On sign conditions over real multivariate polynomials

Gabriela Jeronimo

Departamento de Matemática
Facultad de Ciencias Exactas y Naturales
Universidad de Buenos Aires

Joint work with Daniel Perrucci and Juan Sabia

Given $f_{1}, \ldots, f_{m} \in \mathbb{Q}\left[x_{1}, \ldots, x_{n}\right]$, decide whether the set
$\mathcal{P}=\left\{x \in \mathbb{R}^{n} \mid f_{1}(x)=0, \ldots, f_{p}(x)=0, f_{p+1}(x)>0, \ldots, f_{m}(x)>0\right\}$
is empty or not.
If \mathcal{P} is not the empty set, exhibit a point in \mathcal{P}.

A More General Problem

Feasible Sign Conditions

A (closed) sign condition over $f_{1}, \ldots, f_{m} \in \mathbb{Q}\left[x_{1}, \ldots, x_{n}\right]$ is $\sigma \in\{<,=,>\}^{m}\left(\right.$ resp. $\left.\sigma \in\{\leq,=, \geq\}^{m}\right)$.

We say $\sigma=\left(\sigma_{1}, \ldots, \sigma_{m}\right)$ is feasible if the set

$$
\mathcal{P}_{\sigma}=\left\{x \in \mathbb{R}^{n} \mid f_{1}(x) \sigma_{1} 0, \ldots, f_{m}(x) \sigma_{m} 0\right\}
$$

is not empty. We call this set the realization of σ.
Two questions. Given $f_{1}, \ldots, f_{m} \in \mathbb{Q}\left[x_{1}, \ldots, x_{n}\right]$:

- Determine all feasible (closed) sign conditions over f_{1}, \ldots, f_{m}.
- Exhibit a point in \mathcal{P}_{σ} for each feasible sign condition σ.

Related Work

- Quantifier elimination.

Tarski (1951), Collins (1975), Grigoriev-Vorobjov (1988, 1992), Heintz-Roy-Solernó (1990), Renegar (1992), Canny (1993), Basu-Pollack-Roy (1996).

- Polynomial equation systems.
- Bank-Giusti-Heintz-Mbakop (1997, 2001).
- Safey El Din-Schost (2003), Bank-Giusti-Heintz-Pardo (2005).
- Feasible sign conditions over a single polynomial. Safey El Din (2007).

Our Approach

Computing points in semialgebraic sets

Search for a point in the closure of each connected component of the set.

Sketch of the Algorithm

- Find points where the maximum or minimum of the projection over x_{1} is attained.
- Intersect with $x_{1}=c$ and proceed in the same way, recursively, with x_{2}, \ldots, x_{n}.

A Technical Problem

The following conditions could be met by a connected component C :

- there are no extremal points for x_{1} over C and,
- $\left\{x_{1}=c\right\} \cap C=\emptyset$.

Also, there might be infinitely many extremal points over C.

How to avoid these situations: consider a generic linear form instead of x_{1}.

Avoiding Asymptotic Situations
 \section*{Generic linear change of variables}

For a nonempty set $C \subset \mathbb{R}^{n}$ and a linear $\pi: \mathbb{R}^{n} \rightarrow \mathbb{R}$, let:

- $Z_{i}(C)=\bar{C} \cap \pi^{-1}(\inf \pi(C))$ if $\pi(C)$ is bounded from below, and $Z_{i}(C)=\emptyset$ otherwise.
- $Z_{s}(C)=\bar{C} \cap \pi^{-1}(\sup \pi(C))$ if $\pi(C)$ is bounded from above, and $Z_{s}(C)=\emptyset$ otherwise.
- $Z(C)=Z_{i}(C) \cup Z_{s}(C)$.

