Effective Constructive

Algebraic Topology

（dimputing the boundary of the generator 19 ）〈TnPr 〈TnPr 〈InPr S3＜＜Abar［2 S1］［2 S1］＞＞＞＜＜Abar＞＞＞＜＜Abar＞＞＞ End of computing．

Honology in dimension 6 ：

Component 2／122
Ana Romero，Universidad de La Rioja
Julio Rubio，Universidad de La Rioja
Francis Sergeraert，Institut Fourier，Grenoble
Map Ictp Conference，Trieste，August 25－29， 2008

Semantics of colours:

$$
\begin{aligned}
\text { Blue }= & \text { "Standard" Mathematics } \\
\text { Red }= & \text { Constructive, effective, } \\
& \text { algorithm, machine object, } \ldots
\end{aligned}
$$

Violet $=$ Problem, difficulty, obstacle, disadvantage, \ldots
Green $=$ Solution, essential point, mathematicians, \ldots

Three solutions for Constructive Algebraic Topology:

1. Rolf Schön (Inductive methods).
2. Effective Homology.
3. Operadic Algebraic Topology.

Only the second one so far
led to concrete computer programs.
Plan of the talk: 1. Computer illustration
around CW-complexes.
2. Constructive statement of
the homological problem.
3. Other computer illustrations.

Attaching a cell D^{n} to a topological space X
along the boundary S^{n-1} :
$X=$ Topological space.
$f: S^{n-1} \rightarrow X=$ continuous map.
$\Rightarrow X \cup_{f} D^{n}:=\left(X \amalg D^{n}\right) /\left(X \ni f(x) \sim x \in S^{n-1}\right)$.

Notion of CW-Complex X :

$$
\boldsymbol{X}=\underset{\longrightarrow}{\lim }\left\{X_{0} \subset X_{1} \subset X_{2} \subset X_{3} \subset \cdots \subset X_{n} \subset \cdots\right\}_{n \in \mathbb{N}}
$$

with $X_{0}=$ discrete space and
the n-skeleton X_{n} is obtained from the $(n-1)$-skeleton X_{n-1}
by attaching n-disks $D_{1}^{n}, D_{2}^{n}, \cdots$ to X_{n-1} according to attaching maps $f_{1}^{n}, f_{2}^{n}, \cdots$

Every reasonable space can be presented up to homotopy equivalence as a CW-complex of finite type.

Example 1. Presentation of $X=P^{2} \mathbb{R}$ as a CW-complex.

$$
\begin{aligned}
& \boldsymbol{X}_{0}=* \\
& D^{1} \supset S^{0} \xrightarrow{f^{1}} * \\
& \Rightarrow X_{1}=X_{0} \cup_{f^{1}} D^{1}=X_{1}=S^{1}=\{Z \in \mathbb{C} \underline{\text { st }}|z|=1\} \\
& D^{2} \supset S^{1} \xrightarrow{f^{2}} S^{1}: z \mapsto z^{2} \\
& \Rightarrow X=X_{2}=X_{1} \cup_{f^{2}} D^{2}=P^{2} \mathbb{R}
\end{aligned}
$$

Example 2. More generally:

$$
\text { Presentation of } X=P^{\infty} \mathbb{R} \text { as a CW-complex. }
$$

1. $X_{0}=P^{0} \mathbb{R}=S^{0} / \sim=*$.
2. Let us assume $X_{n}=P^{n} \mathbb{R}$ constructed.
3. $D^{n+1} \supset S^{n} \xrightarrow{f^{n+1}} P^{n} \mathbb{R}$
with $f^{n+1}=$ the canonical projection.
4. $\Rightarrow X_{n+1}=D^{n+1} \cup_{f^{n+1}} X_{n}=P^{n+1} \mathbb{R}$.
$(++n)$; goto 2.
5. $\boldsymbol{X}=\lim _{\rightarrow} X_{n}=P^{\infty} \mathbb{R}$.

Example 3. Simplicial complexes and simplicial sets.
$X=$ simplicial set.

