On sign conditions over real multivariate polynomials

Gabriela Jeronimo

Departamento de Matemática Facultad de Ciencias Exactas y Naturales Universidad de Buenos Aires

Joint work with Daniel Perrucci and Juan Sabia

Gabriela Jeronimo On sign conditions over real polynomials

・ 同 ト ・ ヨ ト ・ ヨ ト …

Given $f_1, \ldots, f_m \in \mathbb{Q}[x_1, \ldots, x_n]$, decide whether the set $\mathcal{P} = \{x \in \mathbb{R}^n \mid f_1(x) = 0, \ldots, f_p(x) = 0, f_{p+1}(x) > 0, \ldots, f_m(x) > 0\}$ is empty or not.

If \mathcal{P} is not the empty set, exhibit a point in \mathcal{P} .

・ロット (雪) (日) (日) (日)

A (closed) sign condition over $f_1, \ldots, f_m \in \mathbb{Q}[x_1, \ldots, x_n]$ is $\sigma \in \{<, =, >\}^m$ (resp. $\sigma \in \{\leq, =, \ge\}^m$). We say $\sigma = (\sigma_1, \ldots, \sigma_m)$ is feasible if the set $\mathcal{P}_{\sigma} = \{x \in \mathbb{R}^n \mid f_1(x)\sigma_10, \ldots, f_m(x)\sigma_m0\}$

is not empty. We call this set the realization of σ .

Two questions. Given $f_1, \ldots, f_m \in \mathbb{Q}[x_1, \ldots, x_n]$:

- Determine all feasible (closed) sign conditions over f_1, \ldots, f_m .
- Exhibit a point in \mathcal{P}_{σ} for each feasible sign condition σ .

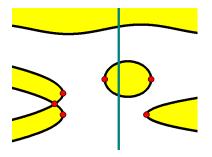
• Quantifier elimination.

Tarski (1951), Collins (1975), Grigoriev-Vorobjov (1988, 1992), Heintz-Roy-Solernó (1990), Renegar (1992), Canny (1993), Basu-Pollack-Roy (1996).

- Polynomial equation systems.
 - Bank-Giusti-Heintz-Mbakop (1997, 2001).
 - Safey El Din-Schost (2003), Bank-Giusti-Heintz-Pardo (2005).
- Feasible sign conditions over a single polynomial. Safey El Din (2007).

・ 同 ト ・ ヨ ト ・ ヨ ト

Search for a point in the closure of each connected component of the set.



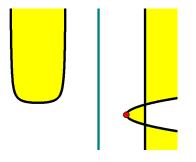
Sketch of the Algorithm

▶ Find points where the maximum or minimum of the projection over x_1 is attained.

▶ Intersect with $x_1 = c$ and proceed in the same way, recursively, with x_2, \ldots, x_n .

同 ト イヨ ト イヨ ト

A Technical Problem Asymptotic Situations



The following conditions could be met by a connected component *C*:

there are no extremal points for x₁ over C and,

Image: A = A = A

$$\blacktriangleright \{x_1 = c\} \cap C = \emptyset.$$

Also, there might be infinitely many extremal points over C.

How to avoid these situations: consider a generic linear form instead of x_1 .

Avoiding Asymptotic Situations Generic linear change of variables

For a nonempty set $C \subset \mathbb{R}^n$ and a linear $\pi : \mathbb{R}^n \to \mathbb{R}$, let:

- $Z_i(C) = \overline{C} \cap \pi^{-1}(\inf \pi(C))$ if $\pi(C)$ is bounded from below, and $Z_i(C) = \emptyset$ otherwise.
- $Z_s(C) = \overline{C} \cap \pi^{-1}(\sup \pi(C))$ if $\pi(C)$ is bounded from above, and $Z_s(C) = \emptyset$ otherwise.

•
$$Z(C) = Z_i(C) \cup Z_s(C).$$

Proposition. Let $D \subset \mathbb{R}^n$ be a semialgebraic set. After a generic linear change of variables, for $p \in \mathbb{R}^n$, C a connected component of $D \cap \{x_1 = p_1, \ldots, x_{k-1} = p_{k-1}\}$, and $\pi(x_1, \ldots, x_n) = x_k$:

- Z(C) is a finite set (possibly empty).
- If π(C) is bounded from below (resp. from above), Z_i(C) ≠ Ø (resp. Z_s(C) ≠ Ø).