Proposition. Let $D \subset \mathbb{R}^{n}$ be a semialgebraic set. After a generic linear change of variables, for $p \in \mathbb{R}^{n}, C$ a connected component of $D \cap\left\{x_{1}=p_{1}, \ldots, x_{k-1}=p_{k-1}\right\}$, and $\pi\left(x_{1}, \ldots, x_{n}\right)=x_{k}$:

- $Z(C)$ is a finite set (possibly empty).
- If $\pi(C)$ is bounded from below (resp. from above), $Z_{i}(C) \neq \emptyset$ $\left(\right.$ resp. $\left.Z_{s}(C) \neq \emptyset\right)$.

A Finite Set of Sample Points

Let $D \subset \mathbb{R}^{n}$ be a semialgebraic set. After a generic linear change of variables:

Proposition. Let $p \in \mathbb{R}^{n}$ and, for $1 \leq k \leq n$, let $\mathcal{C}(k, p)$ be the set of connected components of $D \cap\left\{x_{1}=p_{1}, \ldots, x_{k-1}=p_{k-1}\right\}$. Then

$$
\{p\} \cup\left(\bigcup_{k=1}^{n} \bigcup_{C \in \mathcal{C}(k, p)} Z^{(k)}(C)\right)
$$

is a finite set intersecting the closure of each connected component of D.

- Our problem amounts to the computation of extremal points of the projection on the first coordinate.

Maxima and Minima Subject to Equality Constraints

Given $f_{1}, \ldots, f_{s} \in \mathbb{R}\left[x_{1}, \ldots, x_{n}\right]$, the IFT implies that the maxima and minima of x_{1} over $\mathcal{V}=\left\{f_{1}(x)=0, \ldots, f_{s}(x)=0\right\}$ occur at points $z \in \mathcal{V}$ for which there exists $\mu \in \mathbb{R}^{s} \backslash\{0\}$ such that:

$$
\sum_{j=1}^{s} \mu_{j} \underbrace{\left(\frac{\partial f_{j}}{\partial x_{2}}(z), \ldots, \frac{\partial f_{j}}{\partial x_{n}}(z)\right)}_{\bar{\nabla} f_{j}(z)}=(0, \ldots, 0) \in \mathbb{R}^{n-1}
$$

Extremal Points for Sign Conditions

Generalization. Let $f_{1}, \ldots, f_{m} \in \mathbb{R}\left[x_{1}, \ldots, x_{m}\right]$.
For $\sigma \in\{\leq,<,=,>, \geq\}^{m}$, if C is a connected component of

$$
\mathcal{P}_{\sigma}=\left\{x \in \mathbb{R}^{n} \mid f_{1}(x) \sigma_{1} 0, \ldots, f_{m}(x) \sigma_{m} 0\right\}
$$

then

$$
Z(C) \subset \bigcup_{\left\{i \mid \sigma_{i} \text { is }=\right\} \subset S \subset\{1, \ldots, m\}} \Pi\left(W_{S}\right)
$$

- $W_{S}=\left\{(x, \mu) \in \mathbb{C}^{n} \times \mathbb{P}^{s-1} \left\lvert\,\left\{\begin{array}{l}f_{i_{1}}(x)=0, \ldots, f_{i_{s}}(x)=0, \\ \sum_{j=1}^{s} \mu_{j} \bar{\nabla} f_{i_{j}}(x)=0\end{array}\right\}\right.\right.$ if $S=\left\{i_{1}, \ldots, i_{s}\right\}$.
- $\Pi: \mathbb{C}^{n} \times \mathbb{P}^{s-1} \rightarrow \mathbb{C}^{n}$ is the projection onto the first factor.

Our Work

- Aim. Find points in the closure of each connected component of \mathcal{P}_{σ} for every sign condition σ over f_{1}, \ldots, f_{m}.
- Strategy. Compute points in the sets $\Pi\left(W_{S}\right)$, by (partially) solving the polynomial systems defining them.
- Difficulty. Even though the sets $Z(C)$ are finite, the sets $\Pi\left(W_{S}\right)$ might be infinite sets.

