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A problem

In the effective topos Eff , consider the three constant arrows {0}
{0}

--

∅
11
P{0}0oo .

D is discrete if one (hence each) evaluation function D{0} ev0 //DP{0}

ev{0}
mm

ev∅
qq

is bijective.

The families of discrete objects (Di)i∈I in Eff are characterized
as having each fibre isomorphic to a quotient of a set of numbers, i.e.
∀i∈I ∃Q∈Quot(N) ∃f∈DX

i
f is bijective

The appropriate universe where to study this situation is that of groupoids in Eff .
These form a model of an elementary theory of classes and
it includes a model of extensional type theory.

This is related to work of M. Hofmann and Th. Streicher,
The groupoid interpretation of type theory,
in Oxford Logic Guides 36, 1998.

Though the choice of Q depending on i is
basically unique (it is unique up to isomorphism),
it is not possible, in general, to find such a Q
explicitly for a given i.

M. Hyland, E. Robinson, G.R., The discrete objects in the effective topos, Pr.L.M.S. 60 (1990)



An Elementary Theory of Classes, I – The Logic

P ` P

if P ` Q e Q ` R, then P ` R

if P (x) ` Q(x), then P (t) ` Q(t)

⊥ ` R R ` >

R ` P ∧Q if and only if R ` P e R ` Q

P ∨Q ` R if and only if P ` R e Q ` R

R ` P ⇒ Q if and only if R ∧ P ` Q

R ` ∀x∈A P (x) if and only if x ∈ A ∧R ` P (x)

∃x∈A P (x) ` R if and only if x ∈ A ∧ P (x) ` R

[x ∈ A ∧R(x)] ∧ x = y ` Q(x, y) if and only if x ∈ A ∧R(x) ` Q(x, x)

¬P ` Q if and only if ¬Q ` P ¬P
def⇔ P ⇒ ⊥

These are the logical axioms and rules of
the theory, written on a line. A common
form to present these and those to follow is

P`P
P`Q Q`R

P`R . . . R`P R`Q
R`P∧Q

R`P∧Q
R`P . . .

F. W. Lawvere, Adjointness in foundations, Dialectica 23 (1969)



An Elementary Theory of Classes, I – The Logic

P ` P

if P ` Q e Q ` R, then P ` R

if P (x) ` Q(x), then P (t) ` Q(t)

⊥ ` R R ` >

R ` P ∧Q if and only if R ` P e R ` Q

P ∨Q ` R if and only if P ` R e Q ` R

R ` P ⇒ Q if and only if R ∧ P ` Q

R ` ∀x∈A P (x) if and only if x ∈ A ∧R ` P (x)

∃x∈A P (x) ` R if and only if x ∈ A ∧ P (x) ` R

[x ∈ A ∧R(x)] ∧ x = y ` Q(x, y) if and only if x ∈ A ∧R(x) ` Q(x, x)

[¬P ` Q if and only if ¬Q ` P ] ¬P
def⇔ P ⇒ ⊥

This is the only rule that
must be removed to
axiomatize the
intuitionistic version of the
theory.

These are the logical axioms and rules of
the theory, written on a line. A common
form to present these and those to follow is

P`P
P`Q Q`R

P`R . . . R`P R`Q
R`P∧Q

R`P∧Q
R`P . . .

F. W. Lawvere, Adjointness in foundations, Dialectica 23 (1969)



An Elementary Theory of Classes, II – The Classes

Basic constructions pair: 〈a, b〉 projections: x1 x2 abstraction: {x | P (x)}

{x | P (x)} × {x | Q(x)} def
= {z | z = 〈z1, z2〉 ∧ (P (z1) ∧Q(z2))}

U
def
= {x | >}

{x | P (x)} is a class
def⇔ ∀y∈U [y ∈ {x | P (x)} ⇔ P (y)]

Axioms for equality 〈x, y〉1 = x 〈x, y〉2 = y

{x | P (x)} = {x | Q(x)} ⇔ ∀x∈U [P (x)⇔ Q(x)]

Axioms for classes U is a class

if A, B are classes, then A×B is a class

if A is a class, then {x ∈ A | t = s} is a class

if A is a class,∀a∈A Ba is a class, then {x ∈ A | t ∈ Bx} is a class

if A is a class,∀a∈A Ba is a class, then
⋃

a∈ABa is a class

A is a class⇔ A = {x | x ∈ A}

thanks to the second axiom for equality.

A. Joyal and I. Moerdijk, Algebraic Set Theory, LMS 220, Cambridge University Press, 1995



An Elementary Theory of Classes, III – The Sets

Basic notion X is a set

Axioms for sets if X is a set, then X is a class
if A is a class, X is a set, f : A ∼→ X , then A is a set
if X is a set, Y is a set, then X × Y is a set
if A is a class, X is a set, A ⊆ X , then A is a set
if I is a set,∀i∈I Xi is a set, then

⋃
i∈IXi is a set

P(A)
def
= {Z | Z is a set ∧ Z ⊆ A}

Powerset Axioms if A is a class, then P(A) is a class

if X is a set, then P(X) is a set

Axiom of infinity There are a set N, 0 ∈ N, s:N→ N such that
• ∀n∈N 0 6= s(n)
• ∀n,n′∈N [s(n) = s(n′)⇒ n = n′]
• ∀X∈P(N) [[0 ∈ X ∧ ∀x∈X s(x) ∈ X ]⇒ X = N]

The notion of inclusion is
defined as usual, as are those
of function and bijection.

