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Partial realisation of Hilbert’s programme in algebra:

Work with finite methods and circumvent ideal objects wherever pos-

sible.

Prove concrete statements constructively and at their own type level.

Throughout, all rings A will be commutative and all lattices L dis-

tributive.



The Zariski Spectrum With Points

The prime spectrum

Spec A ≡ {p ⊆ A : p prime ideal of A}
of A is endowed with the Zariski topology whose closed sets are

Z (a) ≡ {p ∈ Spec A : a ⊆ p}
where a is an ideal of A; the closed points are the maximal ideals of

A.

A basis of the Zariski topology is given by the family

D (a) = Spec A \ Z (a) = {p ∈ Spec A : a /∈ p} (a ∈ A) .



Classically, if A = k [T1, . . . , Tn] where k is an algebraically closed

field, then the closed points of Spec A are the elements of kn, and the

traces of the closed subsets Z (a) correspond to the algebraic varieties

of kn.

In general the prime spectra are the local models of the Grothendieck

schemes, which bridge the gap between algebraic number theory and

algebraic geometry. Admitting non-closed points is essential, e.g. for

Spec Z.

Moreover, Spec A is the prototype of a spectral space: a topological



space which is sober and whose compact opens form a basis closed by

finite meets.



The Zariski Spectrum Without Points

Joyal presented Spec A as the distributive lattice LA that is
— generated by the symbolic expressions D(a) with a ∈ A, and
— subject to the relations

D(a + b) 6 D(a) ∨D(b)
D(a) ∧D(b) = D(ab)
D(0) = 0 , D(1) = 1

This LA is the distributive lattice of the compact opens of Spec A.
The elements of LA are of the form

D(a1, . . . , an) = D (a1) ∨ . . . ∨D (an) .



The Projective Spectrum With Points

The projective spectrum of a graded ring A =
⊕

d>0
Ad is

Proj A = {p ⊆ A : p homogeneous prime ideal of A}

with A = A0[x0, . . . , xn] for suitable x0, . . . , xn ∈ A1 with n > 1.

The prime example of a graded ring is k[x0, . . . , xn], graded by degree:

Pn
k = Proj k[x0, . . . , xn]



The Projective Spectrum Without Points

We presented Proj A as the lattice PA that is
— generated by the symbols D(a) with a ∈ Ad for some d > 0 and
— subject to the relations

D(a + b) 6 D(a) ∨D(b)
D(0) = 0

D(ab) = D(a) ∧D(b)
D(x0) ∨ . . . ∨D(xn) = 1

for all admissible a, b ∈ A. The elements of PA are of the form

D(a1, . . . , an) = D (a1) ∨ . . . ∨D (an) .



Grothendieck Schemes With Points

A locally ringed space X = (T,O) is a topological space T with a

sheaf of local rings O.

A morphism of locally ringed spaces (f, ϕ) : X1 → X2 is a continuous

mapping f : T1 → T2 with a homomorphism ϕ : O2 → O1 ◦ f−1

of sheaves of local rings (i.e., induces local homomorphisms on the

stalks).



An affine scheme is of the form Spec A with a certain sheaf of local

rings.

A (Grothendieck) scheme is a locally ringed space that is locally affine:

that is, has an open cover of affine schemes.

Every Spec A is a Grothendieck scheme, and so is every Proj A.

The schemes form a full subcategory of the locally ringed spaces.



Sheaves on Lattices

Let L be a poset and C a category.

A presheaf on L with values in C is a functor F : Lop → C.

We now assume that L is a lattice, and that C has finite inverse limits.

A sheaf on L with values in C is a presheaf F such that

F (x1 ∨ . . . ∨ xn) = lim←−

{
F (xi)→ F

(
xi ∧ xj

)
: i 6= j

}
. (*)



Lemma Let L′ be a basis of a lattice L that is closed by finite meets.

If F ′ is a presheaf on L′ such that (*) holds for all x1, . . . , xn ∈ L′

with x1 ∨ . . . ∨ xn ∈ L′, then there is a “unique” sheaf F on L with

F|L′ = F ′.

Proof Choose x1, . . . , xn ∈ L′ with x = x1 ∨ . . . ∨ xn in L and set

F (x) = lim←−

{
F ′ (xi)→ F ′

(
xi ∧ xj

)
: i 6= j

}
.

The D (a) form a basis of LA (respectively, of PA) closed by finite

meets.



Ringed Lattices

A ringed lattice X = (L,O) is a lattice L with a sheaf of rings O.

A morphism of ringed lattices (f, ϕ) : X1 → X2 is a lattice homomor-

phism f : L1 → L2 with a natural transformation ϕ : O1 → O2 ◦ f .



