

Decorating proofs

Helmut Schwichtenberg (with Diana Ratiu)

Mathematisches Institut, LMU, München

Mathematics - Algorithms - Proofs, ICTP, Trieste, August 2008

Why extract computational content from proofs?

- Proofs are machine checkable \Rightarrow no logical errors.
- ▶ Program on the proof level ⇒ maintenance becomes easier. Possibility of program development by proof transformation (Goad 1980).
- Discover unexpected content:
 - ► U. Berger 1993: Tait's proof of the existence of normal forms for the typed λ-calculus ⇒ "normalization by evaluation".
 - Content in weak (or "classical") existence proofs, of

$$\tilde{\exists}_{x}A := \neg \forall_{x} \neg A,$$

via proof interpretations: (refined) *A*-translation or Gödel's Dialectica interpretation.

Falsity as a predicate variable \perp

In some proofs no knowledge about falsity **F** is required. Then a predicate variable \perp instead of **F** will do, and we can define

$$\tilde{\exists}_y G := \forall_y (G \to \bot) \to \bot.$$

Why is this of interest? We can substitute an arbitrary formula for \bot , for instance, $\exists_y G$. Then a proof of $\tilde{\exists}_y G$ is turned into a proof of

$$\forall_y (G \to \exists_y G) \to \exists_y G.$$

As the premise is provable, we have a proof of $\exists_y G$. (*A*-translation; H. Friedman 1978, Dragalin 1979).

Problems

Unfortunately, this argument is not quite correct.

- G may contain ⊥, and hence is changed under the substitution ⊥ → ∃_yG.
- ▶ We may have used axioms or lemmata involving \bot (e.g., $\bot \rightarrow P$), which need not be derivable after the substitution.

But in spite of this, the simple idea can be turned into something useful. Assume that

- ▶ the lemmata \vec{D} and the goal formula G are such that we can derive $\vec{D} \rightarrow D_i[\bot := \exists_y G]$ and $G[\bot := \exists_y G] \rightarrow \exists_y G$.
- ► the substitution ⊥ → ∃_yG turns the axioms into instances of the same scheme with different formulas, or else into derivable formulas.

▲ □ ▶ ▲ □ ▶ ▲

Problems (continued)

From our given derivation (in minimal logic) of

$$ec{D}
ightarrow orall_y (G
ightarrow ot)
ightarrow ot$$

we obtain by substituting $\bot \mapsto \exists_y G$

$$\vec{D}[\bot := \exists_y G] \to \forall_y (G[\bot := \exists_y G] \to \exists_y G) \to \exists_y G.$$

Now $\vec{D} \to D_i[\perp := \exists_y G]$ allows to drop the substitution in \vec{D} , and by $G[\perp := \exists_y G] \to \exists_y G$ the second premise is derivable. Hence we obtain as desired

$$\vec{D} \to \exists_y G.$$

Definite and goal formulas

A formula is relevant if it "ends" with \perp :

- ▶ ⊥ is relevant,
- if C is relevant and B is arbitrary, then $B \rightarrow C$ is relevant, and
- if C is relevant, then $\forall_x C$ is relevant.

We define goal formulas G and definite formulas D inductively. P ranges over prime formulas (including \perp).

- $$\begin{split} G ::= P \mid D \to G \quad \text{if G relevant \& D irrelevant \Rightarrow D quantifier-free} \\ \mid \forall_x G \qquad \text{if G irrelevant,} \end{split}$$
- $D ::= P \mid G \rightarrow D$ if D irrelevant $\Rightarrow G$ irrelevant $\mid \forall_x D$.

Let $A^{\mathbf{F}}$ denote $A[\perp := \mathbf{F}]$.