A. Simpson, Elementary axioms for categories of classes, in Procs. LICS XIV, 1999



Realizing the theory

Fix a class U such that, for a, b ∈ U , also 〈a, b〉 ∈ U , and
a relation rU⊆ N× U such that, for n rU a, m rU b, it is (n, m) rU 〈a, b〉.

A realizable assertion is a relation P ⊆ N× U .
A realizable class is a subclass of U .

For P, Q realizable assertions, say that

n rU (P ` Q) if

for all x ∈ U , for all k rU x, for all ` P x
the Turing machine Mn, encoded by n, is defined on (k, `)

and Mn(k, `) Q x

P ` Q is realized if there is n rU (P ` Q).

This is notation for a
chosen recursive encoding
of pairs of numbers.

S. Kleene, On the interpretation of intuitionistic number theory, J.Symb.Logic 10 (1945)
J.M.E. Hyland, The effective topos, in Procs. L.E.J. Brouwer Centenary Symposium, 1982

J. van Oosten, Realizability, Oxford University Press, 2008



Realizing the theory

Fix a class U such that, for a, b ∈ U , also 〈a, b〉 ∈ U , and
a relation rU⊆ N× U such that, for n rU a, m rU b, it is (n, m) rU 〈a, b〉.

A realizable assertion is a relation P ⊆ N× U .
A realizable class is a subclass of U .

For P, Q realizable assertions, say that

n rU (P ` Q) if

for all x ∈ U , for all k rU x, for all ` P x
the Turing machine Mn, encoded by n, is defined on (k, `)

and Mn(k, `) Q x

P ` Q is realized if there is n rU (P ` Q).

n (P ∧Q) x
def⇔

 n = (p, q)
p P x
q Q x

n (P ∨Q) x
def⇔

 n = (p, q)
p = 0⇒ q P x
p = 1⇒ q Q x

n (P ⇒ Q) x
def⇔ ∀krUx ∀`Px Mn(k, `) Q x

The realization of connectives
and quantifiers is somehow
forced by the need to verify the
logical axioms.

This is notation for a
chosen recursive encoding
of pairs of numbers.

S. Kleene, On the interpretation of intuitionistic number theory, J.Symb.Logic 10 (1945)
J.M.E. Hyland, The effective topos, in Procs. L.E.J. Brouwer Centenary Symposium, 1982

J. van Oosten, Realizability, Oxford University Press, 2008



Realizing the Theory of Classes and Sets

P ` P

if P ` Q e Q ` R, then P ` R

if P (x) ` Q(x), then P (t) ` Q(t)

⊥ ` R R ` >

R ` P ∧Q if and only if R ` P e R ` Q

P ∨Q ` R if and only if P ` R e Q ` R

R ` P ⇒ Q if and only if R ∧ P ` Q

R ` ∀x∈A P (x) if and only if x ∈ A ∧R ` P (x)

∃x∈A P (x) ` R if and only if x ∈ A ∧ P (x) ` R

[x ∈ A ∧R(x)] ∧ x = y ` Q(x, y) if and only if x ∈ A ∧R(x) ` Q(x, x)

¬P ` Q if and only if ¬Q ` P

This is the only rule that
fails to be realized.
But, after all, realizability
is an excellent semantics
for intuitionistic theories.



Axioms for equality 〈x, y〉1 = x 〈x, y〉2 = y

{x | P (x)} = {x | Q(x)} ⇔ ∀x∈U [P (x)⇔ Q(x)]

Axioms for classes U is a class
if A, B are classes, then A×B is a class
if A is a class, then {x ∈ A | t = s} is a class
if A is a class,∀a∈A Ba is a class, then {x ∈ A | t ∈ Bx} is a class

if A is a class,∀a∈A Ba is a class, then
⋃

a∈ABa is a class

Axioms of sets if X is a set, then X is a class
if A is a class, X is a set, f : A ∼→ X , then A is a set
if X is a set, Y is a set, then X × Y is a set
if A is a class, X is a set, A ⊆ X , then A is a set

if I is a set,∀i∈I Xi is a set, then
⋃

i∈IXi is a set

Powerset Axioms if A is a class, then P(A) is a class
if X is a set, then P(X) is a set

Axiom of infinity There are a set N, 0 ∈ N, s: N→ N such that
• ∀n∈N 0 6= s(n)
• ∀n,n′∈N [s(n) = s(n′)⇒ n = n′]

But these two axioms fail too.
And, in the last, the notion of
subset is no longer clear.

× ∀X∈P(N) [[0 ∈ X ∧ ∀x∈X s(x) ∈ X ]⇒ X = N]



Correcting the realization of the theory

Take the smallest class R of sets a ∈ P(U×N) such that

• ∀b,c∈R ∀m∈N [mr(b m c)⇒ [b ∈ dom(a)⇔ c ∈ dom(a)]]

• ∃t∈N ∀b,c∈R tr[b m c⇒ [b ε a⇔ c ε a]]

where

• mr(b m c)
def⇔ ∀x∈R mr[x ε b⇔ x ε c]

• (p, q)r(d ε b)
def⇔ [〈d, p〉 ∈ b ∧ ∀x∈R qr[d m x⇒ [d ε b⇔ x ε b]]

Otherwise, giving up the universe class, define classes as pairs A = (|A|, J =A K) where

• |A| is a set

• J =A K ⊆ |A| × |A| ×N for which simmetry and transitivity are realized.

Different notations for equality
and membership under
realizability are employed.


