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Let Fq be the finite field of q elements, Fq its algebraic

closure.

Given polynomials f1, . . . , fs ∈ Fq[X1, . . . , Xn].

Multivariate Equation Problem (ME):

◦ find a solution x ∈ Fnq of the polynomial system

f1(X) = · · · = fs(X) = 0,

◦ find a point x ∈ Fnq of the variety (defined over Fq)

V (f1, . . . , fs) := {x ∈ Fnq : f1(x) = · · · = fs(x) = 0}.
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Motivation: coding theory, cryptography, polynomial

system solving over Q, etc.

Example: Public key schemes based on ME (Imai-Matsumoto,

Patarin et al., Wolf-Preneel, ...).

◦ Given

� a plaintext x ∈ Fnq ,

� a polynomial map F := (f1, . . . , fs) : Fnq → Fsq ,

� the cyphertext is y := F (x).

Breaking such a cryptosystem “requires” solving the

ME problem

f1(X)− y1 = 0, . . . , fs(X)− ys = 0.
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◦ ME is NP-complete, even for quadratic eqs. over F2.

◦ We are interested in probabilistic algorithms for ME.

◦ We shall assume that q � degrees of equations.
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First case: plane curves

Let f ∈ Fq[X,Y ], C :=V (f):={(x, y) ∈ F2
q : f(x, y) = 0},

C(Fq) := C ∩ F2
q .

◦ Hardness of ME for C is related to #C(Fq).

◦ Average number of points: #C(Fq) ≈ q.

Estimates: Absolute irreducibility.

◦ f ∈ Fq[X,Y ] is abs. irred. if it’s irreducible in Fq[X,Y ].

Example: f := X + Y 3 is, g := X2 − 3Y 2 is not in F5.

◦ C := V (f) ⊂ F2
q is abs. irred. if f is abs. irred.

[Weil, 1948] For C := V (f) abs. irred. with deg(f) = d

|#C(Fq)− q| ≤ d2q1/2.

Example (cont.): #V (f)(F5) = 5, #V (g)(F5) = 1.
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Computation: search in a vertical strip (SVS).

Let f ∈ Fq[X,Y ] be absolutely irreducible.

For a ∈ Fq, let Ca(Fq) := C(Fq) ∩ {X = a}
= {b ∈ Fq : f(a, b) = 0}.

◦ Weil ⇒ Prob(a ∈ Fq : Ca(Fq) 6= ∅) ≥
1

dq
(q − d2q

1
2)

=
1

d

(
1−

d2

q1/2

)
≈

1

d
.

Algorithm SVS

� find a ∈ Fq with Ca(Fq) 6= ∅. [at most d trials]

� find b ∈ Ca(Fq). [find an Fq-root of f(a, Y )]

[Gathen–Shparlinski, 1995] computes uniformly a point
of C(Fq) in polynomial time.
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What if C = V (f) is not absolutely irreducible?

Decompose C = ∪Ci over Fq (factor f =
∏
i fi over Fq).

Easy case: If ∃ Ci absolutely irred., apply SVS to Ci.

Hard case: If Ci is not absolutely irreducible for all i

[Ci is relatively irreducible for all i], then

� Fact. C(Fq) ⊂ C ∩ V (∂f/∂Y ) = V (f, ∂f/∂Y ) =: W .

[observe that dimW = 0, degW ≤ d(d− 1)]

� Algorithm SVS–RI

. Compute the resultant g(X) := resY (f, ∂f/∂Y ).

. find the set of Fq–roots of g.

. for each root a ∈ Fq, find the Fq–roots of f(a, Y ).
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Cost of finding an Fq-point in a plane curve

◦ If C has an absolutely irreducible Fq-component then

we perform O (̃d2 log q) operations in Fq.

◦ If C is a union of relatively irreducible Fq-components

then we perform O (̃d3 log q) operations in Fq.

◦ [von zur Gathen, 2007] Prob(f is rel. irred.)≤ q−d2/4.
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Second case: hypersurfaces

Let f ∈ Fq[X1, . . . , Xn] and let H be the hypersurface
H := V (f) := {(x1, . . . , xn) ∈ Fnq : f(x1, . . . , xn) = 0}.

Average number of points: #H(Fq) ≈ qn−1.

Estimates: Absolute irreducibility.

◦ f ∈ Fq[X1, . . . , Xn] is absolutely irreducible if it is
irreducible in Fq[X1, . . . , Xn].

◦ H := V (f) ⊂ Fnq is absolutely irreducible if it is
defined by an absolutely irreducible polynomial f .

[Lang–Weil, 1954] For H := V (f) ⊂ Fnq absolutely irre-
ducible of degree δ > 0, ∃ C = C(n, δ) such that:

|#H(Fq)− qn−1| ≤ δ2qn−3/2 + Cqn−2.
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Computation: search in 1-dim.linear section (S1S).

For H := V (f) ⊂ Fnq abs. irred., we compute a point of

H(Fq) in the plane curve H ∩ L, with L an Fq-plane.

