varphi}[s] & : \alpha \rightarrow \nu \varphi \quad(s: \alpha \rightarrow \varphi(\alpha))
\end{aligned}
$$

with the equation expressing that $\operatorname{Coit}_{\varphi}[s]$ is a coalgebra morphism

$$
\operatorname{Out}_{\varphi} \circ \operatorname{Coit}_{\varphi}[s]=\operatorname{map}_{\varphi}\left(\operatorname{Coit}_{\varphi}[s]\right) \circ s
$$

Computing the iterated logistic maps

$$
f_{a}: \mathbb{I} \rightarrow \mathbb{I}, \quad f_{a}(x)=a *\left(1-x^{2}\right)-1 \quad(0 \leq a \leq 2) .
$$

Testing program:
If $f: \mathbb{I} \rightarrow \mathbb{I}$ with slope not exceeding s, then

$$
\text { testit } s f=f^{n}(p)
$$

where p and n are given interactively.
The results are computed using the extracted program and compared with floating point and exact rational arithmetic.

The main point of this example is to demonstrate the memoizing effect of the tree representation of u.c. functions. See also [Hinze, Proc. WGP 2000] and [Altenkirch, TLCA 2001, LNCS 2044].

Computing $\pi / 4=0.785398163397448$

pi4M m
computes m signed digits of $\pi / 4$ and displays it as a Float.

Integrating the logistic map

$$
\begin{aligned}
& f_{a}: \mathbb{I} \rightarrow \mathbb{I}, \quad f_{a}(x)=a *\left(1-x^{2}\right)-1 \quad(0 \leq a \leq 2) . \\
& \int f_{a}=\int_{-1}^{1}\left(a *\left(1-x^{2}\right)-1\right) \mathrm{d} x=\frac{4}{3} a-2
\end{aligned}
$$

For example, $\int f_{2}=\frac{2}{3}, \int f_{1.5}=0, \int f_{1}=-\frac{2}{3}, \int f_{0}=-2$.

$$
\operatorname{defint}(\operatorname{lmaC} a) \epsilon
$$

computes the integral of f_{a} with error $\leq \epsilon$ as an exact rational.

Digits of higher type

Higher Type Digit Lemma

Let $q>0$ and $a_{n} \in \mathbb{R}(n \in \mathbb{N})$ such that $\left|a_{n+1}\right| \leq q \cdot\left|a_{n}\right|$ for all $n \in \mathbb{N}$. Let $u, v \geq 0$ such that $\left|a_{0}\right|, u \leq q \cdot v^{2}$ and $q \cdot(u+v)<1$. Set $X:=\mathrm{B}_{u}(0)$ and $Y:=\mathrm{B}_{v}(0)$. Then $f: X \rightarrow Y$,

$$
f(x):=\sum_{n=0}^{\infty} a_{n} \cdot x^{n}
$$

is well-defined, and $f \in \mathrm{C}_{P}$ where
$P:=\left\{p_{n}:(X \rightarrow Y) \rightarrow X \rightarrow Y \mid n \in \mathbb{N}\right\}$,
$p(f)(x):=a_{n} / q^{n}+q \cdot x \cdot f(x)$.

The Curry Lemma

In order to obtain a digital implementation of an analytic function f we need to show $f \in \mathrm{C}_{D, E}$ for suitable D, E.

But we only got $f \in P$ where P is defined as in the Higher Digit Lemma.

Curry Lemma

Let (X, D) and (Y, E) be digit spaces, and assume that $A \subseteq(X \rightarrow Y) \rightarrow(X \rightarrow Y)$ is such that uncurry $(A) \subseteq \mathrm{C}_{A \otimes D, E}$. Then $\mathrm{C}_{A} \subseteq \mathrm{C}_{D, E}$.

Hence it suffices to find a set $A \subseteq(X \rightarrow Y) \rightarrow(X \rightarrow Y)$ such that $P \subseteq A$ and uncurry $(A) \subseteq \mathrm{C}_{A \otimes D, E}$.

The Contraction Lemma

Contraction Lemma

Let $D \subseteq X \rightarrow X$ uniformly contracting, $E \subseteq Y \rightarrow Y$ uniformly covering and s.t. all $e \in E$ are injective with a uniform Lipschitz constant for the inverses.
For $p: X \times Y \rightarrow Y$ and $q: X \rightarrow X$ define

$$
\varphi_{p, q}:(X \rightarrow Y) \times X \rightarrow Y, \quad \varphi_{p, q}(f, x):=p(x, f(q(x)))
$$

Let $\lambda<1$ and $\gamma \geq 0$. Define
$A:=\left\{\varphi_{p, q}: p \lambda\right.$-contracting, $q \gamma$-Lipschitz $\} \subseteq(X \rightarrow Y) \times X \rightarrow Y$
Then $A \subseteq \mathrm{C}_{\text {curry }}(A) \otimes D, E$.

Further work

We would like to apply the general theory to compute approximations to the compact subsets of a compact metric space, viewed as elements of the compact metric space of non-empty compact sets with the Hausdorff metric.

Unfortunately, on that space no finite system of contracting and uniformly covering digits exists.

This non-existence holds for a large class of metric spaces.

We are working on a further generalisation of digital computation that covers such situations.

Joint work with Dieter Spreen.

Conclusion

- Case studies show that "proofs as programs" works.
- New (correct!) programs extracted that would have been difficult to "guess".
- Using a fine tuning of realisability (see Helmut Schwichtenberg's talk) it is possible to do abstract mathematics as usual, and still get computational content.
- To do: implementation (in Minlog).
- Related work by Edalat, Potts, Heckmann, Ciaffaglione, Gianantonio, Niqui, Escardo, Scriven, Hutchinson, Altenkirch, Hinze, Ghani, Hancock, Pattinson.
- A lot of interesting work on program extraction and program verification in constructive analysis has been done in the Coq community (Bertot, O'Connor,...., see Bas Spitter's talk).

