Decorating proofs

Helmut Schwichtenberg (with Diana Ratiu)

Mathematisches Institut, LMU, München
Mathematics - Algorithms - Proofs, ICTP, Trieste, August 2008

Why extract computational content from proofs?

- Proofs are machine checkable \Rightarrow no logical errors.
- Program on the proof level \Rightarrow maintenance becomes easier. Possibility of program development by proof transformation (Goad 1980).
- Discover unexpected content:
- U. Berger 1993: Tait's proof of the existence of normal forms for the typed λ-calculus \Rightarrow "normalization by evaluation".
- Content in weak (or "classical") existence proofs, of

$$
\tilde{\exists}_{x} A:=\neg \forall_{x} \neg A,
$$

via proof interpretations: (refined) A-translation or Gödel's Dialectica interpretation.

Falsity as a predicate variable \perp

In some proofs no knowledge about falsity \mathbf{F} is required. Then a predicate variable \perp instead of \mathbf{F} will do, and we can define

$$
\tilde{\exists}_{y} G:=\forall_{y}(G \rightarrow \perp) \rightarrow \perp \text {. }
$$

Why is this of interest? We can substitute an arbitrary formula for \perp, for instance, $\exists_{y} G$. Then a proof of $\tilde{\exists}_{y} G$ is turned into a proof of

$$
\forall_{y}\left(G \rightarrow \exists_{y} G\right) \rightarrow \exists_{y} G
$$

As the premise is provable, we have a proof of $\exists_{y} G$. (A-translation; H. Friedman 1978, Dragalin 1979).

Problems

Unfortunately, this argument is not quite correct.

- G may contain \perp, and hence is changed under the substitution $\perp \mapsto \exists y$.
- We may have used axioms or lemmata involving \perp (e.g., $\perp \rightarrow P$), which need not be derivable after the substitution.
But in spite of this, the simple idea can be turned into something useful. Assume that
- the lemmata \vec{D} and the goal formula G are such that we can derive $\vec{D} \rightarrow D_{i}\left[\perp:=\exists_{y} G\right]$ and $G\left[\perp:=\exists_{y} G\right] \rightarrow \exists_{y} G$.
- the substitution $\perp \mapsto \exists_{y} G$ turns the axioms into instances of the same scheme with different formulas, or else into derivable formulas.

Problems (continued)

From our given derivation (in minimal logic) of

$$
\vec{D} \rightarrow \forall_{y}(G \rightarrow \perp) \rightarrow \perp
$$

we obtain by substituting $\perp \mapsto \exists y G$

$$
\vec{D}\left[\perp:=\exists_{y} G\right] \rightarrow \forall_{y}\left(G\left[\perp:=\exists_{y} G\right] \rightarrow \exists_{y} G\right) \rightarrow \exists_{y} G
$$

Now $\vec{D} \rightarrow D_{i}\left[\perp:=\exists_{y} G\right]$ allows to drop the substitution in \vec{D}, and by $G\left[\perp:=\exists_{y} G\right] \rightarrow \exists_{y} G$ the second premise is derivable. Hence we obtain as desired

$$
\vec{D} \rightarrow \exists_{y} G
$$

Definite and goal formulas

A formula is relevant if it "ends" with \perp :

- \perp is relevant,
- if C is relevant and B is arbitrary, then $B \rightarrow C$ is relevant, and
- if C is relevant, then $\forall_{x} C$ is relevant.

We define goal formulas G and definite formulas D inductively.
P ranges over prime formulas (including \perp).
$G::=P \mid D \rightarrow G$ if G relevant \& D irrelevant $\Rightarrow D$ quantifier-free $\mid \forall_{x} G$ if G irrelevant,
$D::=P \mid G \rightarrow D$ if D irrelevant $\Rightarrow G$ irrelevant $\mid \forall_{x} D$.

Let $A^{\mathbf{F}}$ denote $A[\perp:=\mathbf{F}]$.