Let $D \subset \mathbb{R}^n$ be a semialgebraic set. After a generic linear change of variables:

Proposition. Let $p \in \mathbb{R}^n$ and, for $1 \le k \le n$, let $\mathcal{C}(k, p)$ be the set of connected components of $D \cap \{x_1 = p_1, \ldots, x_{k-1} = p_{k-1}\}$. Then

$$\{p\} \cup \left(\bigcup_{k=1}^{n} \bigcup_{C \in \mathcal{C}(k,p)} Z^{(k)}(C)\right)$$

is a finite set intersecting the closure of each connected component of D.

• Our problem amounts to the computation of extremal points of the projection on the first coordinate.

Given $f_1, \ldots, f_s \in \mathbb{R}[x_1, \ldots, x_n]$, the IFT implies that the maxima and minima of x_1 over $\mathcal{V} = \{f_1(x) = 0, \ldots, f_s(x) = 0\}$ occur at points $z \in \mathcal{V}$ for which there exists $\mu \in \mathbb{R}^s \setminus \{0\}$ such that:

$$\sum_{j=1}^{s} \mu_j \underbrace{\left(\frac{\partial f_j}{\partial x_2}(z), \ldots, \frac{\partial f_j}{\partial x_n}(z)\right)}_{\overline{\nabla} f_j(z)} = (0, \ldots, 0) \in \mathbb{R}^{n-1}.$$

Extremal Points for Sign Conditions Inequality constraints

Generalization. Let $f_1, \ldots, f_m \in \mathbb{R}[x_1, \ldots, x_m]$. For $\sigma \in \{\leq, <, =, >, \geq\}^m$, if *C* is a connected component of

$$\mathcal{P}_{\sigma} = \{x \in \mathbb{R}^n \mid f_1(x)\sigma_10, \ldots, f_m(x)\sigma_m0\},\$$

then

$$Z(C) \subset \bigcup_{\{i \mid \sigma_i \text{ is } = \} \subset S \subset \{1, \dots, m\}} \Pi(W_S)$$

•
$$W_{S} = \{(x,\mu) \in \mathbb{C}^{n} \times \mathbb{P}^{s-1} \mid \begin{cases} f_{i_{1}}(x) = 0, \dots, f_{i_{s}}(x) = 0, \\ \sum_{j=1}^{s} \mu_{j} \overline{\nabla} f_{i_{j}}(x) = 0 \end{cases} \}$$

if $S = \{i_{1}, \dots, i_{s}\}.$

• $\Pi: \mathbb{C}^n \times \mathbb{P}^{s-1} \to \mathbb{C}^n$ is the projection onto the first factor.

イロト 不得 とうせん きょうしゅ

- Aim. Find points in the closure of each connected component of \mathcal{P}_{σ} for every sign condition σ over f_1, \ldots, f_m .
- Strategy. Compute points in the sets $\Pi(W_S)$, by (partially) solving the polynomial systems defining them.
- Difficulty. Even though the sets Z(C) are finite, the sets $\Pi(W_S)$ might be infinite sets.

We are able to overcome this difficulty in several different situations.

I - Polynomials Satisfying Regularity Assumptions

Assumption

For every $x \in \mathbb{C}^n$ such that $f_{i_1}(x) = 0, \dots = f_{i_s}(x) = 0$, the set $\{\nabla f_{i_1}(x), \dots, \nabla f_{i_s}(x)\}$ is linearly independent.

Under this assumption, for $S \subset \{1, \ldots, m\}$:

- $\mathcal{V}_{S} = \{x \in \mathbb{C}^{n} \mid f_{j}(x) = 0 \ \forall j \in S\} = \emptyset \text{ if } \#S > n.$
- After a generic linear change of variables, $W_{S} = \left\{ (x, \mu) \in \mathbb{C}^{n} \times \mathbb{P}^{s-1} \mid \begin{cases} f_{i_{1}}(x) = 0, \dots, f_{i_{s}}(x) = 0, \\ \sum_{j=1}^{s} \mu_{j} \overline{\nabla} f_{i_{j}}(x) = 0 \end{cases} \right\}$ is a finite set if $\#S \leq n$.

