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The Consistency Problem
Polynomial Systems of Equations and Inequalities

Given f1, . . . , fm ∈ Q[x1, . . . , xn], decide whether the set

P = {x ∈ Rn | f1(x) = 0, . . . , fp(x) = 0, fp+1(x) > 0, . . . , fm(x) > 0}

is empty or not.

If P is not the empty set, exhibit a point in P.
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A More General Problem
Feasible Sign Conditions

A (closed) sign condition over f1, . . . , fm ∈ Q[x1, . . . , xn] is
σ ∈ {<,=, >}m (resp. σ ∈ {≤,=,≥}m).

We say σ = (σ1, . . . , σm) is feasible if the set

Pσ = {x ∈ Rn | f1(x)σ10, . . . , fm(x)σm0}

is not empty. We call this set the realization of σ.

Two questions. Given f1, . . . , fm ∈ Q[x1, . . . , xn]:

Determine all feasible (closed) sign conditions over f1, . . . , fm.

Exhibit a point in Pσ for each feasible sign condition σ.
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Our Approach
Computing points in semialgebraic sets

Search for a point in the closure of each connected component of
the set.

Sketch of the Algorithm

I Find points where the
maximum or minimum of the
projection over x1 is attained.

I Intersect with x1 = c and
proceed in the same way,
recursively, with x2, . . . , xn.
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A Technical Problem
Asymptotic Situations

The following conditions could be
met by a connected component
C :

I there are no extremal points
for x1 over C and,

I {x1 = c} ∩ C = ∅.

Also, there might be infinitely
many extremal points over C .

How to avoid these situations: consider a generic linear form
instead of x1.
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Avoiding Asymptotic Situations
Generic linear change of variables

For a nonempty set C ⊂ Rn and a linear π : Rn → R, let:

Zi (C ) = C ∩ π−1(inf π(C )) if π(C ) is bounded from below, and
Zi (C ) = ∅ otherwise.

Zs(C ) = C ∩ π−1(supπ(C )) if π(C ) is bounded from above, and
Zs(C ) = ∅ otherwise.

Z (C ) = Zi (C ) ∪ Zs(C ).

Proposition. Let D ⊂ Rn be a semialgebraic set. After a generic
linear change of variables, for p ∈ Rn, C a connected component
of D ∩ {x1 = p1, . . . , xk−1 = pk−1}, and π(x1, . . . , xn) = xk :

Z (C ) is a finite set (possibly empty).

If π(C ) is bounded from below (resp. from above), Zi (C ) 6= ∅
(resp. Zs(C ) 6= ∅).
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A Finite Set of Sample Points

Let D ⊂ Rn be a semialgebraic set. After a generic linear change
of variables:

Proposition. Let p ∈ Rn and, for 1 ≤ k ≤ n, let C(k, p) be the set
of connected components of D ∩ {x1 = p1, . . . , xk−1 = pk−1}.
Then

{p} ∪
( n⋃

k=1

⋃
C∈C(k,p)

Z (k)(C )
)

is a finite set intersecting the closure of each connected component
of D.

Our problem amounts to the computation of extremal points
of the projection on the first coordinate.
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Maxima and Minima Subject to Equality Constraints

Given f1, . . . , fs ∈ R[x1, . . . , xn], the IFT implies that the maxima
and minima of x1 over V = {f1(x) = 0, . . . , fs(x) = 0} occur at
points z ∈ V for which there exists µ ∈ Rs \ {0} such that:

s∑
j=1

µj

( ∂fj
∂x2

(z), . . . ,
∂fj
∂xn

(z)
)

︸ ︷︷ ︸
∇fj (z)

= (0, . . . , 0) ∈ Rn−1.
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Extremal Points for Sign Conditions
Inequality constraints

Generalization. Let f1, . . . , fm ∈ R[x1, . . . , xm].

For σ ∈ {≤, <, =, >,≥}m, if C is a connected component of

Pσ = {x ∈ Rn | f1(x)σ10, . . . , fm(x)σm0},

then
Z (C ) ⊂

⋃
{i |σi is = }⊂S⊂{1,...,m}

Π(WS)

WS =
{
(x , µ) ∈ Cn × Ps−1 |

{
fi1(x) = 0, . . . , fis (x) = 0,∑s

j=1 µj∇fij (x) = 0

}
if S = {i1, . . . , is}.