Properties of definite and goal formulas

Lemma

For definite formulas D and goal formulas G we have derivations from $\mathbf{F} \rightarrow \perp$ of

$$
\begin{array}{lr}
\left(\left(D^{\mathbf{F}} \rightarrow \mathbf{F}\right) \rightarrow \perp\right) \rightarrow D & \text { for } D \text { relevant } \\
D^{\mathbf{F}} \rightarrow D \\
G \rightarrow G^{\mathbf{F}} & \\
G \rightarrow\left(G^{\mathbf{F}} \rightarrow \perp\right) \rightarrow \perp . & \text { for } G \text { irrelevant },
\end{array}
$$

Lemma
For goal formulas $\vec{G}=G_{1}, \ldots, G_{n}$ we have a derivation from
F $\rightarrow \perp$ of

$$
\left(\vec{G}^{\mathbf{F}} \rightarrow \perp\right) \rightarrow \vec{G} \rightarrow \perp
$$

Elimination of \perp from weak existence proofs

Assume that for arbitrary formulas \vec{A}, definite formulas \vec{D} and goal formulas \vec{G} we have a derivation of

$$
\vec{A} \rightarrow \vec{D} \rightarrow \forall_{\vec{y}}(\vec{G} \rightarrow \perp) \rightarrow \perp .
$$

Then we can also derive

$$
(\mathbf{F} \rightarrow \perp) \rightarrow \vec{A} \rightarrow \vec{D}^{\mathbf{F}} \rightarrow \forall_{\vec{y}}\left(\vec{G}^{\mathbf{F}} \rightarrow \perp\right) \rightarrow \perp .
$$

In particular, substitution of the formula

$$
\exists_{\bar{y}} \vec{G}^{\mathbf{F}}:=\exists_{\hat{y}}\left(G_{1}^{\mathrm{F}} \wedge \cdots \wedge G_{n}^{\mathbf{F}}\right)
$$

for \perp yields

$$
\vec{A}\left[\perp:=\exists_{\vec{y}} \vec{G}^{\mathrm{F}}\right] \rightarrow \vec{D}^{\mathbf{F}} \rightarrow \exists_{\vec{y}} \vec{G}^{\mathrm{F}} .
$$

The type of a formula

- Every formula A can be seen as a computational problem (Kolmogorov). We define $\tau(A)$ as the type of a potential realizer of A, i.e., the type of the term to be extracted from a proof of A.
- Assign $A \mapsto \tau(A)$ (a type or the "nulltype" symbol ε). In case $\tau(A)=\varepsilon$ proofs of A have no computational content.

$$
\begin{aligned}
& \tau(\operatorname{Eq}(x, y)):=\varepsilon, \quad \tau\left(\exists_{x^{\rho}} A\right):= \begin{cases}\rho & \text { if } \tau(A)=\varepsilon \\
\rho \times \tau(A) & \text { otherwise }\end{cases} \\
& \tau(A \rightarrow B):=(\tau(A) \rightarrow \tau(B)), \quad \tau\left(\forall_{x^{\rho}} A\right):=(\rho \rightarrow \tau(A))
\end{aligned}
$$

with the convention

$$
(\rho \rightarrow \varepsilon):=\varepsilon, \quad(\varepsilon \rightarrow \sigma):=\sigma, \quad(\varepsilon \rightarrow \varepsilon):=\varepsilon .
$$

Realizability

Let A be a formula and z either a variable of type $\tau(A)$ if it is a type, or the nullterm symbol ε if $\tau(A)=\varepsilon$. We define the formula $z \mathbf{r} A$, to be read z realizes A :

$$
\begin{aligned}
z \mathbf{r} \operatorname{Eq}(r, s) & :=\operatorname{Eq}(r, s), \\
z \mathbf{r} \exists_{x} A(x) & := \begin{cases}A(z) & \text { if } \tau(A)=\varepsilon \\
z_{0} \mathbf{r} A\left(z_{1}\right) & \text { otherwise, },\end{cases} \\
z \mathbf{r}(A \rightarrow B) & :=\forall_{x}(x \mathbf{r} A \rightarrow \quad z \times \mathbf{r} B), \\
z \mathbf{r} \forall_{x} A \quad & :=\forall_{x} z \times \mathbf{r} A,
\end{aligned}
$$

with the convention $\varepsilon x:=\varepsilon, z \varepsilon:=z, \varepsilon \varepsilon:=\varepsilon$.

Extracted terms

For derivations M^{A} with $\tau(A)=\varepsilon$ let $\llbracket M \rrbracket:=\varepsilon$ (nullterm symbol). Now assume that M derives a formula A with $\tau(A) \neq \varepsilon$.

$$
\begin{array}{ll}
\llbracket u^{A} \rrbracket & :=x_{u}^{\tau(A)} \quad\left(x_{u}^{\tau(A)} \text { uniquely associated with } u^{A}\right), \\
\llbracket\left(\lambda_{u^{A}} M\right)^{A \rightarrow B} \rrbracket:=\lambda_{x_{u}^{\tau(A)}} \llbracket M \rrbracket, \\
\llbracket M^{A \rightarrow B} N \rrbracket & :=\llbracket M \rrbracket \mathbb{M} \rrbracket \\
\llbracket\left(\lambda_{x^{\rho}} M\right)^{\forall_{x} A} \rrbracket & :=\lambda_{x^{\rho}} \llbracket M \rrbracket \\
\llbracket M^{\forall_{x} A} r \rrbracket & :=\llbracket M \rrbracket r .
\end{array}
$$