Definition: The \underline{n}-skeleton X_{n} of X is obtained from X by keeping the non-degenerate simplices of dimension $\leq \boldsymbol{n}$ (and their degeneracies), throwing away the non-degenerate simplices of dimension $>n$ (and their degeneracies).
$\left|X_{n}\right|$ obtained from $\left|X_{n-1}\right|$
by attaching n-simplices $=n$-disks.
$\Rightarrow X=$ CW-complex with $|X|=\lim _{\rightarrow}\left|X_{n}\right|$.

Simplicial version of $P^{\infty} \mathbb{R}$:

$$
\begin{aligned}
& P^{\infty} \mathbb{R}=X=K\left(\mathbb{Z}_{2}, 1\right) \\
& \Rightarrow X_{n}^{N D}=\left\{\sigma_{n}\right\}
\end{aligned}
$$

$$
\begin{aligned}
& \partial_{i} \sigma_{n}=\quad \sigma_{n-1} \text { if } i=0, n ; \\
& =\eta_{i-1} \sigma_{n-2} \text { if } 0<i<n . \\
& \Rightarrow C_{*} \boldsymbol{X}=\{\cdots \longleftarrow \stackrel{0}{\mathbb{Z}} \stackrel{0}{\leftarrow} \stackrel{1}{\mathbb{Z}} \stackrel{\times 2}{\leftarrow} \stackrel{2}{\mathbb{Z}} \stackrel{0}{\longleftarrow} \stackrel{3}{\mathbb{Z}} \stackrel{\times 2}{\longleftarrow} \stackrel{4}{\mathbb{Z}} \stackrel{0}{\longleftarrow} \stackrel{5}{\mathbb{Z}} \stackrel{\times 2}{\longleftarrow} \cdots\} \\
& \Rightarrow H_{i}\left(P^{\infty} \mathbb{R}\right)=\mathbb{Z} \quad \text { if } i=0 ; \\
& \mathbb{Z}_{2} \text { if } i>0 \text { odd; } \\
& 0 \text { if } i>0 \text { even. }
\end{aligned}
$$

The same for $P^{\infty} \mathbb{C}$?

Topological version ? Easy.
$\boldsymbol{P}^{\infty} \mathbb{C}=\boldsymbol{X}=\lim _{\rightarrow} \boldsymbol{X}_{2 n}$ where:

$$
X_{2 n}=X_{2 n-2} \cup_{f^{2 n}} D^{2 n}
$$

with: $D^{2 n} \supset S^{2 n-1} \rightarrow P^{n-1} \mathbb{C}$ the canonical projection.

Simplicial version?

Easy up to homotopy.
Easiest solution $=K(\mathbb{Z}, 2)$.
Justification $=$ two principal fibrations:

$$
\begin{gathered}
S^{1} \hookrightarrow S^{\infty} \longrightarrow P^{\infty} \mathbb{C} \\
K(\mathbb{Z}, 1) \hookrightarrow E(\mathbb{Z}, 1) \longrightarrow K(\mathbb{Z}, 2)
\end{gathered}
$$

$+\left(K(\mathbb{Z}, 1) \sim S^{1}\right)+\left(S^{\infty}\right.$ contractible $)+(E(\mathbb{Z}, 1)$ contractible $)$

$$
\Rightarrow P^{\infty} \mathbb{C} \sim K(\mathbb{Z}, 2)
$$

Remark: $K(\mathbb{Z}, 2)$ not of finite type!

Cellular homology.

$$
S^{n}=S^{1} \times D^{n-1} / \sim \text { with }(z, x) \sim\left(z^{\prime}, x^{\prime}\right) \text { if } x=x^{\prime} \in \partial D^{n-1}
$$

Canonical self-map of degree \boldsymbol{k} for S^{n} :

$$
\alpha_{k}: S^{n} \rightarrow S^{n}:(z, x) \mapsto\left(z^{n}, x\right)
$$

Theorem (Hopf): $\mathcal{C}\left(S^{n}, S^{n}\right) / \sim \cong \mathbb{Z}$.