Properties of definite and goal formulas

Lemma

For definite formulas D and goal formulas G we have derivations from $\textbf{F} \to \bot$ of

$$\begin{array}{ll} ((D^{\mathsf{F}} \to \mathsf{F}) \to \bot) \to D & \textit{for } D \textit{ relevant,} \\ D^{\mathsf{F}} \to D, \\ G \to G^{\mathsf{F}} & \textit{for } G \textit{ irrelevant,} \\ G \to (G^{\mathsf{F}} \to \bot) \to \bot. \end{array}$$

Lemma

For goal formulas $\vec{G} = G_1, \dots, G_n$ we have a derivation from $\mathbf{F} \to \perp$ of $(\vec{G}^{\mathbf{F}} \to \perp) \to \vec{G} \to \perp.$

Elimination of \perp from weak existence proofs

Assume that for arbitrary formulas \vec{A} , definite formulas \vec{D} and goal formulas \vec{G} we have a derivation of

$$ec{A}
ightarrow ec{D}
ightarrow orall_{ec{y}} (ec{G}
ightarrow \bot)
ightarrow \bot.$$

Then we can also derive

$$(\mathbf{F} \to \bot) \to \vec{A} \to \vec{D}^{\mathbf{F}} \to \forall_{\vec{y}} (\vec{G}^{\mathbf{F}} \to \bot) \to \bot.$$

In particular, substitution of the formula

$$\exists_{\vec{y}}\vec{G}^{\mathsf{F}} := \exists_{\vec{y}}(G_1^{\mathsf{F}} \wedge \cdots \wedge G_n^{\mathsf{F}})$$

for \perp yields

$$\vec{A}[\perp := \exists_{\vec{y}} \vec{G}^{\mathsf{F}}] \to \vec{D}^{\mathsf{F}} \to \exists_{\vec{y}} \vec{G}^{\mathsf{F}}.$$

The type of a formula

- Every formula A can be seen as a computational problem (Kolmogorov). We define τ(A) as the type of a potential realizer of A, i.e., the type of the term to be extracted from a proof of A.
- ▶ Assign $A \mapsto \tau(A)$ (a type or the "nulltype" symbol ε). In case $\tau(A) = \varepsilon$ proofs of A have no computational content.

$$\tau(\operatorname{Eq}(x, y)) := \varepsilon, \quad \tau(\exists_{x^{\rho}} A) := \begin{cases} \rho & \text{if } \tau(A) = \varepsilon \\ \rho \times \tau(A) & \text{otherwise,} \end{cases}$$
$$\tau(A \to B) := (\tau(A) \to \tau(B)), \quad \tau(\forall_{x^{\rho}} A) := (\rho \to \tau(A)),$$

with the convention

$$(\rho \to \varepsilon) := \varepsilon, \quad (\varepsilon \to \sigma) := \sigma, \quad (\varepsilon \to \varepsilon) := \varepsilon.$$

Realizability

Let A be a formula and z either a variable of type $\tau(A)$ if it is a type, or the nullterm symbol ε if $\tau(A) = \varepsilon$. We define the formula $z \mathbf{r} A$, to be read z realizes A:

$$z \mathbf{r} \operatorname{Eq}(r, s) := \operatorname{Eq}(r, s),$$

$$z \mathbf{r} \exists_{x} A(x) := \begin{cases} A(z) & \text{if } \tau(A) = \varepsilon \\ z_{0} \mathbf{r} A(z_{1}) & \text{otherwise,} \end{cases}$$

$$z \mathbf{r} (A \to B) := \forall_{x} (x \mathbf{r} A \to zx \mathbf{r} B),$$

$$z \mathbf{r} \forall_{x} A := \forall_{x} zx \mathbf{r} A,$$

- 4 同 6 4 日 6 4 日 6

with the convention $\varepsilon x := \varepsilon$, $z\varepsilon := z$, $\varepsilon\varepsilon := \varepsilon$.

Extracted terms

For derivations M^A with $\tau(A) = \varepsilon$ let $\llbracket M \rrbracket := \varepsilon$ (nullterm symbol). Now assume that M derives a formula A with $\tau(A) \neq \varepsilon$.

$$\begin{bmatrix} u^{A} \end{bmatrix} := x_{u}^{\tau(A)} \quad (x_{u}^{\tau(A)} \text{ uniquely associated with } u^{A}),$$

$$\begin{bmatrix} (\lambda_{u^{A}}M)^{A \to B} \end{bmatrix} := \lambda_{x_{u}^{\tau(A)}} \llbracket M \rrbracket,$$

$$\begin{bmatrix} M^{A \to B} N \rrbracket := \llbracket M \rrbracket \llbracket N \rrbracket,$$

$$\begin{bmatrix} (\lambda_{x^{\rho}}M)^{\forall_{x}A} \rrbracket := \lambda_{x^{\rho}} \llbracket M \rrbracket,$$