Extracted terms for axioms

The extracted term of an induction axiom is defined to be a recursion operator. For example, in case of an induction scheme

$$
\operatorname{Ind}_{n, A}: \forall_{m}\left(A(0) \rightarrow \forall_{n}(A(n) \rightarrow A(\mathrm{~S} n)) \rightarrow A\left(m^{\mathbf{N}}\right)\right)
$$

we have

$$
\llbracket \operatorname{Ind}_{n, A} \rrbracket:=\mathcal{R}_{\mathbf{N}}^{\tau}: \mathbf{N} \rightarrow \tau \rightarrow(\mathbf{N} \rightarrow \tau \rightarrow \tau) \rightarrow \tau \quad(\tau:=\tau(A) \neq \varepsilon)
$$

Soundness

Theorem
Let M be a derivation of A from assumptions $u_{i}: C_{i}(i<n)$. Then we can find a derivation of $\llbracket M \rrbracket \mathbf{r} A$ from assumptions $\bar{u}_{i}: x_{u_{i}} \mathbf{r} C_{i}$.

Proof.
Induction on M.

Uniform universal quantifier \forall^{U} and implication \rightarrow^{U}

- We want to select relevant parts of the computational content of a proof.
- This will be possible if some "uniformities" hold. Use a uniform variant \forall^{U} of $\forall\left(\mathrm{U}\right.$. Berger 2005) and \rightarrow^{U} of \rightarrow.
- Both are governed by the same rules as the non-uniform ones. However, we will put some uniformity conditions on a proof to ensure that the extracted computational content is correct.

Extending the definitions of $\tau(A)$ and $z \mathbf{r} A$

- The definition of the type $\tau(A)$ of a formula A is extended by the two clauses

$$
\tau\left(A \rightarrow^{\cup} B\right):=\tau(B), \quad \tau\left(\forall_{x^{\rho}}^{\cup} A\right):=\tau(A)
$$

- The definition of realizability is extended by

$$
z \mathbf{r}\left(A \rightarrow{ }^{\cup} B\right):=(A \rightarrow z \mathbf{r} B), \quad z \mathbf{r}\left(\forall_{x}^{\cup} A\right):=\forall_{x} z \mathbf{r} A
$$

Extracted terms and uniform proofs

We define the extracted term of a proof, and (using this concept) the notion of a uniform proof, which gives a special treatment to the uniform universal quantifier \forall^{U} and uniform implication $\rightarrow{ }^{U}$.

More precisely, for a proof M we simultaneously define

- its extracted term $\llbracket M \rrbracket$, of type $\tau(A)$, and
- when M is uniform.

Extracted terms and uniform proofs (continued)

For derivations M^{A} where $\tau(A)=\varepsilon$ let $\llbracket M \rrbracket:=\varepsilon$ (the nullterm symbol); every such M is uniform. Now assume that M derives a formula A with $\tau(A) \neq \varepsilon$. Then
$\llbracket u^{A} \rrbracket \quad:=x_{u}^{\tau(A)} \quad\left(x_{u}^{\tau(A)}\right.$ uniquely associated with $\left.u^{A}\right)$,
$\llbracket\left(\lambda_{u^{A}} M\right)^{A \rightarrow B} \rrbracket:=\lambda_{x_{u}^{\tau(A)}} \llbracket M \rrbracket$,
$\llbracket M^{A \rightarrow B} N \rrbracket \quad:=\llbracket M \rrbracket \llbracket N \rrbracket$,
$\llbracket\left(\lambda_{x^{\rho}} M\right)^{\forall x} A \rrbracket:=\lambda_{x^{\rho}} \llbracket M \rrbracket$,
$\llbracket M^{\forall \times A} r \rrbracket \quad:=\llbracket M \rrbracket r$,
$\llbracket\left(\lambda_{u^{A}} M\right)^{A \rightarrow{ }^{U} B} \rrbracket:=\llbracket M^{A \rightarrow{ }^{U} B} N \rrbracket:=\llbracket\left(\lambda_{x^{\rho}} M\right)^{\forall_{x}^{U} A} \rrbracket:=\llbracket M^{\forall_{x}^{U} A} r \rrbracket:=\llbracket M \rrbracket$.
In all these cases uniformity is preserved, except possibly in those involving λ :

Extracted terms and uniform proofs (continued)