CW-complex:

$$
\boldsymbol{X}=\lim _{\rightarrow} \boldsymbol{X}_{n}=\left\{\left(\boldsymbol{D}_{i}^{n}, \boldsymbol{f}_{i}^{n}: S^{n-1} \rightarrow \boldsymbol{X}_{n-1}\right)_{1 \leq i \leq m_{n}}\right\}_{n \in \mathbb{N}}
$$

Associated cellular chain complex:

Coefficient $\alpha_{1,1}$ of d_{n} in column 1 and row 1 obtained from $g_{1,1}^{n}$:

$$
\begin{aligned}
& f_{1}^{n}: S^{n-1} \rightarrow X^{n-1} \\
& \Rightarrow g_{1,1}^{n}: S^{n-1} \rightarrow Y_{1}^{n-1}=X^{n-1} /\left[X^{n-2} \cup\left(\cup_{i \neq 1} D_{i}^{n-1}\right)\right]=S^{n-1} \\
& \Rightarrow \alpha_{1,1}=\operatorname{deg}\left(g_{1,1}^{n}\right)
\end{aligned}
$$

Example: $\boldsymbol{X}=$

Cellular complex $=\left\{0 \longleftarrow \mathbb{Z} \stackrel{d_{1}}{\longleftarrow} \mathbb{Z}^{2} \stackrel{d_{2}}{\longleftarrow} \mathbb{Z} \longleftarrow 0\right\}$ with $d_{1}=\left[\begin{array}{ll}0 & 0\end{array}\right]$ and $d_{2}=\left[\begin{array}{l}2 \\ 2\end{array}\right] \Rightarrow H_{*}=\left\{\mathbb{Z}, \mathbb{Z}_{2}+\mathbb{Z}, 0\right\}$

Theorem (Adams, 1956): Let X be a 1-reduced CW-complex (one vertex, no 1-cell).

Then ($)^{\text {a }}$ a CW -model for the loop space ΩX, where every sequence $\left(\sigma_{1}, \ldots, \sigma_{k}\right)$ of cells of X of respective dimensions $\left(d_{1}, \ldots, d_{k}\right)$ generate a cell of dimension $\left(d_{1}+\cdots+d_{k}-k\right)$ in the CW-model of ΩX.

Examples:

$$
\begin{gathered}
S^{3}=(*, 0,0,1) \Rightarrow \Omega S^{3}=(*, 0,1,0,1,0,1, \ldots) \\
P^{2} \mathbb{C}=(*, 0,1,0,1) \Rightarrow \\
\Omega P^{2} \mathbb{C}=(*, 1,1,2,3,4,6,9,13,19,28, \ldots)
\end{gathered}
$$

Typical example

 extracted fromthe encyclopedy:
(Ioan James editor).

Chapter 13

Stable Homotopy and Iterated Loop Spaces

Gunnar Carlsson

James Milgram

CHAPTER 13

Stable Homotopy and Iterated Loop Spaces

Gunnar Carlsson

R. James Milgram
 c-mal: mignumepmentryinicas

[^0]a anthes wee paritilly seppexed by gromst from the N.S.F
ADBOOK OP ALGEARAIC TOPOLOCY ined by L.M. lanes
moss lisevike Science R. . All rigtes menved

6. The structure of second loop spaces

In Section 5 we showed that for a connected CW complex with no one cells one may produce a CW complex, with cell complex given as the free monoid on generating cells, each in one dimension less than the corresponding cell of X, which is homotopy equivalent to ΩX. To go further one should study similar models for double loop spaces, and more generally for iterated loop spaces.

In principle this is direct. Assume X has no i-cells for $1 \leqslant i \leqslant n$ then we can iterate the Adams-Hilton construction of Section 5 and obtain a cell complex which represents $\Omega^{n} X$. However, the question of determining the boundaries of the cells is very difficult as we already saw with Adams' solution of the problem in the special case that X is a simplicial complex with $s k_{1}(X)$ collapsed to a point. It is possible to extend Adams' analysis to $\Omega^{2} X$, but as we will see there will be severe difficulties with extending it to higher loop spaces except in the case where $X=\Sigma^{n} Y$.