Π : Cn × Ps−1 → Cn is the projection onto the first factor.
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Our Work

Aim. Find points in the closure of each connected component
of Pσ for every sign condition σ over f1, . . . , fm.

Strategy. Compute points in the sets Π(WS), by (partially)
solving the polynomial systems defining them.

Difficulty. Even though the sets Z (C ) are finite, the sets
Π(WS) might be infinite sets.

We are able to overcome this difficulty in several different
situations.
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I - Polynomials Satisfying Regularity Assumptions

Assumption

For every x ∈ Cn such that fi1(x) = 0, · · · = fis (x) = 0, the set
{∇fi1(x), . . . ,∇fis (x)} is linearly independent.

Under this assumption, for S ⊂ {1, . . . ,m}:

VS = {x ∈ Cn | fj(x) = 0 ∀j ∈ S} = ∅ if #S > n.

After a generic linear change of variables,

WS =
{
(x , µ) ∈ Cn × Ps−1 |

{
fi1(x) = 0, . . . , fis (x) = 0,∑s

j=1 µj∇fij (x) = 0

}
is a finite set if #S ≤ n.
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Theoretical Basis of the Algorithm
The recursion

If p = (p1, . . . , pn) ∈ Rn is generic, for every 1 ≤ k ≤ n, the
previous assumption also holds for

f (k) := {fj(p1, . . . , pk−1, xk , . . . , xn), 1 ≤ j ≤ m}

Then,
M =

n⋃
k=1

⋃
S⊂{1,...,m}

1≤#S≤n−k+1

Π(W
(k)
S )

is a finite set intersecting the closure of each connected component

of every Pσ, where W
(k)
S ⊂ Cn−k × P#S−1 is defined from f (k).
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Basic Step of the Algorithm

The computation of M amounts to solving in Cn × Ps−1

0-dimensional polynomial equation systems of the type:

f1(x) = 0, . . . , fs(x) = 0
s∑

j=1

µj
∂fj
∂x2

(x) = 0, . . . ,

s∑
j=1

µj
∂fj
∂xn

(x) = 0

These systems have the following structure:

s equations involving only the variables x with degx ≤ d ,

n − 1 equations with degx ≤ d − 1, homogeneous and linear
in the variables µ,

which we exploit to solve them within good complexity bounds.
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Deformation Techniques
For the computation of isolated roots of a polynomial system

Given F = [f1(x), . . . , fs(x), fs+1(x , µ), . . . , fr (x , µ)]:

Choose an initial system
G = [g1(x), . . . , gs(x), gs+1(x , µ), . . . , gr (x , µ)]
with the same structure and maximum number of known or
“easy to compute” solutions.

Consider the homotopy H(t) = tF + (1− t)G so that
H(0) = G and H(1) = F .

Compute a description of the solutions to H = 0 over Q(t)
from the solutions to G = 0, by Newton-Hensel lifting.

Substitute t = 1 in order to obtain the isolated roots of F = 0.
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Main Complexity Result

Theorem A (J.-Perrucci-Sabia)

Under the previous regularity assumption on the input polynomials
f1, . . . , fm ∈ Q[x1, . . . , xn], there is a probabilistic algorithm which
computes a finite set of points M such that M∩ C 6= ∅ for every
connected component C of Pσ for every feasible σ ∈ {<,=, >}m.

The algorithm performs O
( ∑min{m,n}

s=1

(m
s

)((n−1
s−1

)
dn

)2
(L + d)

)
arithmetic operations in Q (up to logarithmic factors), where

d = max{deg(fi )} and

L is the input size.
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Parametric Representation of Finite Sets

A set M = {ξ1, . . . , ξD} ⊂ Cn, where ξj = (ξj1, . . . , ξjn), definable
by polynomial equations over Q can be characterized by:

` = `1x1 + · · ·+ `nxn ∈ Q[x ] a separating linear form for M,
i.e. `(ξi ) 6= `(ξj) for i 6= j ,

m` =
∏

1≤j≤D(U − `(ξj)) ∈ Q[U],

v1, . . . , vn ∈ Q[U] with deg(vi ) < D and vi (`(ξj)) = ξji ∀ j .