Spectral Schemes as Ringed Lattices

An affine scheme is a ringed lattice of the form

Spec A = (LA,OA)

with OA uniquely determined by

OA (D (a)) = A

[
1

a

]
.

If A is an integral domain, then

OA (D(a1, . . . , an)) = A

[
1

a1

]
∩ . . . ∩A

[
1

an

]
.



A spectral scheme is a ringed lattice X = (L,O) which is locally

affine: that is, there are x1, . . . , xn ∈ L with 1 = x1 ∨ . . . ∨ xn such

that

(↓xi,O|↓xi
) ∼= SpecO (xi) .

Any finite sequence x1, . . . , xn of this kind is an affine cover of X.

Lemma Every affine scheme is a spectral scheme.

Lemma Let (L,O) be a ringed lattice. If 1 = y1 ∨ . . . ∨ ym in L

and each (↓yi,O |↓yi
) is a spectral scheme, then (L,O) is a spectral

scheme.



Open Subschemes

If X = (L,O) is a spectral scheme, then

X |u= (↓u,O|↓u)

is the open subscheme defined by u ∈ L.

The open subschemes of Spec A are of the form(
↓D(a1, . . . , an),OA |↓D(a1,...,an)

)
.

If n = 1, then this is an affine scheme:(
↓D(a),OA |↓D(a)

) ∼= Spec A

[
1

a

]
.



Lemma Every open subscheme of a spectral scheme is a spectral

scheme.



The Projective Scheme as a Spectral Scheme

The projective scheme Proj A of a graded ring is (PA,O) with

O (D (a)) = A

[
1

a

]
0

.

This Proj A with A = A0[x0, . . . , xn] has a canonical affine cover:

(
↓ D (xi) ,O|↓D(xi)

) ∼= Spec A

[
1

xi

]
0

(0 6 i 6 n) .

Lemma Every projective scheme is a spectral scheme.



The Scheme of Valuations as a Spectral Scheme

Let K be a field and R a ring with R ⊆ K.

The lattice ValR (K) is

— generated by the symbols V (s) with s ∈ K

— subject to the relations

r ∈ R ⇒ V (r) = 1
V (s) ∧ V (t) 6 V (s + t) ∧ V (st)
s 6= 0 ⇒ 1 = V (s) ∨ V (1/s)

The elements of ValR (K) are the finite joins of the V (s1)∧. . .∧V (sn).



The points of ValR (K) are the valuation rings V of K over R: that

is, the subrings V of K with R ⊆ V and

s ∈ K \ {0} ⇒ s ∈ V ∨ 1/s ∈ V .

If R = k is a field, s ∈ K transcendental over k, and K a finite

algebraic extension of k (s), then the valuation rings of K/k are the

points of an algebraic curve over k with function field K.



Define a sheaf of rings O on Valk (K) by

O (x) = {f ∈ K : x 6 V (f)} (x ∈ Valk (K)) .

Lemma The ringed lattice X = (Valk (K) ,O) is a spectral scheme.

Proof There is a two-element affine cover:

x1 = V (s) , x−1 = V
(
s−1

)(
↓ xi,O |↓xi

) ∼= Spec E
(
si

)
where E

(
si

)
is the integral closure of si in K.



Sheaves of Modules

Let X = (L,O) be a ringed lattice. A sheaf of abelian groups M on

L is an O–module on X if everyM (x) is an O (x)–module such that

O (x)×M (x) → M (x)
↓ 	 ↓

O (y)×M (y) → M (y)
(x > y) .

A sheaf of ideals on X is an O–submodule I of O.



For each A–module M there is an OA–module M̃ on Spec A with

M̃ (D (a)) = M

[
1

a

]
.

Now let X = (L,O) be a spectral scheme. In the following we only

consider O–modules M on X which are quasicoherent: that is,

M|↓xi
∼= M̃i

for an affine cover x1, . . . , xn of X and O (xi)–modules Mi.

The quasicoherent modules on X form an abelian category.

Every quasicoherent OA–module on Spec A is isomorphic to some M̃ .



Closed Subschemes

If I is an ideal of the ring A and

J = ↓ {D(a1, . . . , an) : a1, . . . , an ∈ I}

the corresponding ideal of the lattice LA, then

Z (I) =
(
LA/J,OA/I

)
with OA/I (D (a)) = (A/I)

[
1

a

]
is a closed subscheme of Spec (A) with

Z (I) ∼= Spec (A/I) .



Let X = (L,O) be a spectral scheme and I a quasicoherent sheaf of

ideals on X.

