Fast computation of a rational point of a variety over a finite field

Guillermo Matera

Universidad Nacional de General Sarmiento, Buenos Aires

MAP Conference, 25-29.8.08

Let \mathbb{F}_q be the finite field of q elements, $\overline{\mathbb{F}}_q$ its algebraic closure.

Given polynomials $f_1, \ldots, f_s \in \mathbb{F}_q[X_1, \ldots, X_n]$.

Multivariate Equation Problem (ME):

- \circ find a solution $x\in \mathbb{F}_q^n$ of the polynomial system $f_1(X)=\cdots=f_s(X)=0,$
- \circ find a point $x\in \mathbb{F}_q^n$ of the variety (defined over \mathbb{F}_q)

$$V(f_1,\ldots,f_s) := \{x \in \overline{\mathbb{F}}_q^n : f_1(x) = \cdots = f_s(x) = 0\}.$$

Motivation: coding theory, cryptography, polynomial system solving over \mathbb{Q} , etc.

Example: Public key schemes based on ME (Imai-Matsumoto, Patarin et al., Wolf-Preneel, ...).

- Given
 - \diamond a plaintext $x \in \mathbb{F}_q^n$,
 - \diamond a polynomial map $F := (f_1, \ldots, f_s) : \mathbb{F}_q^n \to \mathbb{F}_q^s$,
 - \diamond the cyphertext is y := F(x).

Breaking such a cryptosystem "requires" solving the ME problem

$$f_1(X) - y_1 = 0, \dots, f_s(X) - y_s = 0.$$

- \circ ME is NP-complete, even for quadratic eqs. over \mathbb{F}_2 .
- We are interested in probabilistic algorithms for ME.
- \circ We shall assume that $q \gg$ degrees of equations.

First case: plane curves

Let $f \in \mathbb{F}_q[X,Y]$, $C := V(f) := \{(x,y) \in \overline{\mathbb{F}}_q^2 : f(x,y) = 0\}$, $C(\mathbb{F}_q) := C \cap \mathbb{F}_q^2$.

- Hardness of ME for C is related to $\#C(\mathbb{F}_q)$.
- Average number of points: $\#C(\mathbb{F}_q) \approx q$.

Estimates: Absolute irreducibility.

f ∈ F_q[*X*, *Y*] is abs. irred. if it's irreducible in F_q[*X*, *Y*].
Example: *f* := *X* + *Y*³ is, *g* := *X*² - 3*Y*² is not in F₅. *C* := *V*(*f*) ⊂ F_q² is abs. irred. if *f* is abs. irred.
[Weil, 1948] For *C* := *V*(*f*) abs. irred. with deg(*f*) = *d* |#*C*(F_q) - *q*| ≤ *d*²*q*^{1/2}.

Example (cont.): $\#V(f)(\mathbb{F}_5) = 5, \ \#V(g)(\mathbb{F}_5) = 1.$

Computation: search in a vertical strip (SVS).

Let $f \in \mathbb{F}_q[X, Y]$ be absolutely irreducible.

For
$$a \in \mathbb{F}_q$$
, let $C_a(\mathbb{F}_q) := C(\mathbb{F}_q) \cap \{X = a\}$
= $\{b \in \mathbb{F}_q : f(a, b) = 0\}.$
 \circ Weil \Rightarrow Prob $(a \in \mathbb{F}_q : C_a(\mathbb{F}_q) \neq \emptyset) \ge \frac{1}{dq}(q - d^2q^{\frac{1}{2}})$
= $\frac{1}{d}\left(1 - \frac{d^2}{q^{1/2}}\right) \approx \frac{1}{d}.$

Algorithm SVS

◇ find $a \in \mathbb{F}_q$ with $C_a(\mathbb{F}_q) \neq \emptyset$. [at most d trials]
◇ find $b \in C_a(\mathbb{F}_q)$. [find an \mathbb{F}_q -root of f(a, Y)]

[Gathen–Shparlinski, 1995] computes uniformly a point of $C(\mathbb{F}_q)$ in polynomial time.

What if C = V(f) is not absolutely irreducible?

Decompose $C = \bigcup C_i$ over \mathbb{F}_q (factor $f = \prod_i f_i$ over \mathbb{F}_q).

Easy case: If $\exists C_i$ absolutely irred., apply SVS to C_i .