These data provide the following parametric description of the set:

M = {(v1(u), . . . , vn(u)) | u ∈ C, m`(u) = 0}.

which we call a geometric solution of M.
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Example. M = {(−1, 3), (1, 3), (2, 0)}

` = x1 is a separating linear form,

m` = (U + 1)(U − 1)(U − 2) = U3 − 2U2 − U + 2,

v1 = U,
v2 ∈ Q[U] such that:

v2(−1) = 3, v2(1) = 3, v2(2) = 0, and deg v2 < 3

⇒ v2 = −U2 + 4,

M = {(u,−u2 + 4) | u3 − 2u2 − u + 2 = 0}
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Feasible Sign Conditions

From the finite set M the algorithm computes, we can list all the
feasible sign conditions over f1, . . . , fm:

I Determine the signs of
f1, . . . , fm at each point in M
(Canny, 1993).

I If fj(ξ) = 0 for ξ ∈M, in a
neighborhood of ξ, fj takes both
positive and negative values.

Proposition

If L is the set of the sign conditions of f1, . . . , fm at the points in
M, all feasible sign conditions over f1, . . . , fm are

⋃
σ∈L Lσ, where

Lσ = {σ′ ∈ {<,=, >}m | σ′i = σi if σi is < o >}.
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II - Bivariate polynomials

Let f1, . . . , fm ∈ R[x1, x2]. Even if they do not satisfy the regularity
assumption and the considered sets of critical points are not finite,
due to

a better understanding of the sets Z (C ) for the connected
components C of Pσ, and

polynomial equations defining the auxiliary varieties WS ,

proceeding as in the previous case, we can locate a finite subset M
of critical points such that M∩ C 6= ∅ for each connected
component of Pσ for all feasible σ.
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If C is a connected component of Pσ for σ ∈ {<,=, >}m, and
ξ ∈ Z (C ), one of the following conditions holds:

1 ∃ fi0 / q1(ξ) = q2(ξ) = 0 for non-associate irred. factors q1

and q2 of fi0 or q(ξ) = ∂q
∂x2

(ξ) = 0 for an irred. factor q of fi0 .

⇒ ξ ∈ πx(W{i0} ∩ {t = 0}), W{i0} = union of irred. comp. of

{(1− t)fi0 + tg1 = 0, (1− t)
∂fi0
∂x2

+ tg2 = 0} not in {t = 0}

2 ∃ fi1 , fi2 / q1(z) = q2(z) = 0 for a single irred. factor q1 of fi1
and a single irred. factor q2 of fi2 , q1 and q2 non-associate.

⇒ ξ ∈ πx(W{i1,i2} ∩ {t = 0}), W{i1,i2} = union of irred. comp. of

{(1− t)fi1 + tg1 = 0, (1− t)fi2 + tg2 = 0} not in {t = 0}.

M =
⋃

S⊂{1,...,m},1≤#S≤2

πx(WS ∩ {t = 0})
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III - An Arbitrary Polynomial

Given f ∈ R[x1, . . . , xn], after a generic linear change of variables,
the finitely many extremal points of x1 over the connected
components of {f < 0}, {f = 0} and {f > 0} lie in

W =
{

f (x) = 0,
∂f

∂x2
(x) = 0, . . . ,

∂f

∂xn
(x) = 0

}
However, W may be an infinite set.

Example. If f = (x1 − x2
3 )3 − x2

2 ∈ R[x1, x2, x3], then:

∂f

∂x2
= −2x2 and

∂f

∂x3
= −6x3(x1 − x2

3 )2,

W = {x2 = 0, x1 − x2
3 = 0}.
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Deformation for Computing Extremal Points

Given f ∈ Q[x1, . . . , xn], consider the Thebychev polynomial Td of
degree d = 2ddeg f /2e and define h = (1− t)f + tg , where
g = n + 1 +

∑n
k=1 Td(xk) (positive over Rn).

W (g) = {x ∈ Cn | g(x) = ∂g
∂x2

(x) = · · · = ∂g
∂xn

= 0} is a finite
set, and the same holds for W (h |{t=t0}) for all but a finite
number of t0.

Proposition. If W is the union of the irreducible components of
{(t, x) | h(t, x) = ∂h

∂x2
(t, x) = · · · = ∂h

∂xn
(t, x) = 0} not contained in

t = c , for every connected component C of {f = 0}, {f < 0} or
{f > 0}, we have Z (C ) ⊂ πx(W ∩ {t = 0}).