Consider

$$
\begin{aligned}
& {[u: A]} \\
& \frac{\mid M}{\mid M} \\
& A \rightarrow{ }^{U} B
\end{aligned} \quad \text { or as term }\left(\rightarrow_{u^{A}} M\right)^{A \rightarrow U^{+} B} .
$$

$\left(\lambda_{u^{A}} M\right)^{A \rightarrow{ }^{U} B}$ is uniform if M is and $x_{u} \notin \mathrm{FV}(\llbracket M \rrbracket)$. Similarly:
Consider

$$
\frac{A}{\forall_{x}^{U} A}\left(\forall^{U}\right)^{+} x \quad \text { or as term } \quad\left(\lambda_{x} M\right)^{\forall_{x}^{U} A} \quad(\operatorname{VarC}) .
$$

$\left(\lambda_{x} M\right)^{\forall U} A$ is uniform if M is and $x \notin \mathrm{FV}(\llbracket M \rrbracket)$.

Why $\rightarrow{ }^{U}$?

Define $A \vee^{U} B$ inductively (with parameters A, B) by

$$
\begin{aligned}
& A \rightarrow^{\mathrm{U}} A \vee^{\mathrm{U}} B, \quad B \rightarrow^{\mathrm{U}} A \vee^{\mathrm{U}} B, \\
& \left(A \vee^{\mathrm{U}} B\right) \rightarrow\left(A \rightarrow^{\mathrm{U}} C\right) \rightarrow\left(B \rightarrow^{\mathrm{U}} C\right) \rightarrow C .
\end{aligned}
$$

- Suppose that a proof M uses a lemma $L: A \vee B$.
- Then the extract $\llbracket M \rrbracket$ will contain the extract $\llbracket L \rrbracket$.
- Suppose that in M, the only computationally relevant use of L was which one of the two alternatives holds true, A or B.
- Express this by using a weakened $L^{\prime}: A \vee^{\mathrm{U}} B$.
- Since $\llbracket L^{\prime} \rrbracket$ is a boolean, the extract of the modified proof is "purified": the (possibly large) extract $\llbracket L \rrbracket$ has disappeared.

Decorating proofs

Goal: Insertion of uniformity marks into a proof.

- The sequent $\operatorname{Seq}(M)$ of a proof M consists of its context and its end formula.
- The uniform proof pattern $\operatorname{UP}(M)$ of a proof M is the result of changing in M all occurrences of \rightarrow, \forall into $\rightarrow{ }^{\mathrm{U}}, \forall^{\mathrm{U}}$, except the uninstantiated formulas of axioms and theorems.
- A formula D extends C if D is obtained from C by changing some $\rightarrow^{\mathrm{U}}, \forall^{\mathrm{U}}$ into their more informative versions \rightarrow, \forall.
- A proof N extends M if (1) UP $(M)=\mathrm{UP}(N)$, and (2) each formula in N extends the corresponding one in M. In this case $\mathrm{FV}(\llbracket N \rrbracket)$ is essentially (i.e., up to extensions of assumption formulas) a superset of $\mathrm{FV}(\llbracket M \rrbracket)$.

Decoration algorithm

We define a decoration algorithm, assigning to every uniform proof pattern U and every extension of its sequent an "optimal" decoration M_{∞} of U, which further extends the given extension. Need such an algorithm for every axiom. Example: induction.

$$
\operatorname{Ind}_{n, A}: \forall_{m}\left(A(0) \rightarrow \forall_{n}(A(n) \rightarrow A(\mathrm{Sn})) \rightarrow A\left(m^{\mathbf{N}}\right)\right)
$$

The given extension of the four A 's might be different. One needs to pick their "least upper bound" as further extension.

Decoration algorithm

Theorem (Ratiu, S)
For every uniform proof pattern U and every extension of its sequent $\operatorname{Seq}(U)$ we can find a decoration M_{∞} of U such that
(a) $\operatorname{Seq}\left(M_{\infty}\right)$ extends the given extension of $\operatorname{Seq}(U)$, and
(b) M_{∞} is optimal in the sense that any other decoration M of U whose sequent $\operatorname{Seq}(M)$ extends the given extension of $\operatorname{Seq}(U)$ has the property that M also extends M_{∞}.

Proof, by induction on U.

