
A computer verified, monadic, functional implementation of

the integral.

Russell O’Connor

Radboud University Nijmegen

Bas Spitters

Eindhoven University of Technology

22 August 2008

Abstract. We provide a computer verified exact monadic functional implementation of

the Riemann integral in type theory. Together with previous work by O’Connor, this may

be seen as the beginning of the realization of Bishop’s vision to use constructive mathe-

matics as a programming language for exact analysis.1

1. Introduction

Integration is one of the fundamental techniques in numerical computation. However, its imple-
mentation using floating point numbers requires continuous effort on the part of the user in
order to ensure that the results are correct. This burden can be shifted away from the end-user
by providing a library of exact analysis in which the computer handles the error estimates. For
high assurance we use computer verified proofs that the implementation is actually correct;
see [GNSW07] for an overview. It has long been suggested that by using constructive mathe-

matics exact analysis and provable correctness can be unified [Bis67, Bis70]. Constructive math-
ematics provides a high level framework for specifying computations (Section 2.1). However,
Bishop [Bis67] p.357 writes:

As written, this book is person-oriented rather than computer-oriented. It would

be of great interest to have a computer-oriented version. Without such a version, it

is hard to predict with any confidence what form computer-oriented abstract anal-

ysis will eventually assume. A thoughtful computer-oriented presentation should

uncover many interesting phenomena.

Our aim is to provide such a presentation. In fact, we provide much more. We provide an
implementation in dependent type theory (Section 2.2). Type theory is a formal framework for
constructive mathematics [ML98, ML82]. It supports the development of formal proofs, while,
at the same time, being an efficient functional programming language with a dependent type
system. We use the Coq implementation of type theory [Tea08]. As a feasibility study, we have
implemented Riemann integration. Our implementation is functional and structured in a
monadic way. This structure greatly simplifies the integrated development of the program
together with its correctness proof.

In constructive analysis one approximates real numbers by rational, or dyadic numbers.
Rational numbers, as opposed to the real numbers, can be represented exactly in a computer.
The real numbers are the completion of the rationals. The completion construction can be orga-
nized in a monad, a familiar construct from functional programming (Section 2.6). This comple-
tion monad provides an efficient combination of proving and computing [O’C07]. In this paper,
we use a similar technique: the integrable functions are in the completion of rational step func-
tions (Section 3.1), and the same monadic implementation is reused.

Our contributions include:

• We show that the step functions form a monad itself (Section 3.2) that distributes over
the completion monad (Section 3.9).

• Using the applicative functor interface of the step function monad we lift functions and
relations to step functions (Section 3.3).

1. Bas Spitters is supported by NWO.

Russell O’Connor, Bas Spitters 1

• Using combinators we also lift theorems to reason about these functions and relations on
step functions (Section 4.5).

• We define both L1 and L∞ metrics on step functions (Section 3.5) and define integration
on the completion of the L1 space (Section 3.6).

• We show how to embed uniformly continuous functions into this space in order to inte-
grate them (Section 3.7).

• We extend our definition of Riemann integral to a Stieltjes integral (Section 3.8).

1.1. Notation. We will use traditional notation from functional programming for this paper.
Thus fx will represent function application. We will typically use curried functions, so fxy will
represent (fx)y, and f will have type X⇒Y ⇒Z (meaning X⇒ (Y ⇒Z)).

We will mostly gloss over details about equivalence relations for types. We will use ≍ to
represent the equivalence relation to be used with the types in question. We will use 4 for
defining functions and constants.

We denote the type of the closed unit interval as [0, 1], and]0, 1[will be the type of the open
interval. We denote the the open interval restricted to the rational numbers by]0, 1[Q.

2. Background

2.1. Constructive mathematics and type theory. We wish to use constructive reasoning
because constructive proofs have a computational interpretation. For example, a constructive
proof of ϕ ∨ ψ tells which of the two disjuncts hold. A proof of ∃n:N.Pn gives an explicit value
for n that makes Pn hold. Most importantly, we have a functional interpretation of ⇒ and ∀.
A proof of ∀n: N.∃m: N.Rnm is interpreted as a function with an argument n that returns an
m paired with a proof of Rnm. A proof of ¬ϕ, which equal to ϕ⇒⊥ by definition, is a function
taking an arbitrary proof of ϕ to a proof of ⊥ (false)—which means there should not be any
proofs of ϕ.