Idea. If ξ ∈ Z (C ), for t0 sufficiently small, there are points in
W (h(t0, x)) = πx(W ∩ {t = t0}) arbitrarily close to ξ.
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Algorithm and Complexity

Theorem B (J.-Perrucci-Sabia)

There is a probabilistic algorithm that, given an arbitrary
polynomial f ∈ Q[x1, . . . , xn], computes a finite set M such that
M∩ C 6= ∅ for every connected component C of {f > 0}, {f = 0}
or {f < 0}.

The algorithm performs O
(
d2nL

)
arithmetic operations in Q (up

to logarithmic factors), where d := 2ddeg f
2 e and L is the size of the

encoding of f .
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IV - Families of Arbitrary Polynomials
Sets defined by equalities

Let P = {x ∈ Rn | f1(x) = 0, . . . , fm(x) = 0} be defined by
arbitrary polynomials f1, . . . , fm ∈ Q[x1, . . . , xn].

For i = 1, . . . ,m, define g+
i and g−i in Q[x1, . . . , xn], such

that ∀ x ∈ Rn, g+
i (x) > 0 and g−i (x) < 0.

Deformation.

For i = 1, . . . ,m, let

h+
i = (1− t)fi + tg+

i and h−i = (1− t)fi + tg−i .

Pt = {x ∈ Rn | ∀ 1 ≤ i ≤ m, h+
i (t, x) ≥ 0 and h−i (t, x) ≤ 0}.

The polynomials h+
i and h−i are in general position and

P ⊂ Pt ∀ 0 ≤ t ≤ 1 and P0 = P.
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Extremal Points of Projections

General approach. Find extremal points in a connected
component of P = P0 as “limits” of points in Pt for small t.

If C is a connected component of P and ξ ∈ Z (C ), ∀ ε > 0, if
t is sufficiently small, there is a critical point of x1, ξt ∈ Pt ,
such that d(ξt , ξ) < ε.

For a generic t0,

ξt0 ∈
⋃

S⊂{1,...,m}×{+,−}
1≤#S≤n

πx(WS ∩ {t = t0}),

WS is the union of the irreducible components of

{(t, x , µ) | hτ
i (t, x) = 0 ∀(i , τ) ∈ S ,

∑
(i ,τ) µτ

i ∇hτ
i (t, x) = 0}

not contained in a hyperplane t = c .
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Algorithm

Proposition. For every connected component C of the set
P = {x ∈ Rn | f1(x) = 0, . . . , fm(x) = 0}, we have

Z (C ) ⊂
⋃

S⊂{1,...,m}×{+,−}
1≤#S≤n

πx(WS ∩ {t = 0}).

This enables us to compute a finite set of sampling points of the
connected components of P:

recursive procedure;

at each step, solve the polynomial systems defining the
corresponding WS over Q(t) and set t = 0.
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Closed Sign Conditions

The previous result extends to sets defined by equalities and
non-strict inequalities:

Pσ = {x ∈ Rn | f1(x)σ10, . . . , fm(x)σm0}, with σ ∈ {≤,=,≥}m.

Deform Pσ by means of the sets Pσ,t defined by:

h+
i (t, x) ≥ 0 and h−i (t, x) ≤ 0 for all i such that σi is an =,

h+
i (t, x) ≥ 0 for all i such that σi is a ≥,

h−i (t, x) ≤ 0 for all i such that σi is a ≤.
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Algorithm and Complexity

Theorem C (J.-Perrucci-Sabia)

There is a probabilistic algorithm which, given polynomials
f1, . . . , fm ∈ Q[x1, . . . , xn], computes a finite set of points M such
that M∩ C 6= ∅ for each connected component C of the
realization of every feasible sign condition σ ∈ {≤,=,≥}m.

The algorithm performs O
(
(L + d)d2n

( ∑min{m,n}
s=1 2s

(m
s

)(n−1
s−1

)2))
arithmetic operations in Q (up to logarithmic factors), where
d = 2d1

2 max{deg fi}e and L is the input length.

Therefore, we derive a probabilistic algorithm for the computation
of all feasible sign conditions σ ∈ {≤,=,≥}m for arbitrary
polynomials f1, . . . , fm in Q[x1, . . . , xn].
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