$$\llbracket M^{\forall_{x}A} r \rrbracket := \llbracket M \rrbracket r.$$

Extracted terms for axioms

The extracted term of an induction axiom is defined to be a recursion operator. For example, in case of an induction scheme

$$\operatorname{Ind}_{n,\mathcal{A}} \colon \forall_m \big(\mathcal{A}(0) \to \forall_n (\mathcal{A}(n) \to \mathcal{A}(\operatorname{S} n)) \to \mathcal{A}(m^{\mathsf{N}}) \big)$$

we have

$$\llbracket \operatorname{Ind}_{n,A} \rrbracket := \mathcal{R}_{\mathsf{N}}^{\tau} \colon \mathsf{N} \to \tau \to (\mathsf{N} \to \tau \to \tau) \to \tau \quad (\tau := \tau(A) \neq \varepsilon).$$

Soundness

Theorem

Let M be a derivation of A from assumptions u_i : C_i (i < n). Then we can find a derivation of $\llbracket M \rrbracket \mathbf{r}$ A from assumptions \overline{u}_i : $x_{u_i} \mathbf{r} C_i$.

Proof. Induction on *M*.

Uniform universal quantifier \forall^U and implication \rightarrow^U

- We want to select relevant parts of the computational content of a proof.
- ► This will be possible if some "uniformities" hold. Use a uniform variant ∀^U of ∀ (U. Berger 2005) and →^U of →.
- Both are governed by the same rules as the non-uniform ones. However, we will put some uniformity conditions on a proof to ensure that the extracted computational content is correct.

Uniform proofs Decorating proofs Example: list reversal

Extending the definitions of $\tau(A)$ and $z \mathbf{r} A$

► The definition of the type \(\tau(A)\) of a formula A is extended by the two clauses

$$au(A \rightarrow^{\mathsf{U}} B) := au(B), \quad au(\forall_{x^{
ho}}^{\mathsf{U}} A) := au(A).$$

The definition of realizability is extended by

$$z \mathbf{r} (A \rightarrow^{\mathsf{U}} B) := (A \rightarrow z \mathbf{r} B), \quad z \mathbf{r} (\forall_x^{\mathsf{U}} A) := \forall_x z \mathbf{r} A.$$

Extracted terms and uniform proofs

We define the extracted term of a proof, and (using this concept) the notion of a uniform proof, which gives a special treatment to the uniform universal quantifier \forall^U and uniform implication \rightarrow^U .

More precisely, for a proof M we simultaneously define

- its extracted term $\llbracket M \rrbracket$, of type $\tau(A)$, and
- ▶ when *M* is uniform.

Proofs Uniformity Uniformity Uniformity

Extracted terms and uniform proofs (continued)

For derivations M^A where $\tau(A) = \varepsilon$ let $\llbracket M \rrbracket := \varepsilon$ (the nullterm symbol); every such M is uniform. Now assume that M derives a formula A with $\tau(A) \neq \varepsilon$. Then

 $\begin{bmatrix} u^{A} \end{bmatrix} := x_{u}^{\tau(A)} \quad (x_{u}^{\tau(A)} \text{ uniquely associated with } u^{A}),$ $\begin{bmatrix} (\lambda_{u^{A}}M)^{A \to B} \end{bmatrix} := \lambda_{x_{u}^{\tau(A)}} \llbracket M \rrbracket,$ $\llbracket M^{A \to B} N \rrbracket := \llbracket M \rrbracket \llbracket N \rrbracket,$ $\begin{bmatrix} (\lambda_{x^{\rho}}M)^{\forall_{x}A} \rrbracket := \lambda_{x^{\rho}} \llbracket M \rrbracket,$ $\llbracket M^{\forall_{x}A}r \rrbracket := \llbracket M \rrbracket r,$ $\begin{bmatrix} (\lambda_{u^{A}}M)^{A \to^{\cup}B} \rrbracket := \llbracket M^{A \to^{\cup}B} N \rrbracket := \llbracket (\lambda_{x^{\rho}}M)^{\forall_{x}^{\cup}A} \rrbracket := \llbracket M^{\forall_{x}^{\cup}A}r \rrbracket := \llbracket M \rrbracket.$