The connectives in constructive logic come equipped with their constructive rules of inference
(given by natural deduction)[Tho91]. Excluded middle (ϕ ∨ ¬ϕ) cannot be deduced in general,
and proof by contradiction, ¬¬ϕ⇒ ϕ, is also not provable in general.

2.2. Dependently typed functional programming. The functional interpretation of con-
structive deductions is given by the Curry-Howard isomorphism [Tho91]. This isomorphism
associates formulas with dependent types, and proofs of formulas with functional programs of
the associated dependent types. For example, the identity function λx:A.x of type A⇒A repre-
sents a proof of the tautology A⇒ A. Table 1 lists the association between logical connectives
and type constructors.

Logical Connective Type Constructor

implication: ⇒ function type: ⇒
conjunction: ∧ product type: ×
disjunction: ∨ disjoint union type: +

true: ⊤ unit type: ()

false: ⊥ void type: ∅
for all: ∀x.Px dependent function type: Πx.Px

exists: ∃x.Px dependent pair type: Σx.Px

Table 1. The association between formulas and types given by the Curry-Howard isomorphism

In dependent type theory, functions from values to types are allowed. Using types
parametrized by values, one can create dependent pair types, Σx:A.Px, and dependent function
types, Πx:A.Px. A dependent pair consists of a value x of type A, and a value of type Px. The
type of the second value depends on the first value, x. A dependent function is a function from
the type A to the type Px. The type of the result depends on the value of the input.

2 A computer verified, monadic, functional implementation of the integral.

The association between logical connectives and types can be carried over to constructive
mathematics. We associate mathematical structures, such as the natural numbers, with induc-
tive types in functional programming languages. We associate atomic formulas with functions
returning types. For example, we can define equality on the natural numbers, x=N y, as a recur-
sive function:

0 =N 0 4 ⊤

Sx=N 0 4 ⊥

0 =NSy 4 ⊥

Sx=NSy 4 x=N y

One catch is that general recursion is not allowed when creating functions. The problem is that
general recursion allows one to create a fixed-point operator, fix : (ϕ⇒ ϕ) ⇒ ϕ, that corresponds
to a proof of a logical inconsistency. To prevent this, we allow only well-founded recursion over
an argument with an inductive type. Because well-founded recursion ensures that functions
always terminate, the language is not Turing complete. However, the language can still express
fast growing functions like the Ackermann function without difficulty [Tho91].

Because proofs and programs are written in the same language, we can freely mix the two.
For example, in previous work [O’C07], the real numbers are presented by the type

∃f :Q+⇒Q.∀ε1 ε2.|fε1− fε2| ≤ ε1 + ε2. (1)

Values of this type are pairs of a function f :Q+ ⇒Q and a proof of ∀ε1 ε2.|fε1 − fε2| ≤ ε1 + ε2.
The idea is that a real number is represented by a function f that maps any requested precision
ε: Q+ to a rational approximation of the real number. Not every function of type Q+ ⇒Q rep-
resents a real number. Only those functions that have coherent approximations should be
allowed. The proof object paired with f witnesses the fact that f has coherent approximations.
This is one example of how mixing functions and formulas allows one to create precise data-
types.

2.3. Metric Spaces. Traditionally, a metric space is defined as a set X with a metric function
d : X × X ⇒ R0+ satisfying certain axioms. The usual constructive formulation requires d be a
computable function. In previous work [O’C07], it was useful to take a more relaxed definition
for a metric space that does not require the metric be a function. Instead, the metric is repre-
sented via a (respectful) ball relation B :Q+ ⇒X⇒X⇒ ⋆ , where ⋆ is the type of propositions,
satisfying five axioms:

1. ∀xε.Bε xx

2. ∀xyε.Bεxy⇒Bε yx

3. ∀xyzε1 ε2.Bε1
xy⇒Bε2

yz⇒Bε1+ε2
xz

4. ∀xyε.(∀δ.ε< δ⇒Bδxy)⇒Bεxy

5. ∀xy.(∀ε.Bεxy)⇒x≍ y

The ball relation Bε xy expresses that the points x and y are within ε of each other. We call
this a ball relationship because the partially applied relation Bε x:X⇒ ⋆ is a predicate that rep-
resents the closed ball of radius ε around the point x.

For example, Q can be equipped with the usual metric by defining the ball relation as

Bε
Q
xy4 |x− y | ≤ ε.

This definition satisfies all the required axioms.

2.4. Uniform Continuity. We are interested in the category of metric spaces with uniformly
continuous functions between them. A function f : X ⇒ Y between two metric spaces is uni-

formly continuous with modulus µf :Q+⇒Q+ if

∀x1x2 ε.Bµf(ε)
X x1x2⇒Bε

Y (fx1)(fx2).