イロン 不同 とくほう イロン

If $p = (p_1, \ldots, p_n) \in \mathbb{R}^n$ is generic, for every $1 \le k \le n$, the previous assumption also holds for

$$f^{(k)} := \{f_j(p_1, \ldots, p_{k-1}, x_k, \ldots, x_n), \ 1 \le j \le m\}$$

Then, $\mathcal{M} = \bigcup_{k=1}^{n} \bigcup_{\substack{S \subset \{1, \dots, m\} \\ 1 \le \#S \le n-k+1}} \Pi(W_{S}^{(k)})$

is a finite set intersecting the closure of each connected component of every \mathcal{P}_{σ} , where $W_{S}^{(k)} \subset \mathbb{C}^{n-k} \times \mathbb{P}^{\#S-1}$ is defined from $f^{(k)}$.

・ロン ・四 ・ ・ ヨ ・ ・ ヨ

The computation of \mathcal{M} amounts to solving in $\mathbb{C}^n \times \mathbb{P}^{s-1}$ 0-dimensional polynomial equation systems of the type:

$$f_1(x) = 0, \dots, f_s(x) = 0$$
$$\sum_{j=1}^s \mu_j \frac{\partial f_j}{\partial x_2}(x) = 0, \dots, \sum_{j=1}^s \mu_j \frac{\partial f_j}{\partial x_n}(x) = 0$$

These systems have the following structure:

- s equations involving only the variables x with $\deg_x \leq d$,
- n-1 equations with deg_x $\leq d-1$, homogeneous and linear in the variables μ ,

which we exploit to solve them within good complexity bounds.

イロト 不得 とうせん きょうしゅ

Given $F = [f_1(x), \dots, f_s(x), f_{s+1}(x, \mu), \dots, f_r(x, \mu)]$:

- Choose an initial system $G = [g_1(x), \dots, g_s(x), g_{s+1}(x, \mu), \dots, g_r(x, \mu)]$ with the same structure and maximum number of known or "easy to compute" solutions.
- Consider the homotopy H(t) = tF + (1-t)G so that H(0) = G and H(1) = F.
- Compute a description of the solutions to H = 0 over $\overline{\mathbb{Q}(t)}$ from the solutions to G = 0, by Newton-Hensel lifting.
- Substitute t = 1 in order to obtain the isolated roots of F = 0.

Theorem A (J.-Perrucci-Sabia)

Under the previous regularity assumption on the input polynomials $f_1, \ldots, f_m \in \mathbb{Q}[x_1, \ldots, x_n]$, there is a probabilistic algorithm which computes a finite set of points \mathcal{M} such that $\mathcal{M} \cap \overline{C} \neq \emptyset$ for every connected component C of \mathcal{P}_{σ} for every feasible $\sigma \in \{<, =, >\}^m$.

The algorithm performs $O\left(\sum_{s=1}^{\min\{m,n\}} {m \choose s} \left({n-1 \choose s-1} d^n\right)^2 (L+d)\right)$ arithmetic operations in \mathbb{Q} (up to logarithmic factors), where

- $d = \max\{\deg(f_i)\}$ and
- L is the input size.

イロト イポト イヨト イヨト

A set $\mathcal{M} = \{\xi_1, \ldots, \xi_D\} \subset \mathbb{C}^n$, where $\xi_j = (\xi_{j1}, \ldots, \xi_{jn})$, definable by polynomial equations over \mathbb{Q} can be characterized by:

• $\ell = \ell_1 x_1 + \dots + \ell_n x_n \in \mathbb{Q}[x]$ a separating linear form for \mathcal{M} , i.e. $\ell(\xi_i) \neq \ell(\xi_j)$ for $i \neq j$,

•
$$m_{\ell} = \prod_{1 \leq j \leq D} (U - \ell(\xi_j)) \in \mathbb{Q}[U],$$

• $v_1, \ldots, v_n \in \mathbb{Q}[U]$ with $\deg(v_i) < D$ and $v_i(\ell(\xi_j)) = \xi_{ji} \ \forall j$.