We are able to overcome this difficulty in several different situations.

I - Polynomials Satisfying Regularity Assumptions

Assumption

For every $x \in \mathbb{C}^{n}$ such that $f_{i_{1}}(x)=0, \cdots=f_{i_{s}}(x)=0$, the set $\left\{\nabla f_{i_{1}}(x), \ldots, \nabla f_{i_{s}}(x)\right\}$ is linearly independent.

Under this assumption, for $S \subset\{1, \ldots, m\}$:

- $\mathcal{V}_{S}=\left\{x \in \mathbb{C}^{n} \mid f_{j}(x)=0 \forall j \in S\right\}=\emptyset$ if $\# S>n$.
- After a generic linear change of variables,

$$
W_{S}=\left\{(x, \mu) \in \mathbb{C}^{n} \times \mathbb{P}^{s-1} \left\lvert\,\left\{\begin{array}{l}
f_{i_{1}}(x)=0, \ldots, f_{i_{s}}(x)=0, \\
\sum_{j=1}^{s} \mu_{j} \bar{\nabla} f_{i_{j}}(x)=0
\end{array}\right\}\right.\right.
$$ is a finite set if $\# S \leq n$.

Theoretical Basis of the Algorithm

If $p=\left(p_{1}, \ldots, p_{n}\right) \in \mathbb{R}^{n}$ is generic, for every $1 \leq k \leq n$, the previous assumption also holds for

$$
f^{(k)}:=\left\{f_{j}\left(p_{1}, \ldots, p_{k-1}, x_{k}, \ldots, x_{n}\right), 1 \leq j \leq m\right\}
$$

Then,

$$
\mathcal{M}=\bigcup_{k=1}^{n} \bigcup_{\substack{S \subset\{1, \ldots, m\} \\ 1 \leq \# S \leq n-k+1}} \Pi\left(W_{S}^{(k)}\right)
$$

is a finite set intersecting the closure of each connected component of every \mathcal{P}_{σ}, where $W_{S}^{(k)} \subset \mathbb{C}^{n-k} \times \mathbb{P}^{\# S-1}$ is defined from $f^{(k)}$.

Basic Step of the Algorithm

The computation of \mathcal{M} amounts to solving in $\mathbb{C}^{n} \times \mathbb{P}^{s-1}$ 0 -dimensional polynomial equation systems of the type:

$$
\begin{aligned}
f_{1}(x) & =0, \ldots, f_{s}(x)=0 \\
\sum_{j=1}^{s} \mu_{j} \frac{\partial f_{j}}{\partial x_{2}}(x) & =0, \ldots, \sum_{j=1}^{s} \mu_{j} \frac{\partial f_{j}}{\partial x_{n}}(x)=0
\end{aligned}
$$

These systems have the following structure:

- s equations involving only the variables x with $\operatorname{deg}_{x} \leq d$,
- $n-1$ equations with $\operatorname{deg}_{x} \leq d-1$, homogeneous and linear in the variables μ,
which we exploit to solve them within good complexity bounds.

Deformation Techniques

For the computation of isolated roots of a polynomial system

Given $F=\left[f_{1}(x), \ldots, f_{s}(x), f_{s+1}(x, \mu), \ldots, f_{r}(x, \mu)\right]$:

- Choose an initial system
$G=\left[g_{1}(x), \ldots, g_{s}(x), g_{s+1}(x, \mu), \ldots, g_{r}(x, \mu)\right]$ with the same structure and maximum number of known or "easy to compute" solutions.
- Consider the homotopy $H(t)=t F+(1-t) G$ so that $H(0)=G$ and $H(1)=F$.
- Compute a description of the solutions to $H=0$ over $\overline{\mathbb{Q}(t)}$ from the solutions to $G=0$, by Newton-Hensel lifting.
- Substitute $t=1$ in order to obtain the isolated roots of $F=0$.