Russell O’Connor, Bas Spitters 3

A function is uniformly continuous if it is uniformly continuous with some modulus. We use
the notation X → Y with a single bar arrow to denote the type of uniformly continuous func-
tions from X to Y . This record type consists of three parts, a function f of type X⇒ Y , a mod-
ulus of continuity, and a proof that f is uniformly continuous with the given modulus. We will
leave the projection to the function type implicit and allow us to write fx when f : X → Y and
x:X.

2.5. Monads. Moggi [Mog89] and Wadler [Wad92] recognized that many non-standard forms
of computation may be modeled by monads2. Monads are now an established tool to structure
computation with side-effects. For instance, programs with input X and output Y which have
access to a mutable state S can be modeled as functions of type X × S⇒ Y × S, or equivalently
X⇒ (Y × S)S. The type constructor MY 4 (Y × S)S is an example of a monad. Similarly, par-
tial functions may be modeled by maps X ⇒ Y⊥, where Y⊥ 4 Y + () is a monad. The reader
monad, MY 4 Y E, for passing an environment implicitly will play an important role in this
paper.

The formal definition of a (strong) monad is a triple (M, return, bind) consisting of a type
constructor M and two functions:

return : X⇒MX

bind : (X⇒MY)⇒MX⇒MY

We will denote (return x) as x̂, and (bind f) as f̌ . These two operations must satisfy the fol-
lowing laws:

bind return a ≍ a

f̌ â ≍ fa

f̌ (ǧ a) ≍ bind (f̌ ◦ g)a

Alternatively, we can define a (strong) monad using three functions:

return : X⇒MX

map : (X⇒Y)⇒ (MX⇒MY)

join : M(MX)⇒MX

satisfying certain laws. These can be obtained from the previous presentation of a monad by
defining

map fm 4 bind (return ◦ f)m

joinm 4 Ǐm.

where I is the identity function. Conversely, given the (return, map, join) presentation we define

bind f 4 join ◦ (map f).

2.6. Completion monad. The first monad that we will meet in this paper is O’Connor’s
completion monad C [O’C07]. Given a metric space X , the completion of X is defined by

CX4 ∃f :Q+⇒X.∀ε1 ε2.Bε1+ε2

X (fε1)(fε2).

The real numbers defined as the completion, R4 CQ, is exactly the type given in equation 1.
The function return: X → CX is the embedding of a metric space in its completion. The

function join : CCX → CX is half of this isomorphism between CCX and CX (with return being
the other half). Finally, a uniformly continuous function f : X → Y can be lifted to operate on
complete metric spaces, map f : CX → CY . Uniformly continuity is essential in this definition of
map. This means that C is a monad on the category of metric spaces with uniformly continuous
functions. One advantage of this approach is that it helps us to work with simple representa-
tions. To specify a function from R→R, one can simply define a uniformly continuous function
f : Q→R, and then f̌ :R→R is the required function. Hence, the completion monad allows us
to do in a structured way what was already folklore in constructive mathematics: to work with
simple, often decidable, approximations to continuous objects; see e.g. [Sch08].

2. In category theory one would speak about the Kleisli category of a (strong) monad.

4 A computer verified, monadic, functional implementation of the integral.

3. Informal presentation of Riemann integration

In this section, we present our work in informal constructive mathematics. Everything presented
here has been formalized in Coq, except where otherwise noted.

We will implement Riemann integration as follows:

1. Define step functions;

2. Introduce applicative functors and show that step functions form an applicative functor;

3. Show that the step functions form a metric space under both the L1 and L∞ norms;

4. Define integrable functions as the completion of the step functions under the L1 norm;

5. Define integration first on step functions and lift it to operate on integrable functions;

6. Define an injection from the continuous functions to the integrable functions in order to
integrate them.

At the end, we will see that it is natural to generalize our Riemann integral to a Stieltjes inte-
gral.

3.1. Step functions. Our first goal will be to define (formal) step functions and some impor-
tant operations on them. For any type, X , we have defined the inductive data type of (rational)
step functions from the unit interval to X, denoted by SX . A step function is either a constant
function const x for some x: X , or two step functions, f : SX and g: SX glued at a point in o,
glue ofg, where o must be a rational number strictly between 0 and 1. We will write const x as
x̂, and glue ofg as f ⊲ o⊳ g.