In all these cases uniformity is preserved, except possibly in those involving $\boldsymbol{\lambda}:$

- 4 同 2 4 日 2 4 日 2 4

Proofs Unifor Uniformity Exam

Uniform proofs Decorating proofs Example: list reversal

Extracted terms and uniform proofs (continued)

Consider

$$[u: A] | M B (\rightarrow^{\mathsf{U}} B)^+ u$$
 or as term $(\lambda_{u^A} M)^{A \rightarrow^{\mathsf{U}} B}$

 $(\lambda_{u^A} M)^{A \to {}^{U}B}$ is uniform if M is and $x_u \notin FV(\llbracket M \rrbracket)$. Similarly: Consider

$$\frac{|M|}{|A|} (\forall^{U})^{+} x \quad \text{or as term} \quad (\lambda_{x}M)^{\forall^{U}_{x}A} \qquad (VarC).$$

Image: A image: A

 $(\lambda_x M)^{\forall_x^U A}$ is uniform if M is and $x \notin FV(\llbracket M \rrbracket)$.

Proofs Uniformity Uniformity Uniformity Uniformity Uniform proofs Decorating proofs Example: list reversa

Why \rightarrow^{U} ?

Define $A \vee^{U} B$ inductively (with parameters A, B) by

$$\begin{array}{ll} A \rightarrow^{\mathsf{U}} A \lor^{\mathsf{U}} B, & B \rightarrow^{\mathsf{U}} A \lor^{\mathsf{U}} B, \\ (A \lor^{\mathsf{U}} B) \rightarrow (A \rightarrow^{\mathsf{U}} C) \rightarrow (B \rightarrow^{\mathsf{U}} C) \rightarrow C. \end{array}$$

- Suppose that a proof M uses a lemma $L: A \lor B$.
- ▶ Then the extract **[***M***]** will contain the extract **[***L***]**.
- Suppose that in *M*, the only computationally relevant use of *L* was which one of the two alternatives holds true, *A* or *B*.
- Express this by using a weakened $L': A \vee^{U} B$.
- Since [[L']] is a boolean, the extract of the modified proof is "purified": the (possibly large) extract [[L]] has disappeared.

Decorating proofs

Goal: Insertion of uniformity marks into a proof.

- ► The sequent Seq(M) of a proof M consists of its context and its end formula.
- ► The uniform proof pattern UP(M) of a proof M is the result of changing in M all occurrences of →, ∀ into →^U, ∀^U, except the uninstantiated formulas of axioms and theorems.
- A formula D extends C if D is obtained from C by changing some →^U, ∀^U into their more informative versions →, ∀.
- A proof N extends M if (1) UP(M) = UP(N), and (2) each formula in N extends the corresponding one in M. In this case FV([[N]]) is essentially (i.e., up to extensions of assumption formulas) a superset of FV([[M]]).

・ロト ・同ト ・ヨト ・ヨト

Decoration algorithm

We define a decoration algorithm, assigning to every uniform proof pattern U and every extension of its sequent an "optimal" decoration M_{∞} of U, which further extends the given extension. Need such an algorithm for every axiom. Example: induction.

$$\operatorname{Ind}_{n,\mathcal{A}}: \forall_m (\mathcal{A}(0) \to \forall_n (\mathcal{A}(n) \to \mathcal{A}(\operatorname{S} n)) \to \mathcal{A}(m^{\mathsf{N}})).$$

The given extension of the four A's might be different. One needs to pick their "least upper bound" as further extension.

Decoration algorithm

Theorem (Ratiu, S)

For every uniform proof pattern U and every extension of its sequent Seq(U) we can find a decoration M_{∞} of U such that

(a) $\operatorname{Seq}(M_{\infty})$ extends the given extension of $\operatorname{Seq}(U)$, and

(b) M_{∞} is optimal in the sense that any other decoration M of U whose sequent Seq(M) extends the given extension of Seq(U) has the property that M also extends M_{∞} .

Proof, by induction on U.