Main Complexity Result

Theorem A (J.-Perrucci-Sabia)

Under the previous regularity assumption on the input polynomials $f_{1}, \ldots, f_{m} \in \mathbb{Q}\left[x_{1}, \ldots, x_{n}\right]$, there is a probabilistic algorithm which computes a finite set of points \mathcal{M} such that $\mathcal{M} \cap \bar{C} \neq \emptyset$ for every connected component C of \mathcal{P}_{σ} for every feasible $\sigma \in\{<,=,>\}^{m}$.
The algorithm performs $O\left(\sum_{s=1}^{\min \{m, n\}}\binom{m}{s}\left(\binom{n-1}{s-1} d^{n}\right)^{2}(L+d)\right)$ arithmetic operations in \mathbb{Q} (up to logarithmic factors), where

- $d=\max \left\{\operatorname{deg}\left(f_{i}\right)\right\}$ and
- L is the input size.

Parametric Representation of Finite Sets

A set $\mathcal{M}=\left\{\xi_{1}, \ldots, \xi_{D}\right\} \subset \mathbb{C}^{n}$, where $\xi_{j}=\left(\xi_{j 1}, \ldots, \xi_{j n}\right)$, definable by polynomial equations over \mathbb{Q} can be characterized by:

- $\ell=\ell_{1} x_{1}+\cdots+\ell_{n} x_{n} \in \mathbb{Q}[x]$ a separating linear form for \mathcal{M}, i.e. $\ell\left(\xi_{i}\right) \neq \ell\left(\xi_{j}\right)$ for $i \neq j$,
- $m_{\ell}=\prod_{1 \leq j \leq D}\left(U-\ell\left(\xi_{j}\right)\right) \in \mathbb{Q}[U]$,
- $v_{1}, \ldots, v_{n} \in \mathbb{Q}[U]$ with $\operatorname{deg}\left(v_{i}\right)<D$ and $v_{i}\left(\ell\left(\xi_{j}\right)\right)=\xi_{j i} \forall j$.

These data provide the following parametric description of the set:

$$
\mathcal{M}=\left\{\left(v_{1}(u), \ldots, v_{n}(u)\right) \mid u \in \mathbb{C}, m_{\ell}(u)=0\right\}
$$

which we call a geometric solution of \mathcal{M}.

Example. $\mathcal{M}=\{(-1,3),(1,3),(2,0)\}$

- $\ell=x_{1}$ is a separating linear form,
- $m_{\ell}=(U+1)(U-1)(U-2)=U^{3}-2 U^{2}-U+2$,
- $v_{1}=U$,
$v_{2} \in \mathbb{Q}[U]$ such that:

$$
v_{2}(-1)=3, v_{2}(1)=3, v_{2}(2)=0, \text { and } \operatorname{deg} v_{2}<3
$$

$$
\Rightarrow v_{2}=-U^{2}+4
$$

$$
\mathcal{M}=\left\{\left(u,-u^{2}+4\right) \mid u^{3}-2 u^{2}-u+2=0\right\}
$$

Feasible Sign Conditions

From the finite set \mathcal{M} the algorithm computes, we can list all the feasible sign conditions over f_{1}, \ldots, f_{m} :

- Determine the signs of f_{1}, \ldots, f_{m} at each point in \mathcal{M} (Canny, 1993).
- If $f_{j}(\xi)=0$ for $\xi \in \mathcal{M}$, in a neighborhood of ξ, f_{j} takes both positive and negative values.

Proposition

If \mathcal{L} is the set of the sign conditions of f_{1}, \ldots, f_{m} at the points in \mathcal{M}, all feasible sign conditions over f_{1}, \ldots, f_{m} are $\bigcup_{\sigma \in \mathcal{L}} L_{\sigma}$, where $L_{\sigma}=\left\{\sigma^{\prime} \in\{<,=,>\}^{m} \mid \sigma_{i}^{\prime}=\sigma_{i}\right.$ if σ_{i} is $\left.<0>\right\}$.