The intended interpretation of elements of this inductive type are as step functions on [0, 1].
The interpretation of x̂ is as a constant function on [0, 1] returning x. The interpretation of f ⊲

o⊳ g is as f squeezed into the interval [0, o] and g squeezed into the interval [o, 1]. In this sense
f and g are “glued” together.

Figure 1. Given two step functions f and g, the step function f ⊲ o ⊳ g is f squeezed into [0, o] and g

squeezed into [o, 1].

Even though we call step functions ‘functions’, they are not really functions, and we never
formally interpret them as functions. They are a formal structure that take the place of step
functions in classical mathematics. It does not matter that our informal interpretation of f ⊲

o ⊳ g is not well defined at o because the step functions are intended for integration, not for
evaluation at a point.

One can see that this inductive type is a binary tree whose nodes hold data of type]0, 1[Q,
and with leaves of type X . We work with an equivalence relation on this binary tree structure
that identifies different ways of constructing the same step function. Informally, this is the
equivalence relation induced by our interpretation; more formally, the equivalence relation is
defined in Section 3.4.

Russell O’Connor, Bas Spitters 5

The inductive type for step functions has an associated catamorphism3 which we call fold:

fold : (X⇒Y)⇒ (]0, 1[Q⇒ Y ⇒Y ⇒Y)⇒SX⇒Y

fold ϕψ x̂ 4 ϕx

fold ϕψ (f ⊲ o⊳ g) 4 ψo(fold ϕψf)(fold ϕψg)

This fold operation is used in many places. For instance to define two metrics on step functions
(3.5) or to check whether a property holds globally on [0,1]. Not every fold respects the equiva-
lence relation on step functions, so one needs to prove that the generated functions respect this
equivalence relation.

3.2. Step functions are a monad. Step functions form a monad, S, similar to the familiar
reader monad λX.X [0,1]. The unit of S is the constant function, map is defined in the obvious
way, and the join from S(SX) to SX is the formal variant of the join function from the reader
monad, join fz 4 fzz, which considers a step function of step functions as a step function of
two inputs and returns the step function of its diagonal.

Rather than directly use these monadic functions, we use the applicative functor interface to
this monad.

3.3. Applicative functors. Let T be a (strong) monad. To lift a function f : X ⇒ Y to a
function TX⇒ TY , we use map: (X⇒ Y)⇒ TX⇒ TY . Lifting a function with two curried argu-
ments is possible using a similar function map2. However, to avoid having to write a function
mapn for each natural number n, one uses the theory of applicative functors. An applicative

functor contains two functions:

pure : X⇒ TX

ap : T (X⇒Y)⇒TX⇒TY

The function pure lifts any value inside the functor. The ap function applies a function inside
the functor to a values inside the functor to produce a value inside the functor. We denote
pure x by x̂, as was done for monads, and we denote ap fx by f @ x. An applicative functor
must satisfy the following laws:

Î@ v≍ v Identity

B̂@ u@ v@w ≍ u@ (v@w) Composition

f̂ @ x̂ ≍ fx Homomorphism
u@ ŷ ≍ evy @ u Interchange

Where B and I are the composition and identity combinators respectively (see Section 4.4)
and evy4 λf.fy is the function which evaluates at y.

Every monad can be seen as an applicative functor [MP08]. Every monad induces the canon-
ical applicative functor

pure 4 return

f @ x 4 bind (λg.map g x)f.

As the name suggests, every applicative functor can be seen as a functor. Given an applicative
functor we define map : (X⇒ Y)⇒TX⇒TY as

map fx4 f̂ @ x.

When T is generated from a monad, this definition of map is equivalent to the definition of map
associated with the monad.

3.4. Step functions as an applicative functor.

For step functions S, we denote map fx by fP x. This is meant to suggest the similarity

with the composition operation which is the definition of map for the reader monad λX.X [0,1].
The binary version of map is defined as

map2fab4 fP a@ b.

3. In functional programming, a catamorphism is a generalization of the fold on lists to arbitrary abstract
data types which can be described as initial algebras.

6 A computer verified, monadic, functional implementation of the integral.

Higher arity maps can be defined in a similar way; however, we found it more natural to simply
use map and ap everywhere.

We will often use map2 to lift infix operations. Because of this, we give it a special notation.
If ⊛ is some infix operator such that λxy.x⊛y :X⇒ Y ⇒Z, then we define

f 〈⊛〉g4 (λxy.x⊛y)P f @ g,

where f : SX, g: S Y , and f 〈⊛〉g : SZ. For example, if f , g : SQ are rational step function, then
f 〈− 〉g is the pointwise difference between f and g as a rational step function.