These data provide the following parametric description of the set:

$$\mathcal{M} = \{ (v_1(u), \ldots, v_n(u)) \mid u \in \mathbb{C}, \ m_\ell(u) = 0 \}.$$

which we call a geometric solution of \mathcal{M} .

Example. $\mathcal{M} = \{(-1,3), (1,3), (2,0)\}$

•
$$\ell = x_1$$
 is a separating linear form,

•
$$m_{\ell} = (U+1)(U-1)(U-2) = U^3 - 2U^2 - U + 2$$
,

•
$$v_1 = U$$
,
 $v_2 \in \mathbb{Q}[U]$ such that:
 $w(-1) = 3$, $w(1) = 3$, $w(2) = 0$

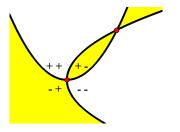
$$v_2(-1) = 3$$
, $v_2(1) = 3$, $v_2(2) = 0$, and deg $v_2 < 3$
 $\Rightarrow v_2 = -U^2 + 4$,

$$\mathcal{M} = \{(u, -u^2 + 4) \mid u^3 - 2u^2 - u + 2 = 0\}$$

◆□ > ◆□ > ◆目 > ◆目 > ● ● ● ● ● ●

Feasible Sign Conditions

From the finite set \mathcal{M} the algorithm computes, we can list all the feasible sign conditions over f_1, \ldots, f_m :



- ▶ Determine the signs of f₁,..., f_m at each point in M (Canny, 1993).
- If f_j(ξ) = 0 for ξ ∈ M, in a neighborhood of ξ, f_j takes both positive and negative values.

-

Proposition

If \mathcal{L} is the set of the sign conditions of f_1, \ldots, f_m at the points in \mathcal{M} , all feasible sign conditions over f_1, \ldots, f_m are $\bigcup_{\sigma \in \mathcal{L}} \mathcal{L}_{\sigma}$, where $\mathcal{L}_{\sigma} = \{\sigma' \in \{<, =, >\}^m \mid \sigma'_i = \sigma_i \text{ if } \sigma_i \text{ is } < o >\}.$

Let $f_1, \ldots, f_m \in \mathbb{R}[x_1, x_2]$. Even if they do not satisfy the regularity assumption and the considered sets of critical points are not finite, due to

• a better understanding of the sets Z(C) for the connected components C of \mathcal{P}_{σ} , and

• polynomial equations defining the auxiliary varieties W_S , proceeding as in the previous case, we can locate a finite subset \mathcal{M} of critical points such that $\mathcal{M} \cap \overline{C} \neq \emptyset$ for each connected component of \mathcal{P}_{σ} for all feasible σ .

イロト イポト イヨト イヨト

If *C* is a connected component of \mathcal{P}_{σ} for $\sigma \in \{<,=,>\}^m$, and $\xi \in Z(C)$, one of the following conditions holds:

- $\exists f_{i_0} / q_1(\xi) = q_2(\xi) = 0$ for non-associate irred. factors q_1 and q_2 of f_{i_0} or $q(\xi) = \frac{\partial q}{\partial x_2}(\xi) = 0$ for an irred. factor q of f_{i_0} . $\Rightarrow \xi \in \pi_x(\mathcal{W}_{\{i_0\}} \cap \{t = 0\}), \mathcal{W}_{\{i_0\}} = \text{union of irred. comp. of}$ $\{(1-t)f_{i_0} + tg_1 = 0, (1-t)\frac{\partial f_0}{\partial x_2} + tg_2 = 0\}$ not in $\{t = 0\}$
- ③ ∃ f_{i1}, f_{i2} / q₁(z) = q₂(z) = 0 for a single irred. factor q₁ of f_{i1} and a single irred. factor q₂ of f_{i2}, q₁ and q₂ non-associate.