Translation: No known algorithm using these methods
computes $\boldsymbol{H}_{*}\left(\Omega^{n} \boldsymbol{X}\right)$ for $n \geq 3$ except when X is an n-suspension $X=\Sigma^{n} Y$.

Typical example: $\boldsymbol{H}_{*}\left(\Omega^{3}\left(\boldsymbol{P}^{\infty} \mathbb{R} / P^{3} \mathbb{R}\right)\right)=$???
Adams: There exists a finite-type CW-complex with the homotopy type of $\Omega^{3}\left(P^{\infty} \mathbb{R} / P^{3} \mathbb{R}\right)$.

Dimension	0	1	2	3	4	5	6	7	8	9	10
Cell-\#	1	1	2	5	13	33	84	214	545	1388	3535
\cdots											

But what about the homological boundary matrices ???

Kenzo computing $d_{5}:\left[C_{5}\left(\Omega^{3}\right)=\mathbb{Z}^{33}\right] \rightarrow\left[C_{4}\left(\Omega^{3}\right)=\mathbb{Z}^{13}\right]:$

```
\(=========\) MATRIX 13 lines +33 columns \(=====\)
\(\mathrm{L} 1=[\mathrm{C} 1=-2]\)
\(\mathrm{L} 2=[\mathrm{C} 1=-1]\)
\(\mathrm{L} 3=[\mathrm{C} 1=-4][\mathrm{C} 2=1][\mathrm{C} 3=-1][\mathrm{C} 4=-2]\)
\(\mathrm{L} 4=[\mathrm{C} 2=1][\mathrm{C} 3=-1][\mathrm{C} 6=2]\)
\(\mathrm{L} 5=[\mathrm{C} 1=6][\mathrm{C} 4=1][\mathrm{C} 6=1]\)
\(\mathrm{L} 6=[\mathrm{C} 1=4][\mathrm{C} 4=4][\mathrm{C} 6=4][\mathrm{C} 7=3]\)
\(\mathrm{L} 7=[\mathrm{C} 1=4][\mathrm{C} 12=-2][\mathrm{C} 14=2]\)
\(\mathrm{L} 8=[\mathrm{C} 1=6][\mathrm{C} 4=1][\mathrm{C} 6=1]\)
\(\mathrm{L} 9=[\mathrm{C} 1=4][\mathrm{C} 4=4][\mathrm{C} 6=4][\mathrm{C} 7=3]\)
\(\mathrm{L} 10=[\mathrm{C} 8=4][\mathrm{C} 10=1][\mathrm{C} 11=-1][\mathrm{C} 14=-4][\mathrm{C} 15=-2][\mathrm{C} 20=-2]\)
\(\mathrm{L} 11=[\mathrm{C} 1=4][\mathrm{C} 8=4][\mathrm{C} 10=1][\mathrm{C} 11=-1][\mathrm{C} 16=-4][\mathrm{C} 18=-1][\mathrm{C} 19=1][\mathrm{C} 23=-2]\)
\(\mathrm{L} 12=[\mathrm{C} 12=4][\mathrm{C} 13=2][\mathrm{C} 16=-4][\mathrm{C} 18=-1][\mathrm{C} 19=1][\mathrm{C} 27=-2]\)
\(\mathrm{L} 13=[\mathrm{C} 1=-1][\mathrm{C} 20=4][\mathrm{C} 21=2][\mathrm{C} 23=-4][\mathrm{C} 24=-2][\mathrm{C} 27=4][\mathrm{C} 28=2]\)
\(=========\) END-MATRIX
```

Meaning:

Analysis of the problem:
"Standard" homological algebra is not constructive.
Typical statement:
The sequence $A \stackrel{\alpha}{\longleftarrow} B \stackrel{\beta}{\longleftarrow} C$ is exact.
Common translation:

$$
(\forall b \in B) \quad[(\alpha(b)=0) \Rightarrow(\exists c \in C \underline{\text { st }} b=\beta(c))]
$$

with $\exists c \in C$ most often non-constructive.