Hard case: If C_i is not absolutely irreducible for all i[C_i is relatively irreducible for all i], then

♦ Fact. $C(\mathbb{F}_q) \subset C \cap V(\partial f/\partial Y) = V(f, \partial f/\partial Y) =: W.$ [observe that dim W = 0, deg $W \leq d(d-1)$]

- ♦ Algorithm SVS-RI
 - \triangleright Compute the resultant $g(X) := \operatorname{res}_Y(f, \partial f / \partial Y)$.
 - \triangleright find the set of \mathbb{F}_q -roots of g.
 - \triangleright for each root $a \in \mathbb{F}_q$, find the \mathbb{F}_q -roots of f(a, Y).

Cost of finding an \mathbb{F}_q -point in a plane curve

- If C has an absolutely irreducible \mathbb{F}_q -component then we perform $O(d^2 \log q)$ operations in \mathbb{F}_q .
- If C is a union of relatively irreducible \mathbb{F}_q -components then we perform $O^{\sim}(d^3 \log q)$ operations in \mathbb{F}_q .

◦ [von zur Gathen, 2007] Prob(f is rel. irred.)≤ $q^{-d^2/4}$.

Second case: hypersurfaces

Let $f \in \mathbb{F}_q[X_1, \dots, X_n]$ and let H be the hypersurface $H := V(f) := \{(x_1, \dots, x_n) \in \overline{\mathbb{F}}_q^n : f(x_1, \dots, x_n) = 0\}.$

Average number of points: $\#H(\mathbb{F}_q) \approx q^{n-1}$.

Estimates: Absolute irreducibility.

- $f \in \mathbb{F}_q[X_1, ..., X_n]$ is absolutely irreducible if it is irreducible in $\overline{\mathbb{F}}_q[X_1, ..., X_n]$.
- $H := V(f) \subset \overline{\mathbb{F}}_q^n$ is absolutely irreducible if it is defined by an absolutely irreducible polynomial f.

[Lang–Weil, 1954] For $H := V(f) \subset \overline{\mathbb{F}}_q^n$ absolutely irreducible of degree $\delta > 0$, $\exists C = C(n, \delta)$ such that:

$$|\#H(\mathbb{F}_q) - q^{n-1}| \le \delta^2 q^{n-3/2} + Cq^{n-2}.$$

Computation: search in 1-dim.linear section (S1S).

For $H := V(f) \subset \overline{\mathbb{F}}_q^n$ abs. irred., we compute a point of $H(\mathbb{F}_q)$ in the plane curve $H \cap L$, with L an \mathbb{F}_q -plane.

Example: for H: $X - Y^2 - Z^2 = 0$ and a plane L: $\{X+bY+cZ=0\}, H\cap L = \{Y^2+Z^2+bY+cZ=0\}\cap L.$

Effective Bertini theorem [Kaltofen, 1995]: $H \cap L$ isn't abs. irreducible for a random L with probability $\leq 2\delta^4/q$.

Example (cont.): $H \cap L$ is abs. irred. for $b^2 + c^2 \neq 0$.

Explicit bounds

• Versions of the Effective Bertini theorem.

• "Statistics" on number of q-points on plane sections. [Cafure-M., 2006]

 \diamond For $q > 2\delta^4$, there exist q-rational points.

 \diamond For $q > 15\delta^{13/3}$, $|\#H(\mathbb{F}_q) - q^{n-1}| \le \delta^2 q^{n-3/2} + 7 \cdot \delta^2 q^{n-2}$.

Algorithm for searching in a 1-dim. section

Algorithm S1S

◇ choose an \mathbb{F}_q -plane L randomly. $[H \cap L$ is abs. irred.]
◇ apply SVS to $H \cap L$. [factor $gcd(f(a, Y), Y^q - Y)$]
Cost: $O(\delta^2 \log q)$ operations in \mathbb{F}_q .

Case H = V(f) not absolutely irreducible.

Decompose $H = \bigcup H_i$ over \mathbb{F}_q (factor $f = \prod_i f_i$ over \mathbb{F}_q). Easy case: If $\exists H_i$ absolutely irred., apply S1S to H_i . Hard case: If H_i isn't absolutely irred. for all i, then \diamond Fact: $H(\mathbb{F}_q) \subset H \cap V(\partial f/\partial X_n) =: W^{(1)}$. $[\dim W^{(1)} = n - 2, \deg W^{(1)} \le \delta^2]$ \diamond Decompose $W^{(1)} = \bigcup_i W_i^{(1)}$ over \mathbb{F}_q . \diamond If $\exists W_i^{(1)}$ absolutely irreducible, then Easy case. \diamond Else, Hard case: introduce $W^{(2)}$. $[\dim W^{(2)} = n - 3, \deg W^{(2)} \le \delta^4]$.