We can lift relations to step functions as well. A relation is simply a function to ⋆ , the type
of propositions. Thus, a binary relation ∝ has a type λxy.x∝ y :X⇒ Y ⇒ ⋆ . If we use map2,
we end up with an function λfg. f 〈 ∝ 〉g : SX ⇒ SY ⇒ S ⋆ . The result is not a proposition,
rather it is a step function of propositions. Classically, this corresponds to a step function of
Booleans. In other words, S ⋆ represents a type of step characteristic functions on [0, 1].

We can turn a characteristic function into a proposition by asking it to hold everywhere.
The function fold⋆ : S ⋆ ⇒ ⋆ does this by folding the conjunction over a step function.

fold⋆4 fold I (λopq. p∧ q)

This function can be composed with the map2, lifting a relation to a relation on step functions:

f {∝ }g4 fold⋆(f 〈∝ 〉g)

For example, we define equivalence on step functions by lifting the equivalence relation on X:

f ≍SX g4 f {≍X }g

Two functions are equivalent if they are pointwise equivalent everywhere. Similarly, we define
inequality for fg : SQ by lifting the inequality relation on Q:

f ≤SQ g4 f {≤Q }g

A step function f is less than a step function g if f is pointwise less than g everywhere.

3.5. Two metric spaces of Step functions. The step functions over the rational numbers,
SQ, form a metric space in two ways, with the L∞ metric and the L1 metric. Formally, we first
define the two norms on the step functions:

‖f ‖∞ 4 foldsup (absP f)

‖f ‖1 4 foldaffine(absP f)

where

foldsup 4 fold I (λoxy. supxy)

foldaffine 4 fold I (λoxy.o x+ (1− o) y)

and abs :Q⇒Q is the absolute value function on Q. The function foldsup : SQ⇒Q returns the
supremum of the step function, while the function foldaffine : SQ ⇒ Q returns the integral of a
step function.

Next, the metric distance between two step functions is simply defined as

d∞ fg 4 ‖f 〈 − 〉g‖∞

d1 fg 4 ‖f 〈 − 〉g‖1.

Finally, the ball relations are defined in terms of the distance functions.

Bε
S∞Q

fg 4 d∞ fg≤ ε

Bε
S1Q

fg 4 d1 fg ≤ ε

When we need to be clear which metric space is being used, we will use the notation S∞Q

or S1Q.
The two fold functions defined in this section are uniformly continuous for their respective

metrics.

foldsup : S∞Q→Q

foldaffine : S1Q→Q

Russell O’Connor, Bas Spitters 7

The identity function is uniformly continuous in one direction, ι : S∞Q → S1Q; however, the
other direction is not uniformly continuous.

The metrics S∞X and S1X can be defined for any metric space X :

Bε
S∞X(f , g) 4 fold⋆(Bε

XP f@g)

Bε
S1X(f , g) 4 ∃h: SQ+. fold⋆(B

XP h@f@g)∧‖h‖1 6 ε

Then one can prove that the monad S∞ is a submonad of S1. However, we have only pursued
the first monad in our formalization.

3.6. Integrable Functions and Bounded Functions. The bounded functions and the inte-
grable functions are defined to be the completion of the step functions under the L∞ and the L1

metrics respectively.

BQ 4 C(S∞Q)

IQ 4 C(S1Q)

In section 3.1, we interpreted elements of SX as (partially defined) functions on [0,1]. Similarly,
we can associate a (partially defined) function to each bounded function. Let f : Q+ ⇒ S∞Q be

an element of BQ. Define gn4 f(
1

n
). Then lim gn(x) exists for all points x in [0,1] except per-

haps for the (rational) splitting points of the step functions gn. In the points where this limit is
defined, it is continuous.

To every Riemann integrable function on [0, 1], we can associate an element in IR. More-
over, functions f , g such that

∫
|f − g | = 0 will be assigned to the equivalent elements in IR.

This definition can be extended to every generalized Riemann integrable function. Where a

function h is generalized Riemann integrable if hn4 max (min f n̂)(−n) is integrable for each n
and the limit

∫
hn converges (even though hn may not converge pointwise everywhere). Con-

versely, to every element h of IR we can assign such a generalized Riemann integrable function.
First, define hn as above. Explicitly,

hn4 λε.map (λx.max (minxn)(−n))(hε)

To each hn we associate a partial function hn by taking the pointwise limit of the step functions.
These functions are bounded and continuous almost everywhere. Consequently, they are Rie-
mann integrable. It is clear that the limit

∫
hn converges.