Constructive exactness:
$A \stackrel{\alpha}{\longleftarrow} B \stackrel{\beta}{\longleftarrow} C$ constructively exact
if an algorithm $\rho: \operatorname{ker} \alpha \rightarrow C$ is given satisfying:

\Rightarrow Organizational algebraic problems:

$$
0 \longleftarrow \mathbb{Z} / 2 \mathbb{Z} \underset{\underset{\rho ?}{\stackrel{\mathrm{pr}}{\ldots-\lambda}} \mathbb{Z}}{\mathbb{Z}}
$$

where ρ cannot be a group homomorphism.

Definition: A (homological) reduction is a diagram:

$$
\rho: h \bigcirc \widehat{C}_{*} \stackrel{g}{f} C_{*}
$$

with:

1. \widehat{C}_{*} and $C_{*}=$ chain complexes.
2. f and $g=$ chain complex morphisms.
3. $h=$ homotopy operator (degree +1).
4. $f g=\mathrm{id}_{C_{*}}$ and $d_{\widehat{C}} h+h d_{\widehat{C}}+g f=\mathrm{id}_{\widehat{C}_{*}}$.
5. $f h=0, h g=0$ and $h h=0$.

Let $\rho: h \subset \widehat{C}_{*}^{\stackrel{g}{f}} C_{*}$ be a reduction.

Frequently:

1. \widehat{C}_{*} is a locally effective chain complex:
its homology groups are unreachable.
2. C_{*} is an effective chain complex:
its homology groups are computable.
3. The reduction ρ is an entire description of the homological nature of \widehat{C}_{*}.
4. Any homological problem in \widehat{C}_{*} is solvable thanks to the information provided by ρ.
$\rho: h \subset \widehat{C}_{*} \stackrel{g}{f} C_{*}$
5. What is $H_{n}\left(\widehat{C}_{*}\right)$?
6. Let $x \in \widehat{C}_{n}$. Is x a cycle?

Solution: Compute $H_{n}\left(C_{*}\right)$. Solution: Compute $d_{\widehat{C}_{*}}(x)$.
3. Let $x, x^{\prime} \in \widehat{C}_{n}$ be cycles. Are they homologous?

Solution: Look whether $f(x)$ and $f\left(x^{\prime}\right)$ are homologous.
4. Let $x, x^{\prime} \in \widehat{C}_{n}$ be homologous cycles.

$$
\text { Find } y \in \widehat{C}_{n+1} \text { satisfying } d y=x-x^{\prime} ?
$$

Solution:
(a) Find $z \in C_{n+1}$ satisfying $d z=f(x)-f\left(x^{\prime}\right)$.
(b) $y=g(z)+h\left(x-x^{\prime}\right)$.

The END

Computing the boundary of the generator 19 (dimension 7) :〈TnPr <TnPr <InPr S3 <<Abar[2 S1][2 S1]>>> <Abar>>> <<Abar>>> End of computing.

Honology in dimension 6 :

Component 2/122
Ana Romero, Universidad de La Rioja
Julio Rubio, Universidad de La Rioja
Francis Sergeraert, Institut Fourier

[^0]: Contents

 - Ietrotuction
 2 Arecquinies

 21. Busic hanrecopy theary
 22. Hurvaica fitrations

 23 Sere filmions
 24 Quasifiberings
 25. Assoistal gusiffricions. ...

 Sperier-Whishetrad duality.
 it Mer Seffirition aud miin pert
 41. He detindion atd maia propenies .,

 Te wincrusike and peocesty of loep spmes
 51. The spees of Mocre loope

 52 Fuw uppolygizal mexuids
 53 The lums ponstrution
 54. The Addums-lition cosstriction for Ω
 is The Adams ocber consarution
 he structure of seocond lasp pques.
 61. Hownopy commumativily in sexand bop spoee

 22 The Zistecos madel for $\pi^{2} X$
 63. The depperexy mups for the Zilcheon models

 4 The Zildgan modes for inerred loop ssoess of iterakd suspensing