II - Bivariate polynomials

Let $f_{1}, \ldots, f_{m} \in \mathbb{R}\left[x_{1}, x_{2}\right]$. Even if they do not satisfy the regularity assumption and the considered sets of critical points are not finite, due to

- a better understanding of the sets $Z(C)$ for the connected components C of \mathcal{P}_{σ}, and
- polynomial equations defining the auxiliary varieties \mathcal{W}_{S}, proceeding as in the previous case, we can locate a finite subset \mathcal{M} of critical points such that $\mathcal{M} \cap \bar{C} \neq \emptyset$ for each connected component of \mathcal{P}_{σ} for all feasible σ.

If C is a connected component of \mathcal{P}_{σ} for $\sigma \in\{<,=,>\}^{m}$, and $\xi \in Z(C)$, one of the following conditions holds:
(1) $\exists f_{i_{0}} / q_{1}(\xi)=q_{2}(\xi)=0$ for non-associate irred. factors q_{1} and q_{2} of $f_{i_{0}}$ or $q(\xi)=\frac{\partial q}{\partial x_{2}}(\xi)=0$ for an irred. factor q of $f_{i_{0}}$.
$\Rightarrow \xi \in \pi_{x}\left(\mathcal{W}_{\left\{i_{0}\right\}} \cap\{t=0\}\right), \mathcal{W}_{\{i 0\}}=$ union of irred. comp. of $\left\{(1-t) f_{i_{0}}+t g_{1}=0,(1-t) \frac{\partial f_{0}}{\partial x_{2}}+t g_{2}=0\right\}$ not in $\{t=0\}$
(2) $\exists f_{i_{1}}, f_{i_{2}} / q_{1}(z)=q_{2}(z)=0$ for a single irred. factor q_{1} of $f_{i_{1}}$ and a single irred. factor q_{2} of $f_{i_{2}}, q_{1}$ and q_{2} non-associate.
$\Rightarrow \xi \in \pi_{x}\left(\mathcal{W}_{\left\{i_{1}, i_{2}\right\}} \cap\{t=0\}\right), \mathcal{W}_{\left\{i_{1}, i_{2}\right\}}=$ union of irred. comp. of $\left\{(1-t) f_{i_{1}}+\operatorname{tg}_{1}=0,(1-t) f_{i_{2}}+\operatorname{tg} g_{2}=0\right\}$ not in $\{t=0\}$.

$$
\mathcal{M}=\quad \bigcup \quad \pi_{x}\left(\mathcal{W}_{S} \cap\{t=0\}\right)
$$

III - An Arbitrary Polynomial

Given $f \in \mathbb{R}\left[x_{1}, \ldots, x_{n}\right]$, after a generic linear change of variables, the finitely many extremal points of x_{1} over the connected components of $\{f<0\},\{f=0\}$ and $\{f>0\}$ lie in

$$
W=\left\{f(x)=0, \frac{\partial f}{\partial x_{2}}(x)=0, \ldots, \frac{\partial f}{\partial x_{n}}(x)=0\right\}
$$

However, W may be an infinite set.
Example. If $f=\left(x_{1}-x_{3}^{2}\right)^{3}-x_{2}^{2} \in \mathbb{R}\left[x_{1}, x_{2}, x_{3}\right]$, then:

- $\frac{\partial f}{\partial x_{2}}=-2 x_{2}$ and $\frac{\partial f}{\partial x_{3}}=-6 x_{3}\left(x_{1}-x_{3}^{2}\right)^{2}$,
- $W=\left\{x_{2}=0, x_{1}-x_{3}^{2}=0\right\}$.