Example: for H : X − Y 2 − Z2 = 0 and a plane L :

{X+bY +cZ = 0}, H∩L = {Y 2+Z2+bY +cZ = 0}∩L.

Effective Bertini theorem [Kaltofen, 1995]: H ∩ L
isn’t abs. irreducible for a random L with probability

≤ 2δ4/q.

Example (cont.): H ∩ L is abs. irred. for b2 + c2 6= 0.
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Explicit bounds

◦ Versions of the Effective Bertini theorem.

◦ “Statistics” on number of q-points on plane sections.

[Cafure-M., 2006]

� For q > 2δ4, there exist q–rational points.

� For q > 15δ13/3, |#H(Fq)−qn−1| ≤ δ2qn−3/2+7 · δ2qn−2.

Algorithm for searching in a 1-dim. section

◦ Algorithm S1S

� choose an Fq-plane L randomly. [H∩L is abs. irred.]

� apply SVS to H∩L. [factor gcd(f(a, Y ), Y q−Y )]

Cost: O (̃δ2 log q) operations in Fq.
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Case H = V (f) not absolutely irreducible.

Decompose H = ∪Hi over Fq (factor f =
∏
i fi over Fq).

Easy case: If ∃ Hi absolutely irred., apply S1S to Hi.

Hard case: If Hi isn’t absolutely irred. for all i, then

� Fact: H(Fq) ⊂ H ∩ V (∂f/∂Xn) =: W (1).

[dimW (1) = n− 2, degW (1) ≤ δ2]

� Decompose W (1) = ∪iW
(1)
i over Fq.

� If ∃ W (1)
i absolutely irreducible, then Easy case.

� Else, Hard case: introduce W (2).

[dimW (2) = n− 3, degW (2) ≤ δ4]....

Cost (worst-case): O(δ2
n

log q) operations in Fq.
[von zur Gathen-Viola, 2007] Prob(f rel. irred.) →0
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Third case: arbitrary dimension

Let V :=V (f1, ..., fs):={x∈ Fnq :f1(x) = · · · =fs(x) = 0}.

Two invariants: dimension and degree.

“Expected” number of points: #V (Fq) ≈ qdimV .

[Lang–Weil, 1954] For V ⊂ Fnq absolutely irreducible of

dimension r > 0 and degree δ, ∃ C = C(n, r, δ) such that

|#V (Fq)− qr| ≤ δ2qr−1/2 + Cqr−1.
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Reduction to hypersurfaces: birational projections.

Let V ⊂ Fnq abs. irred. of dimension r and degree δ.

Fact: For q ≥ δ, ∃ Fq–linear π : V → π(V ) ⊂ Fr+1
q with

a rational inverse π−1 : π(V ) → V defined in an open

dense subset of π(V ).

Example: For C := {X = Z2 + Z4, Y = Z2}, the pro-

jection onto the (X,Z)-plane is {X = Z2 + Z4}. The

inverse is π−1(x, z) = (x, z2, z).

[Cafure-M., 2006] For q > 15δ13/3, we have C ≤ 7 · δ2.

[Ghorpade-Lachaud, 2002] If V := V (f1, . . . , fs) and

d := max deg(fi), then C ≤ 6 · 2s · (sd+ 1)n+1.

Bézout inequality ⇒ δ ≤ dr.
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Computation of a birational projection (BProj).

Input: V := V (f1, . . . , fn−r) absolutely irreducible.

Algorithm BProj [Cafure-M, 2006b]

◦ Incremental elimination method.

◦ Global Newton–Hensel lifting.

Cost: O˜(D2 log q) operations in Fq, with D ≤
∏
i deg(fi).

Computation of an Fq-point

◦ compute a birational projection π. [Algorithm BProj]

◦ find an Fq-point in π(V ). [Algorithm S1S]

Cost: O˜(D2 log q) operations in Fq.

[Huang-Wong, 1999] dO(n2) log q ops. in Fq, d := max deg(fi).
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Extensions to non absolutely irreducible cases?

Easy case: V = ∪iVi over Fq and ∃ Vi absolutely

irreducible with dim(Vi) = dim(V ).

Hard case: V = ∪iVi over Fq and all Vi with dim(Vi) =

= dim(V ) are relatively irreducible.

� Each x ∈ V (Fq) belongs to all abs. irred.components.

� Each x ∈ V (Fq) annihilates the discriminant of all

linear birational projections.

� Adding discriminants ⇒ O(D2r
log q) in worst case.

[Cesaratto-von zur Gathen-M.] Probability a curve C is

relatively irreducible → 0 as q →∞.
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Conclusions

• Worst-case complexity of ME is doubly exponential.

• Complexity of ME ≈ complexity of the absolutely

irreducible case.

• Finer analysis of the absolutely irred. case required.

◦ [Knopfmacher–Knopfmacher, 90] Probability that

a random polynomial f ∈ Fq[X] has a q-root is 1/e.

◦ This might imply that ∼= 3 trials suffice in SVS

⇒ O (̃d log q) operations in Fq in SVS and S1S.
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