Cost (worst-case): $O(\delta^{2^n} \log q)$ operations in \mathbb{F}_q . [von zur Gathen-Viola, 2007] Prob(f rel. irred.) $\rightarrow 0$

Third case: arbitrary dimension

Let
$$V := V(f_1, ..., f_s) := \{x \in \overline{\mathbb{F}}_q^n : f_1(x) = \cdots = f_s(x) = 0\}.$$

Two invariants: dimension and degree.

"Expected" number of points: $\#V(\mathbb{F}_q) \approx q^{\dim V}$.

[Lang–Weil, 1954] For $V \subset \overline{\mathbb{F}}_q^n$ absolutely irreducible of dimension r > 0 and degree δ , $\exists C = C(n, r, \delta)$ such that

$$|\#V(\mathbb{F}_q) - q^r| \le \delta^2 q^{r-1/2} + Cq^{r-1}.$$

Reduction to hypersurfaces: birational projections.

Let $V \subset \overline{\mathbb{F}}_q^n$ abs. irred. of dimension r and degree δ .

Fact: For $q \ge \delta$, $\exists \mathbb{F}_q$ -linear $\pi : V \to \pi(V) \subset \overline{\mathbb{F}}_q^{r+1}$ with a rational inverse $\pi^{-1} : \pi(V) \to V$ defined in an open dense subset of $\pi(V)$.

Example: For $C := \{X = Z^2 + Z^4, Y = Z^2\}$, the projection onto the (X, Z)-plane is $\{X = Z^2 + Z^4\}$. The inverse is $\pi^{-1}(x, z) = (x, z^2, z)$.

[Cafure-M., 2006] For $q > 15\delta^{13/3}$, we have $C \leq 7 \cdot \delta^2$.

[Ghorpade-Lachaud, 2002] If $V := V(f_1, \ldots, f_s)$ and $d := \max \deg(f_i)$, then $C \leq 6 \cdot 2^s \cdot (sd+1)^{n+1}$.

Bézout inequality $\Rightarrow \delta \leq d^r$.

Computation of a birational projection (BProj).

Input: $V := V(f_1, \ldots, f_{n-r})$ absolutely irreducible.

Algorithm BProj [Cafure-M, 2006b]

- Incremental elimination method.
- Global Newton–Hensel lifting.

Cost: $O^{\sim}(D^2 \log q)$ operations in \mathbb{F}_q , with $D \leq \prod_i \deg(f_i)$.

Computation of an \mathbb{F}_{q} -point

 \circ compute a birational projection π . [Algorithm BProj] \circ find an \mathbb{F}_q -point in $\pi(V)$. [Algorithm S1S]

Cost: $O^{\sim}(D^2 \log q)$ operations in \mathbb{F}_q .

[Huang-Wong, 1999] $d^{O(n^2)} \log q$ ops. in \mathbb{F}_q , $d := \max \deg(f_i)$.

Extensions to non absolutely irreducible cases?

Easy case: $V = \bigcup_i V_i$ over \mathbb{F}_q and $\exists V_i$ absolutely irreducible with $\dim(V_i) = \dim(V)$.

Hard case: $V = \bigcup_i V_i$ over \mathbb{F}_q and all V_i with dim $(V_i) = \dim(V)$ are relatively irreducible.

 \diamond Each $x \in V(\mathbb{F}_q)$ belongs to all abs. irred. components.

 \diamond Each $x \in V(\mathbb{F}_q)$ annihilates the discriminant of all linear birational projections.

 \diamond Adding discriminants $\Rightarrow O(D^{2^{r}} \log q)$ in worst case.

[Cesaratto-von zur Gathen-M.] Probability a curve C is relatively irreducible \rightarrow 0 as $q \rightarrow \infty$.

Conclusions

- Worst-case complexity of ME is doubly exponential.
- Complexity of ME \approx complexity of the absolutely irreducible case.
- Finer analysis of the absolutely irred. case required.
 - [Knopfmacher–Knopfmacher, 90] Probability that a random polynomial $f \in \mathbb{F}_q[X]$ has a q-root is 1/e.
 - This might imply that \cong 3 trials suffice in SVS $\Rightarrow O(d \log q)$ operations in \mathbb{F}_q in SVS and S1S.