Assume that x1, . . . , xm is an affine cover of X such that I|↓xk
∼= Ĩk

where Ik is an ideal of O (xk). The closed subscheme Z (I) of X

defined by I is obtained by glueing the Z (Ik).

Lemma Every closed subscheme of a spectral scheme is a spectral

scheme.



Spectral Morphisms

A spectral morphism (f, ϕ) : X1 → X2 of spectral schemes is a mor-

phism of ringed lattices which is locally affine: that is, there is an

affine cover x1, . . . , xn of X1 such that, with yi = f (xi) for every

i, for each i there is an affine cover yi1, . . . , yini
of (↓yi,O2 |↓yi

) for



which

↓xi →
f

↓yi →
π

↓yij

∼= ∼=
L (O1 (xi)) 	 L

(
O2

(
yij

))
D ↑ ↑ D

O1 (xi) →
ϕ(xi)

O2 (yi) →r O2

(
yij

)
(i 6 n , j 6 ni) .



For a morphism of ringed lattices (f, ϕ), to be locally affine roughly

means that f locally is determined by ϕ: that is, with appropriate

identifications,

f ◦D = D ◦ ϕ .

In particular, (f, ϕ) satisfies a point-free condition classically equivalent

to the one that is to be required from a morphism of locally ringed

spaces.



Lemma The spectral schemes and spectral morphisms form a category.

Lemma If X = (L,O) is a spectral scheme and u ∈ L, then the

inclusion X → X |u of the open subscheme defined by u is a spectral

morphism.

Lemma If X = (L,O) is a spectral scheme and I a quasicoherent

sheaf of ideals on X, then the inclusion X → Z (I) of the closed

subscheme defined by I is a spectral morphism.



Proposition (Universal Property of Spec) For each ring A we have

Mor(Spec A, X) ∼= Hom(A,O (1))

natural in spectral schemes X = (L,O).

In the case X = Spec B this reads as

Mor(Spec A, Spec B) ∼= Hom(A, B) .



Example 1 (Unit Circle) For every ring B there is a bijection

Mor

Spec
Z [X, Y ](

X2 + Y 2 − 1
), Spec B

 ∼= {
(x, y) ∈ B2 : x2 + y2 = 1

}
.

Example 2 (Projective Space) Let Z [X0, . . . , Xn] be graded by de-

gree. For every ring B there is a bijection between

Mor (Proj Z [X0, . . . , Xn] , Spec B)

and the B–modules of rank 1 which are direct summands of Bn+1.



Characterisation of Spectral Schemes

We characterise the spectral schemes in classical terms by classical

means.

A spectral space is a topological space X

— which is sober: that is, every nonempty irreducible closed subspace

is the closure of a unique point, its generic point;

— whose compact opens form a basis K (X) that is closed by finite

intersection.



In particular, X is a compact T0–space, and K (X) is a distributive

lattice.

The topological space of a Noetherian Grothendieck scheme is spectral.



A spectral mapping is a continuous mapping F : X1 → X2 with

V ∈ K (X2)⇒ F−1 (V ) ∈ K (X1) .

If a Grothendieck scheme X is Noetherian, then the continuous part

of every morphism of Grothendieck schemes X → Y is a spectral

mapping.

The spectral spaces with the spectral mappings form a category.

Spectral spaces and distributive lattices are equivalent:

F : X1 → X2 99K F−1 : K (X2)→ K (X1)
f−1 : Spec L2 → Spec L1 L99 f : L1 → L2



Proposition The category of spectral schemes is equivalent to the full

subcategory of Grothendieck schemes with spectral topological spaces.

It is crucial to see that the continuous part of a morphism of Grothendieck

schemes whose topological spaces are spectral is a spectral mapping.

The necessary material has already been present since the early days:

A. Grothendieck, J. A. Dieudonné, Eléments de Géométrie Algébrique

I. Publ. Math. IHES (1960/61), Springer (1971).



In the 1971 Springer edition of EGA I, three items of one section suffice:

“Morphismes quasi-compacts et morphismes quasi-séparés” (1, 6.1).

We partially adapt them to the terminology of spectral spaces.

Let f : X → Y be a morphism of Grothendieck schemes.

— f is quasicompact iff it is a spectral mapping.

— If X is quasicompact and Y quasiseparated, then f is quasicom-

pact.

— Y is quasiseparated iff K (Y ) is closed by binary intersection.



“What would have happened if topologies without points had

been discovered before topologies with points, or if Grothendieck

had known the theory of distributive lattices? ”

G.-C. Rota, Indiscrete Thoughts. Birkhäuser (1997), p. 220
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