Case $\left(\rightarrow^{U}\right)^{-}$. Consider a uniform proof pattern

Given: extension $\Pi, \Delta, \Sigma \Rightarrow D$ of $\Phi, \Gamma, \Psi \Rightarrow B$. Alternating steps:

- $\mathrm{IH}_{a}(U)$ for extension $\Pi, \Delta \Rightarrow A \rightarrow{ }^{\mathrm{U}} D \mapsto$ decoration M_{1} of U whose sequent $\Pi_{1}, \Delta_{1} \Rightarrow C_{1} \breve{\rightarrow} D_{1}$ extends $\Pi, \Delta \Rightarrow A \rightarrow{ }^{U} D$.
- $\mathrm{IH}_{a}(V)$ for the extension $\Delta_{1}, \Sigma \Rightarrow C_{1} \mapsto$ decoration N_{2} of V whose sequent $\Delta_{2}, \Sigma_{2} \Rightarrow C_{2}$ extends $\Delta_{1}, \Sigma \Rightarrow C_{1}$.
- $\mathrm{IH}_{a}(U)$ for $\Pi_{1}, \Delta_{2} \Rightarrow C_{2} \breve{\longrightarrow} D_{1} \mapsto$ decoration M_{3} of U whose sequent $\Pi_{3}, \Delta_{3} \Rightarrow C_{3} \breve{\rightarrow} D_{3}$ extends $\Pi_{1}, \Delta_{2} \Rightarrow C_{2} \breve{ }$. D_{1}.
- $\mathrm{IH}_{a}(V)$ for the extension $\Delta_{3}, \Sigma_{2} \Rightarrow C_{3} \mapsto$ decoration N_{4} of V whose sequent $\Delta_{4}, \Sigma_{4} \Rightarrow C_{4}$ extends $\Delta_{3}, \Sigma_{2} \Rightarrow C_{3}$.

Example: list reversal (U. Berger)

Define the graph Rev of the list reversal function inductively, by

$$
\begin{align*}
& \operatorname{Rev}(\text { nil, nil }) \tag{1}\\
& \operatorname{Rev}(v, w) \rightarrow \operatorname{Rev}(v:+: x:, x:: w) \tag{2}
\end{align*}
$$

We prove weak existence of the reverted list:

$$
\forall_{v} \tilde{\exists}_{w} \operatorname{Rev}(v, w) \quad\left(:=\forall_{v}\left(\forall_{w}(\operatorname{Rev}(v, w) \rightarrow \perp) \rightarrow \perp\right)\right)
$$

Fix v and assume $u: \forall_{w} \neg \operatorname{Rev}(v, w)$. To show \perp. To this end we prove that all initial segments of v are non-revertible, which contradicts (1). More precisely, from u and (2) we prove

$$
\forall_{v_{2}} A\left(v_{2}\right), \quad A\left(v_{2}\right):=\forall_{v_{1}}\left(v_{1}:+: v_{2}=v \rightarrow \forall_{w} \neg \operatorname{Rev}\left(v_{1}, w\right)\right)
$$

by induction on v_{2}. Base $v_{2}=$ nil: Use u. Step. Assume $v_{1}:+:\left(x:: v_{2}\right)=v$, fix w and assume further $\operatorname{Rev}\left(v_{1}, w\right)$. Properties of the append function imply that $\left(v_{1}:+: x:\right):+: v_{2}=v$. IH for $v_{1}:+: x$: gives $\forall_{w} \neg \operatorname{Rev}\left(v_{1}:+: x:, w\right)$. Now (2) yields $\underset{\underline{2}}{ }$,

Results of demo

- Weak existence proof formalized.
- Translated into an existence proof. Extracted algorithm: $f\left(v_{1}\right):=h\left(v_{1}\right.$, nil, nil $)$ with $h\left(\mathrm{nil}, v_{2}, v_{3}\right):=v_{3}, \quad h\left(x:: v_{1}, v_{2}, v_{3}\right):=h\left(v_{1}, v_{2}:+: x:, x:: v_{3}\right)$.

The second argument of h is not needed, but makes the algorithm quadratic. (In each recursion step $v_{2}:+: x$: is computed, and the list append function :+: is defined by recursion over its first argument.)

- Optimal decoration of existence proof computed. Extracted algorithm: $f\left(v_{1}\right):=g\left(v_{1}\right.$, nil $)$ with

$$
g\left(\text { nil }, v_{2}\right):=v_{2}, \quad g\left(x:: v_{1}, v_{2}\right):=g\left(v_{1}, x:: v_{2}\right) .
$$

This is the usual linear algorithm, with an accumulator.

Future work

- Explore applications of refined A-translation and automated decoration: Combinatorics, Gröbner bases (Diana Ratiu).
- Logic of inductive definitions: Include formal neighborhoods into the language (Basil Karadais).
- Compare refined A-translation and Gödel's Dialectica interpretation (Trifon Trifonov).