Deformation for Computing Extremal Points

Given $f \in \mathbb{Q}\left[x_{1}, \ldots, x_{n}\right]$, consider the Thebychev polynomial \mathcal{T}_{d} of degree $d=2\lceil\operatorname{deg} f / 2\rceil$ and define $h=(1-t) f+t g$, where $g=n+1+\sum_{k=1}^{n} \mathcal{T}_{d}\left(x_{k}\right)\left(\right.$ positive over $\left.\mathbb{R}^{n}\right)$.

- $W(g)=\left\{x \in \mathbb{C}^{n} \left\lvert\, g(x)=\frac{\partial g}{\partial x_{2}}(x)=\cdots=\frac{\partial g}{\partial x_{n}}=0\right.\right\}$ is a finite set, and the same holds for $W\left(\left.h\right|_{\left\{t=t_{0}\right\}}\right)$ for all but a finite number of t_{0}.

Proposition. If \mathcal{W} is the union of the irreducible components of $\left\{(t, x) \left\lvert\, h(t, x)=\frac{\partial h}{\partial x_{2}}(t, x)=\cdots=\frac{\partial h}{\partial x_{n}}(t, x)=0\right.\right\}$ not contained in $t=c$, for every connected component C of $\{f=0\},\{f<0\}$ or $\{f>0\}$, we have $Z(C) \subset \pi_{x}(\mathcal{W} \cap\{t=0\})$.

Idea. If $\xi \in Z(C)$, for t_{0} sufficiently small, there are points in $W\left(h\left(t_{0}, x\right)\right)=\pi_{x}\left(\mathcal{W} \cap\left\{t=t_{0}\right\}\right)$ arbitrarily close to ξ.

Algorithm and Complexity

Theorem B (J.-Perrucci-Sabia)

There is a probabilistic algorithm that, given an arbitrary polynomial $f \in \mathbb{Q}\left[x_{1}, \ldots, x_{n}\right]$, computes a finite set \mathcal{M} such that $\mathcal{M} \cap \bar{C} \neq \emptyset$ for every connected component C of $\{f>0\},\{f=0\}$ or $\{f<0\}$.
The algorithm performs $O\left(d^{2 n} L\right)$ arithmetic operations in \mathbb{Q} (up to logarithmic factors), where $d:=2\left\lceil\frac{\operatorname{deg} f}{2}\right\rceil$ and L is the size of the encoding of f.

IV - Families of Arbitrary Polynomials

Sets defined by equalities

Let $\mathcal{P}=\left\{x \in \mathbb{R}^{n} \mid f_{1}(x)=0, \ldots, f_{m}(x)=0\right\}$ be defined by arbitrary polynomials $f_{1}, \ldots, f_{m} \in \mathbb{Q}\left[x_{1}, \ldots, x_{n}\right]$.

- For $i=1, \ldots, m$, define g_{i}^{+}and g_{i}^{-}in $\mathbb{Q}\left[x_{1}, \ldots, x_{n}\right]$, such that $\forall x \in \mathbb{R}^{n}, g_{i}^{+}(x)>0$ and $g_{i}^{-}(x)<0$.

Deformation.

- For $i=1, \ldots, m$, let

$$
h_{i}^{+}=(1-t) f_{i}+t g_{i}^{+} \quad \text { and } \quad h_{i}^{-}=(1-t) f_{i}+t g_{i}^{-}
$$

- $\mathcal{P}_{t}=\left\{x \in \mathbb{R}^{n} \mid \forall 1 \leq i \leq m, h_{i}^{+}(t, x) \geq 0\right.$ and $\left.h_{i}^{-}(t, x) \leq 0\right\}$.

The polynomials h_{i}^{+}and h_{i}^{-}are in general position and

$$
\mathcal{P} \subset \mathcal{P}_{t} \quad \forall 0 \leq t \leq 1 \quad \text { and } \quad \mathcal{P}_{0}=\mathcal{P}
$$

Extremal Points of Projections

General approach. Find extremal points in a connected component of $\mathcal{P}=\mathcal{P}_{0}$ as "limits" of points in \mathcal{P}_{t} for small t.