 ⇒ ξ ∈ π_x(W_{{i1,i2}} ∩ {t = 0}), W_{{i1,i2}</sub> = union of irred. comp. of
 - $\{(1-t)f_{i_1}+tg_1=0,(1-t)f_{i_2}+tg_2=0\}$ not in $\{t=0\}$.

$$\mathcal{M} = igcup_{S \subset \{1,...,m\}, 1 \leq \#S \leq 2} \pi_x(\mathcal{W}_S \cap \{t=0\})$$

Given $f \in \mathbb{R}[x_1, ..., x_n]$, after a generic linear change of variables, the finitely many extremal points of x_1 over the connected components of $\{f < 0\}$, $\{f = 0\}$ and $\{f > 0\}$ lie in

$$W = \left\{ f(x) = 0, \frac{\partial f}{\partial x_2}(x) = 0, \dots, \frac{\partial f}{\partial x_n}(x) = 0 \right\}$$

However, W may be an infinite set.

Example. If $f = (x_1 - x_3^2)^3 - x_2^2 \in \mathbb{R}[x_1, x_2, x_3]$, then:

•
$$\frac{\partial f}{\partial x_2} = -2x_2$$
 and $\frac{\partial f}{\partial x_3} = -6x_3(x_1 - x_3^2)^2$,
• $W = \{x_2 = 0, x_1 - x_3^2 = 0\}.$

イロト 不得 とうせん きょうしゅ

Given $f \in \mathbb{Q}[x_1, \ldots, x_n]$, consider the Thebychev polynomial \mathcal{T}_d of degree $d = 2\lceil \deg f/2 \rceil$ and define h = (1 - t)f + tg, where $g = n + 1 + \sum_{k=1}^n \mathcal{T}_d(x_k)$ (positive over \mathbb{R}^n).

W(g) = {x ∈ Cⁿ | g(x) = ∂g/∂x₂(x) = ··· = ∂g/∂x_n = 0} is a finite set, and the same holds for W(h |{t=t₀}) for all but a finite number of t₀.

Proposition. If \mathcal{W} is the union of the irreducible components of $\{(t,x) \mid h(t,x) = \frac{\partial h}{\partial x_2}(t,x) = \cdots = \frac{\partial h}{\partial x_n}(t,x) = 0\}$ not contained in t = c, for every connected component C of $\{f = 0\}$, $\{f < 0\}$ or $\{f > 0\}$, we have $Z(C) \subset \pi_x(\mathcal{W} \cap \{t = 0\})$.

Idea. If $\xi \in Z(C)$, for t_0 sufficiently small, there are points in $W(h(t_0, x)) = \pi_x(W \cap \{t = t_0\})$ arbitrarily close to ξ .

Theorem B (J.-Perrucci-Sabia)

There is a probabilistic algorithm that, given an arbitrary polynomial $f \in \mathbb{Q}[x_1, \ldots, x_n]$, computes a finite set \mathcal{M} such that $\mathcal{M} \cap \overline{C} \neq \emptyset$ for every connected component C of $\{f > 0\}$, $\{f = 0\}$ or $\{f < 0\}$.

The algorithm performs $O(d^{2n}L)$ arithmetic operations in \mathbb{Q} (up to logarithmic factors), where $d := 2\lceil \frac{\deg f}{2} \rceil$ and L is the size of the encoding of f.

・ 同 ト ・ ヨ ト ・ ヨ ト

IV - Families of Arbitrary Polynomials Sets defined by equalities

Let $\mathcal{P} = \{x \in \mathbb{R}^n \mid f_1(x) = 0, \dots, f_m(x) = 0\}$ be defined by arbitrary polynomials $f_1, \dots, f_m \in \mathbb{Q}[x_1, \dots, x_n]$.

• For i = 1, ..., m, define g_i^+ and g_i^- in $\mathbb{Q}[x_1, ..., x_n]$, such that $\forall x \in \mathbb{R}^n$, $g_i^+(x) > 0$ and $g_i^-(x) < 0$.

Deformation.