Case $(\rightarrow^{U})^{-}$. Consider a uniform proof pattern

$$\begin{array}{cccc}
\Phi, \Gamma & \Gamma, \Psi \\
\mid U & \mid V \\
\underline{A \to^{U} B} & A \\
\end{array} (\to^{U})^{-1}$$

Given: extension $\Pi, \Delta, \Sigma \Rightarrow D$ of $\Phi, \Gamma, \Psi \Rightarrow B$. Alternating steps:

- ► IH_a(U) for extension $\Pi, \Delta \Rightarrow A \rightarrow^{U} D \mapsto$ decoration M_1 of U whose sequent $\Pi_1, \Delta_1 \Rightarrow C_1 \stackrel{\sim}{\to} D_1$ extends $\Pi, \Delta \Rightarrow A \rightarrow^{U} D$.
- ► IH_a(V) for the extension $\Delta_1, \Sigma \Rightarrow C_1 \mapsto$ decoration N_2 of V whose sequent $\Delta_2, \Sigma_2 \Rightarrow C_2$ extends $\Delta_1, \Sigma \Rightarrow C_1$.
- ► IH_a(U) for $\Pi_1, \Delta_2 \Rightarrow C_2 \stackrel{\sim}{\to} D_1 \mapsto \text{decoration } M_3 \text{ of } U \text{ whose sequent } \Pi_3, \Delta_3 \Rightarrow C_3 \stackrel{\sim}{\to} D_3 \text{ extends } \Pi_1, \Delta_2 \Rightarrow C_2 \stackrel{\sim}{\to} D_1.$
- ► IH_a(V) for the extension $\Delta_3, \Sigma_2 \Rightarrow C_3 \mapsto$ decoration N₄ of V whose sequent $\Delta_4, \Sigma_4 \Rightarrow C_4$ extends $\Delta_3, \Sigma_2 \Rightarrow C_3$.

Example: list reversal (U. Berger)

Define the graph Rev of the list reversal function inductively, by

$$\begin{aligned} & \operatorname{Rev}(\operatorname{nil},\operatorname{nil}), & (1) \\ & \operatorname{Rev}(v,w) \to \operatorname{Rev}(v:+:x:,x::w). & (2) \end{aligned}$$

We prove weak existence of the reverted list:

$$\forall_{\nu} \tilde{\exists}_{w} \operatorname{Rev}(\nu, w) \qquad \big(:= \forall_{\nu} \big(\forall_{w} (\operatorname{Rev}(\nu, w) \to \bot) \to \bot \big) \big).$$

Fix v and assume $u: \forall_w \neg \text{Rev}(v, w)$. To show \bot . To this end we prove that all initial segments of v are non-revertible, which contradicts (1). More precisely, from u and (2) we prove

$$\forall_{v_2} A(v_2), \quad A(v_2) := \forall_{v_1} \big(v_1 : + : v_2 = v \to \forall_w \neg \operatorname{Rev}(v_1, w) \big)$$

by induction on v_2 . Base $v_2 = \text{nil:}$ Use u. Step. Assume $v_1 :+: (x :: v_2) = v$, fix w and assume further $\text{Rev}(v_1, w)$. Properties of the append function imply that $(v_1 :+: x:) :+: v_2 = v$. IH for $v_1 :+: x$: gives $\forall_w \neg \text{Rev}(v_1 :+: x:, w)$. Now (2) yields \bot .

Results of demo

- Weak existence proof formalized.
- ► Translated into an existence proof. Extracted algorithm: f(v₁) := h(v₁, nil, nil) with

 $h(nil, v_2, v_3) := v_3, \quad h(x :: v_1, v_2, v_3) := h(v_1, v_2:+:x:, x :: v_3).$

The second argument of *h* is not needed, but makes the algorithm quadratic. (In each recursion step $v_2 :+: x$: is computed, and the list append function :+: is defined by recursion over its first argument.)

▶ Optimal decoration of existence proof computed. Extracted algorithm: f(v₁) := g(v₁, nil) with

$$g(\mathrm{nil},v_2):=v_2,\quad g(x::v_1,v_2):=g(v_1,x::v_2).$$

This is the usual linear algorithm, with an accumulator.

Future work

- Explore applications of refined A-translation and automated decoration: Combinatorics, Gröbner bases (Diana Ratiu).
- Logic of inductive definitions: Include formal neighborhoods into the language (Basil Karadais).
- Compare refined A-translation and Gödel's Dialectica interpretation (Trifon Trifonov).