- If C is a connected component of \mathcal{P} and $\xi \in Z(C), \forall \varepsilon>0$, if t is sufficiently small, there is a critical point of $x_{1}, \xi_{t} \in \mathcal{P}_{t}$, such that $d\left(\xi_{t}, \xi\right)<\varepsilon$.
- For a generic t_{0},

$$
\xi_{t_{0}} \in \bigcup_{\substack{s \subset\{1, \ldots, m\} \times\{+,-\} \\ 1 \leq \# S \leq n}} \pi_{x}\left(\mathcal{W}_{S} \cap\left\{t=t_{0}\right\}\right),
$$

\mathcal{W}_{S} is the union of the irreducible components of $\left\{(t, x, \mu) \mid h_{i}^{\tau}(t, x)=0 \forall(i, \tau) \in S, \sum_{(i, \tau)} \mu_{i}^{\tau} \bar{\nabla} h_{i}^{\tau}(t, x)=0\right\}$ not contained in a hyperplane $t=c$.

Algorithm

Proposition. For every connected component C of the set $\mathcal{P}=\left\{x \in \mathbb{R}^{n} \mid f_{1}(x)=0, \ldots, f_{m}(x)=0\right\}$, we have

$$
Z(C) \subset \bigcup_{\substack{s \subset\{1, \ldots, m\} \times\{+,-\} \\ 1 \leq \# \leq \leq n}} \pi_{x}\left(\mathcal{W}_{S} \cap\{t=0\}\right)
$$

This enables us to compute a finite set of sampling points of the connected components of \mathcal{P} :

- recursive procedure;
- at each step, solve the polynomial systems defining the corresponding \mathcal{W}_{S} over $\overline{\mathbb{Q}(t)}$ and set $t=0$.

Closed Sign Conditions

The previous result extends to sets defined by equalities and non-strict inequalities:

$$
\mathcal{P}_{\sigma}=\left\{x \in \mathbb{R}^{n} \mid f_{1}(x) \sigma_{1} 0, \ldots, f_{m}(x) \sigma_{m} 0\right\}, \text { with } \sigma \in\{\leq,=, \geq\}^{m} .
$$

Deform \mathcal{P}_{σ} by means of the sets $\mathcal{P}_{\sigma, t}$ defined by:

- $h_{i}^{+}(t, x) \geq 0$ and $h_{i}^{-}(t, x) \leq 0$ for all i such that σ_{i} is an $=$,
- $h_{i}^{+}(t, x) \geq 0$ for all i such that σ_{i} is a \geq,
- $h_{i}^{-}(t, x) \leq 0$ for all i such that σ_{i} is a \leq.

Algorithm and Complexity

Theorem C (J.-Perrucci-Sabia)

There is a probabilistic algorithm which, given polynomials $f_{1}, \ldots, f_{m} \in \mathbb{Q}\left[x_{1}, \ldots, x_{n}\right]$, computes a finite set of points \mathcal{M} such that $\mathcal{M} \cap C \neq \emptyset$ for each connected component C of the realization of every feasible sign condition $\sigma \in\{\leq,=, \geq\}^{m}$.
The algorithm performs $O\left((L+d) d^{2 n}\left(\sum_{s=1}^{\min \{m, n\}} 2^{s}\binom{m}{s}\binom{n-1}{s-1}^{2}\right)\right)$ arithmetic operations in \mathbb{Q} (up to logarithmic factors), where $d=2\left\lceil\frac{1}{2} \max \left\{\operatorname{deg} f_{i}\right\}\right\rceil$ and L is the input length.

Therefore, we derive a probabilistic algorithm for the computation of all feasible sign conditions $\sigma \in\{\leq,=, \geq\}^{m}$ for arbitrary polynomials f_{1}, \ldots, f_{m} in $\mathbb{Q}\left[x_{1}, \ldots, x_{n}\right]$.

