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Introduction

We examine natural questions arising when one wants to study “open” algebraic properties
of real numbers, (i.e., properties of real numbers w.r.t. { 0, 1, +, −, ×, > }) in a
constructive setting as in [2, Bishop&Bridges] and [17, Mines,Richman&Ruitenburg].

New results by Daniel Bembe [3] on the Budan-Fourier count show that virtual real roots
should be a good way to attack some problems.

Why studying constructive real algebra?

A first reason is that constructive real algebra is not well understood!

Constructive analysis is much more developped.

From a constructive point of view, real algebra is far away from the theory of discrete
real closed fields (which was settled by Artin in order to understand real algebra in the
framework of classical logic). Most algorithms for discrete real closed fields fail for real
numbers in a constructive context, because we have no sign test for real numbers.

Another reason is that within constructive analysis, it should be interesting to drop
dependent choice (see [18, Richman]). A study of real agebra without dependent choice
could help.

Last but not least, understanding constructive real algebra should be a first important
step towards a constructive version of O-minimal structures.

Real algebra can be seen instead as the simplest O-minimal structure. Indeed classical
O-minimal structures give “effectiveness results” inside classical mathematics.

But they are not completely effective, because the sign test on real numbers is needed
for the corresponding “algorithms”.
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1 Descartes rule and beyond

1.1 Descartes rule and Budan-Fourier count

Descartes [4], [1].
Budan-Fourier [5, Budan] , [13, Fourier], [1].
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1.2 Budan’s proof and algebraic certificates

[5]
[3]
Comparison with algebraic certificates for Sturm’s count
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2 Virtual real roots

2.1 Basic lemmas and definitions

Lemma 2.1 A continuous strictly monotonic function f on [a, b] ⊆ R (a ≤ b) attains its
(unique) minimum absolute value.

Lemma 2.2 (algebraic mean value theorem)
A polynomial function f on [a, b] ⊆ R (a ≤ b) whose derivative is > 0 on ]a, b[ is stricty
increasing. This works also on any ordered field because

f(b)− f(a) = (b− a) δ

where δ is a positively weighted sum of

f ′(a + ki(b− a)), ki ∈ Q ∩ ]0, 1[ .

Warning: 1/(x2 − 2) is well defined and has a positive derivative on Q ∩ [−2, 0]

Corollary 2.3 One can define on the set of monic real univariate polynomials of degree
d, d virtual root functions ρd,k (k = 1, . . . , d) with the following characteristic properties
(with the convention f(ρd,0(f)) = (−1)d∞, f(ρd,d+1(f)) = ∞),

•
f(ρ1,1(f)) = 0 (f(X) = X + b, ρ1,1(f) = −b)

•
ρd−1,k−1(f

′) ≤ ρd,k(f) ≤ ρd−1,k(f
′) (d ≥ 2, k = 1, . . . , d)

(in fact use f ′

d
in order to get a monic polynomial)

• (minimizing the absolute value)

x ∈ [ ρd−1,k−1(f
′), ρd−1,k(f

′) ] ⇒ |f(ρd,k(f))| ≤ |f(x)|
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2.2 Basic properties of virtual real roots

[16] and [8]. Recall that f is monic.

1. If ρd,k(f) < x < ρd,k+1(f) then sign(f(x)) = (−1)k+d (0 ≤ k ≤ d + 1)

2. If f(T ) = (T − a)(T − b) then ρ2,1(f) = inf(a, b), ρ2,2(f) = sup(a, b).

3. If deg(f) = d and f(x) = 0 then
∏d

i=1(x− ρd,i(f)) = 0.

4. A constructive version of real closure property:
if deg(f) = d, a < b and f(a)f(b) < 0 then

∏
i f(µd,i(f)) = 0, where i corresponds

to the Budan counts in a and b.

5. Each ρd,i(f) is a locally uniformly continuous function, and is a zero of the product∏d−1
k=0 f (k)(T ).

6. The “Budan-Fourier count” (on an interval) counts the virtual real roots on the
interval.

A result à la Pierce-Birkhoff

An interesting result concerning virtual roots is the following one ([16]):

Theorem 2.4
Let f : Rn → R be a continuous semialgebraic function defined over Q which is inte-
gral over the ring Q[X1, . . . , Xn]. Then f is a combination of virtual root functions and
polynomials defined over Q.

Remark. In the previous theorem, it is possible to replace Q by a discrete subfield of R.

Related question: is it possible to replace Q by R?

Remark. The exact meaning of the hypothesis becomes not so clear. We should need a
good definition for: “f : Rn → R is a continuous semialgebraic function.”!
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3 Ordered Heyting fields

In this section we discuss the “open” structure of “ordered Heyting fields”.

See also [4], [9], [6], [7].

3.1 Basic theory

Signature: ( •+ •, −•, • × •, 0, 1, • > 0).

Abbreviations

• x > y (or y < x) means x− y > 0 • x 6= y means (x− y)2 > 0

We try to avoid completely • = 0 and • ≥ 0, as they are “negative”. So the following
direct rule 1. means to drop the usual equational axioms and to give the authorization
of replacing any expression in Z[x1, x2, x3, . . .] (where x′

is are either indeterminates or
elements in K) by another expression which is equal in the formal ring of polynomials
Z[x1, x2, x3, . . .].

Direct rules

1. (K, +,−,×, 0, 1, • > 0) is a
commutative ring.