• For
$$i = 1, ..., m$$
, let
 $h_i^+ = (1-t)f_i + tg_i^+$ and $h_i^- = (1-t)f_i + tg_i^-$.
• $\mathcal{P}_t = \{x \in \mathbb{R}^n \mid \forall 1 \le i \le m, h_i^+(t, x) \ge 0 \text{ and } h_i^-(t, x) \le 0\}.$
The polynomials h_i^+ and h_i^- are in general position and

 $\mathcal{P} \subset \mathcal{P}_t \quad \forall 0 \leq t \leq 1 \quad \text{and} \quad \mathcal{P}_0 = \mathcal{P}.$

- 4 周 ト 4 日 ト 4 日 ト - 三日

General approach. Find extremal points in a connected component of $\mathcal{P} = \mathcal{P}_0$ as "limits" of points in \mathcal{P}_t for small t.

- If C is a connected component of P and ξ ∈ Z(C), ∀ε > 0, if t is sufficiently small, there is a critical point of x₁, ξ_t ∈ P_t, such that d(ξ_t, ξ) < ε.
- For a generic t₀,

$$\xi_{t_0} \in \bigcup_{\substack{S \subset \{1,\ldots,m\} \times \{+,-\}\\ 1 \leq \# S \leq n}} \pi_x(\mathcal{W}_S \cap \{t = t_0\}),$$

 \mathcal{W}_{S} is the union of the irreducible components of $\{(t, x, \mu) \mid h_{i}^{\tau}(t, x) = 0 \ \forall (i, \tau) \in S, \ \sum_{(i, \tau)} \mu_{i}^{\tau} \overline{\nabla} h_{i}^{\tau}(t, x) = 0\}$ not contained in a hyperplane t = c.

Proposition. For every connected component *C* of the set $\mathcal{P} = \{x \in \mathbb{R}^n \mid f_1(x) = 0, \dots, f_m(x) = 0\}$, we have

$$Z(C) \subset \bigcup_{\substack{S \subset \{1,\ldots,m\} \times \{+,-\}\\ 1 \leq \# S \leq n}} \pi_X(\mathcal{W}_S \cap \{t=0\}).$$

This enables us to compute a finite set of sampling points of the connected components of \mathcal{P} :

- recursive procedure;
- at each step, solve the polynomial systems defining the corresponding W_S over Q(t) and set t = 0.

イロト 不得 とうせん きょうしゅ

The previous result extends to sets defined by equalities and non-strict inequalities:

$$\mathcal{P}_{\sigma} = \{ x \in \mathbb{R}^n \mid f_1(x)\sigma_1 0, \dots, f_m(x)\sigma_m 0 \}, \text{ with } \sigma \in \{ \leq, =, \geq \}^m.$$

Deform \mathcal{P}_{σ} by means of the sets $\mathcal{P}_{\sigma,t}$ defined by:

- $h_i^+(t,x) \ge 0$ and $h_i^-(t,x) \le 0$ for all *i* such that σ_i is an =,
- $h_i^+(t,x) \ge 0$ for all *i* such that σ_i is a \ge ,
- $h_i^-(t,x) \leq 0$ for all *i* such that σ_i is a \leq .

Theorem C (J.-Perrucci-Sabia)

There is a probabilistic algorithm which, given polynomials $f_1, \ldots, f_m \in \mathbb{Q}[x_1, \ldots, x_n]$, computes a finite set of points \mathcal{M} such that $\mathcal{M} \cap C \neq \emptyset$ for each connected component C of the realization of every feasible sign condition $\sigma \in \{\leq, =, \geq\}^m$.

The algorithm performs $O((L+d)d^{2n}(\sum_{s=1}^{\min\{m,n\}}2^{s}\binom{m}{s}\binom{n-1}{s-1}^{2}))$ arithmetic operations in \mathbb{Q} (up to logarithmic factors), where $d = 2\lceil \frac{1}{2} \max\{\deg f_i\}\rceil$ and L is the input length.

Therefore, we derive a probabilistic algorithm for the computation of all feasible sign conditions $\sigma \in \{\leq, =, \geq\}^m$ for arbitrary polynomials f_1, \ldots, f_m in $\mathbb{Q}[x_1, \ldots, x_n]$.