The bounded functions have a supremum operation, sup : BQ → R and, similarly, the inte-
grable functions have an integration operation,

∫
: IQ→R which are defined by lifting the two

folds from the previous section.

sup f 4 mapC foldsup f∫
f 4 mapC foldaffine f

There is an injection from the bounded functions into the integrable functions defined by lifting
the injection on step functions: map ι : BQ→ IQ. However, there is no injection from integrable
function to bounded functions. Thus bounded functions can be integrated, but integrable func-
tions may not have a supremum.

3.7. Riemann Integral. This process for integrating a function is as follows. Given a func-
tion f one needs to find an equivalent representation of f as an integrable function and then
this integrable function can be integrated. We will consider how to integrate uniformly contin-
uous functions on [0,1], which is a useful class of functions to integrate.

We convert a uniformly continuous function to an integrable function by a two step process.
First, we will convert it to a bounded function, and then bounded functions can be converted to
an integrable function using the injection defined in the previous section.

To produce a bounded function, one needs to create a step function that approximates f
within ε for any value ε:Q+. The usual way of doing this is to create a step function where each
step has width no more than 2 µf(ε). The values at each step is taken by sampling the function
at the center of each step, f(xi).

8 A computer verified, monadic, functional implementation of the integral.

Figure 2. Given a uniformly continuous function f and a step function s4 that approximates the iden-

tity function, the step function map fs4 (or fP s4) approximates f in the familiar Riemann way.

When developing the above, it became clear that one can achieve the above results by cre-
ating a step function whose values are xi, and then mapping f over these “sampling step-func-
tions” (see Figure 2). In fact, the limit of these “sampling step-functions” is simply the identity
function on [0,1] represented as a bounded function, I[0,1] : BQ (see Section 4.6). Given any uni-
formly continuous function f : Q → Q, we can prove that mapS∞ f : S∞Q → S∞Q is uniformly
continuous. Then we can lift again to operate on bounded functions, mapC (mapS∞ f): BQ →
BQ. Applying this to I[0,1] yields f restricted to [0, 1] as a bounded function, which then can be
converted to an integrable function and integrated.∫

[0,1]

f4 ∫
(mapC ι(mapC (mapS∞ f) I[0,1]))

With a small modification, this process will also work for f : Q → R. In this case map f :
SQ⇒SR; however, we haven’t given a metric structure for SR. Fortunately, there is an injec-
tion dist : SR ⇒ BQ, that interprets a step function of real values as a bounded function (see
section 3.9). We can prove that the composition dist ◦ (map f): S∞Q→BQ is uniformly contin-
uous. Then, proceeding in a similar fashion, this can be lifted with bind and applied to I[0,1] to
yield f restricted to [0,1] as a bounded function, which then can be integrated.

∫
[0,1]

f4 ∫
(mapC ι(bindC (dist ◦ (mapS f)) I[0,1]))

An arbitrary uniformly continuous function f : R → R can be integrated on [0,1] by integrating
λx. f x̂ : Q→R because the Riemann integral only depends on the value of functions at rational
points.

3.8. Stieltjes Integral. Given the previous presentation, any bounded function could be used
in place of I[0,1]. A natural question arises: what happens when I[0,1] is replaced by another
bounded function, g : BQ? An analysis shows that the result is Stieltjes integral with respect to
g−1, when g is non-decreasing.∫

f dg−14 ∫
(mapC ι(bindC (dist ◦ (mapS f))g))

The more general Stieltjes integral practically falls out of our work for free. This is not quite as
general as Stieltjes integral for three reasons. Because g is defined on [0, 1], this means that
g−1’s range must go from 0 to 1. Essentially g−1 must be a cumulative distribution function
and, hence, g is a quantile function (if g is not monotonic, then g−1 is a bizarre cumulative dis-
tribution non-function that can double back on itself). Secondly, because g is a bounded func-

tion, g−1 must have compact support (meaning g−1 must be 0 to the left of its support and 1 to
the right of its support). Thirdly, our bounded functions only have discontinuities at rational
points.

We have tried to allow g to be an arbitrary integrable function (this would lift some of the
previous restrictions); however, we have been unable to constructively show that dist ◦ mapSf :
S1Q ⇒ IQ is uniformly continuous when f is. We have generated counterexamples where f is
uniformly continuous with modulus µ and dist ◦ mapSf is not uniformly continuous with mod-
ulus µ; however, for our particular counterexamples, dist ◦ mapSf is still uniformly continuous
with a different modulus.