2. ` 1 > 0

3. x > 0, y > 0 ` x + y > 0

4. x > 0, y > 0 ` xy > 0

5. x > 0 ` x + y2 > 0

Collapsus axiom

6. 0 > 0 ` x > y

Simplification rules

7. −x2 > 0 ` 0 > 0 8. x > 0, xy > 0 ` y > 0

Dynamic rules

9. x + y > 0 ` x > 0 , y > 0

10. xy > 0 ` x > 0 , −y > 0

11. xy > 0 ` x > 0 , −x > 0

12. x2 > 0 ` ∃y xy = 1

Discrete ordered fields

DOF ` x = 0, x > 0, −x > 0

Heyting ordered fields

HOF (x > 0 ⇒ 1 = 0) ` x ≤ 0

Remark. HOF is an unpleasant axiom we should want to avoid.
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3.2 Simultaneous collapsus and provable facts

Theorem 3.1 [9] Let A be a commutative ring. Let Z, P, S be three subsets of A. Con-
sider the “ dynamical preordered ring” defined by these data ( i.e., let x = 0 for x ∈ Z,
x ≥ 0 for x ∈ P , x > 0 for x ∈ S). Then the collapsus occurs simultaneously for the
following theories:

a) Use only direct rules.

b) Use direct rules and simplification rules.

c) Use direct rules, dynamic rules and DOF (simplification rules follow).

d) Add real closure rules: any monic polynomial whose sign changes between a and b
has a root on (a, b)

Moreover the dynamical structures b), c) and d) prove the same facts.

So adding DOF as an axiom in an ordered field does not change facts, and does not
produce a collapsus. Samething with real closure rules.

In other words:

Feel free of using DOF and real closure axioms in an ordered field if you
have only to prove a fact.

Remark. This theorem was settled for a theory with =, ≥ and >. One can deduce a
version with only >, = and the theory given here.
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3.3 Some nonprovable properties in ordered Heyting fields

• ` x = 0 , x 6= 0

• ` ∀x ∃y x2y = x

• xy = 0 ` x = 0 , y = 0

• ` x ≥ 0 , x ≤ 0

• (x ≤ 0 ⇒ 1 = 0) ` x > 0

For the (Bishop) real number field, the two first assertions are equivalent to LPO, the
two following ones to LLPO, and the last one to MP.



11

4 Real closure properties

Recall the real closure axiom in a discrete setting.

RCF1: Any univariate polynomial P such that P (a)P (b) < 0, a < b has a zero on (a, b).

Axiom RCF1 is not available for real numbers without dependent choice. The follow-
ing one is constructively valid:

RCF2: Any univariate polynomial P such that P (a)P (b) < 0, a < b and P ′ > 0 on (a, b)
has a zero on (a, b).

But this is not sufficient. We will need virtual roots. See [16, 8].

4.1 A plausible definition

Definition 4.1 A real closed field is given when you have an ordered field with virtual root
functions in each degree satisfying the characteristic properties given in the real number
field case.

NB: We may use only virtual root functions of monic polynomials.

Examples of nondiscrete real closed subfields of R in this meaning

• Primitive recursive real numbers.

• Polytime computable real numbers.

• Turing computable real numbers.
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4.2 Construction of the real closure of an ordered field

A priori this could seem not problematic. You add the virtual root functions as (formal)
operators. You apply the axioms. From the simultaneous collapsus theorem, no collapsus
can occur. So no catastrophe. But this is not sufficient.

E.g., if an axiom gives a conclusion which is a disjunction, how can we find a good
branch (this is stronger than: open two branches, if one branch collapses the other is good).
The solution would come from the fact that the real closure of a discrete ordered field is
strongly unique (and the virtual roots are uniquely defined by their defining axioms).

Probably this works, but we need a more precise argument, giving clearly an algorithm.

Remark. Does this show the possibility to add a positive infinitesimal ε to R and to
construct the real closure? No. But the obstacle does not come from the real closure.
The problem is that the classical object R(ε) is not an ordered Heyting field. The fact
that R(ε) does not collapse as a dynamic discrete ordered field is not sufficient!

Related question: giving a structure or ordered Heyting field over R(X) is impossible
in a constructive way?
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5 Constructive Positivstellensätze

Let us recall that in the case of a discrete real closed field, the constructive Positivstel-
lensatz follows directly from the simulatneaous collapsus theorem, and from the fact that
the formal theory is complete.

The simultaneous collapsus theorem says us how to transform a simple (i.e., dynam-
ical) proof of impossibility (for a system of sign conditions on polynomials) in the real
closure into an algebraic identity which shows clearly the impossibility in any ordered
field.

Moreover the “cut elimination theorem” shows how to transform a first order proof
into a dynamical one.

Most of this remains true in the nondiscrete context. In particular if you find a
proof of the impossibility of a system of sign conditions on polynomials in Rn by using
a good constructive axiomatisation of real closed fields, you will get a corresponding
Positivstellensatz.

Moreover, since construcdtive theories are weaker than the discrete one, a proof is more
informative and has to give a better form of Positivstellensatz, where the dependence of
the algebraic identity w.r.t. the coefficients is best controlled (this dependence must have
some continuity properties).

Such kind of continuity results have been obtain by C. Delzell and other authors for the
17-th Hilbert problem and for other variants of Positivstellensätze, in a discrete context
(see [10, 11, 12, 14, 15]).

In the paper [14], you find a rather complete bibliography on the subject and a dis-
cussion about the consequences of the results for the Bishop real number field.

On the other side the formal theory is no more complete and there is no more a
systematic way of testing the compatibility of a system of sign conditions.
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