Russell O’Connor, Bas Spitters 9

Still, our integral should allow one to integrate with respect to some interesting distributions
such as the Dirac distribution and the Cantor distribution.

3.9. Distributing monads. The function dist : SR ⇒ BQ combines two monads on metric
spaces C and S: dist has type SC ⇒ CS. In general, the composition of two monads M ◦ N
forms a monad when there is a distribution function dist :N(MX)→M(NX) satisfying4[JD93]

dist ◦mapN (mapM f) ≍ mapM (mapN f) ◦ dist

dist ◦ returnN ≍ mapM returnN

dist ◦mapN returnM ≍ returnM

prod ◦mapN dorp ≍ dorp ◦ prod

where

prod 4 mapMjoinN ◦ dist

dorp 4 joinM ◦mapMdist.

In our case, BX 4 (C ◦ S∞)X is the collection of bounded (integrable) functions. The distribu-
tion function dist: S∞(CX)→C(S∞X) is defined as

dist x4 λε.mapS∞ (λz.z(ε))x.

The function dist maps a step function f with values in the completion of X to a collection of
approximations fε: S

∞X to the function f such that for all ε in Q+, |f − fε| ≤ ε ‘pointwise’.

3.10. Correctness. We have proved our implementation correct by showing that our Riemann
integral is equivalent to the definition of the integral in the C-CoRN library [CFGW04]. This
library contains many machine verified facts about the Riemann integral closely fol-
lowing [BB85]. The correctness is one lemma with a 300-line proof mostly consisting of trans-
lating facts about the fast implementation of the reals to the C-CoRN library and vice versa.
The actual proof is quite general because it only uses certain general properties of the integral,
such as linearity and monotonicity.

As a by-product of our development, we can also define the supremum of any uniformly con-
tinuous function on [0, 1].

4. Implementation in Coq

In this section, we treat aspects related to the implementation in type theory.

4.1. Glue and Split. As discussed in section 3.1, step functions are an inductive structure
defined by two constructors. One constructor constStepF creates constant step functions, and
the other constructor, glue, squeezes two step functions together, joining them together at a
given point o :]0, 1[Q. One of the first operations we defined on step functions (after defining
fold) was Split, which is like the opposite of glue. Given a step function f and a point a :]0,
1[Q, Split splits f into two pieces at a. The functions SplitL and SplitR return the left step
function and the right step function respectively. The idea is that SplitL fa ⊲ a ⊳ SplitR fa

will be equivalent to the original step function f , although we have not defined the equivalence
relation at this point yet.

This split function was the key to defining the Ap component of the applicative functor.
Recall that Ap takes a step function of functions and a step function of arguments and applies
the functions to the arguments pointwise. Split is used recursively to refine one of the argu-
ments until its structure is compatible with the the other argument.

Ap (constStepF f)x 4 Map fx

Ap (fl ⊲ o⊳ fr)x 4 let (xl, xr)4 Split xo in (Ap flxl) ⊲ o⊳ (Ap frxr)

4. We formally checked all of these rules apart from last one which was too tedious; however, the correctness
of the integral does not depend on the proofs of these laws.

10 A computer verified, monadic, functional implementation of the integral.

The function Map is defined in the obvious way:

Map f (constStepF x) 4 constStepF (fx)

Map f (xl ⊲ o⊳xr) 4 (Map fxl)⊲ o⊳ (Map fxr)

The key to reasoning about Split was to prove the Split-Split lemmas. This collection of
lemmas show how the splits combine and distribute over each other.

a b= c ⇒ SplitL (SplitL fa)b≍ SplitL fc

a+ b− a b= c ⇒ SplitR (SplitR fa)b≍ SplitR fc

a+ b− a b= c→ d c= a ⇒ SplitL (SplitR fa)b≍ SplitR (SplitL fc)d

With sufficient case analysis, one can prove the above lemmas. These lemmas, combined with a
few other useful lemmas (such as Split-Map lemmas) provided enough support to prove the
laws for applicative functions without difficulty.

4.2. Equivalence of step functions. The work in the previous section defined an applicative
functor of step functions over any type X. In this section, we will require that X be a setoid —
a type with an equivalence relation. In order to help facilitate this, in our development we define
new functions, constStepF, glue, Split, etc., that operate on step functions of setoids rather
than step functions of types. These functions are definitionally equal to the previous functions,
but their types now carry the setoid relation for their argument types to their result types.
These new function names shadow the old function names, and the lemmas about them need to
be repeated; however, their proofs are trivial by using previous proofs.

Perhaps the biggest challenge we encountered in our formalization was to prove that lifting
setoid equivalence to step functions (Section 3.3) is indeed an equivalence relation—in particular
showing that it is transitive. We eventually succeeded after creating some lemmas about the
interaction with the equivalence relation and Split, etc.

4.3. Common Partitions. When reasoning about two (or more) step functions, it is common
to split up one of the step functions so that it shares the same partition structure as the other
step functions. This allows one to do induction over one step function and have both step func-
tion decompose the same way. Eventually, we abstracted this pattern of reasoning into an
induction-like principle.

Lemma StepF_ind2 :

∀XY .∀Ψ:X⇒Y ⇒ ⋆ .

(∀s0 s1 t0 t1 : SX.s0≍ s1⇒ t0≍ t1⇒Ψs0 t0⇒Ψs1 t1)⇒
(∀x:X.∀y:Y . Ψ x̂ ŷ)⇒
(∀o:]0, 1[.∀sl sr: SX.∀tl tr: SY .Ψsl tl⇒Ψsr tr⇒Ψ(sl ⊲ o⊳ sr) (tl ⊲ o⊳ tr))⇒
∀s: SX.∀t: SY . Ψ s t

This lemma may look complex, but it is as easy to use in Coq as an induction principle for
an inductive family. Normally one would reason about two step functions by assuming, without
loss of generality, that they have a common partition and doing induction over that partition.
Our lemma above combines these two steps into one. In one step, one does induction as if the
two functions have a common partition. This lemma was inspired by McBride and McKinna’s
work on views in dependent type theory [MM04]. It allows one to “view” two step functions as
having a common partition.

The lemma is used by applying it to a goal of the form forall (s t : StepF X),

<expr>—which can be created by generalizing two step functions. There are only two cases to
consider. One case is when s and t are both constant step functions. The other case is when s

and t are each glued together from two step function at the same point . There is, however, a
side condition to be proved. One has to show that <expr> respects the equivalence relation on
step functions for s and t. Fortunately, typically <expr> is constructed from morphisms, and
proving this side condition is easy.

This induction lemma was very useful for proving the combinator equations in section 4.4.

4.4. Combinators. In order to work with expressions like

∀xyz. x6 y⇒ y6 z⇒ x6 y,

Russell O’Connor, Bas Spitters 11

one might first be inclined to reason with binders. However, this is notoriously difficult to do by
hand [O’C05]. Although a number of solutions have been proposed [ABF+05], we decided to
avoid the problem and use the BCKW-combinator presentation of the λ-calculus. These are
the combinators defined by:

• Bfgx4 f (gx) (compose)

• Cfxy4 fyx (interchange)

• Ix4 x (identity)

• Kxy4 x (discard)

• Wfx4 fxx (duplicate)

The identity combinator is redundant because I≍WK, but it is still useful. The combinators B
and I are preserved by every applicative functor (see Section 3.3). For the applicative functor S,
all of the combinators are preserved:

CP f @ x@ y ≍SX f @ y@ x

KP x@ y ≍SX x

WP f @x ≍SX f @ x@ x

This means that we can lift any function definable with the λ-calculus to step functions.

4.5. Lifting theorems. During our development, we often needed to prove statements like the
transitivity of the order relation on the step functions:

∀fgh: SQ. f {≤Q }g ⇒ g{≤Q }h ⇒ f {≤Q }h (2)

We would like to deduce this statement from the transitivity of the corresponding pointwise
relation:

∀xyz :Q.x≤Q y⇒ y ≤Q z⇒x≤Q z

First, we use a lemma that lifts universal statements about an arbitrary predicate R : X ⇒ Y ⇒
Z⇒ ⋆ to a universal statement about step functions:

(∀(x:X)(y:Y)(z:Z).Rxyz)⇒∀(f : SX)(g: SY)(h: SZ). fold⋆ (RP f @ g@h) (3)

This yields

∀fgh: SQ. fold⋆((λxyz.x≤Q y⇒ y ≤Q z⇒x≤Q z)P f @ g@ h).

Next, we would like to ‘evaluate’ the lambda expression as ‘applied’ to the step functions f , g,
and h. Because f , g, and h are variable, we would like to symbolically evaluate the expression.
We avoid dealing with binders by converting the lambda expression into the combinator expres-
sion

S(BS(B(B(BB(⇒)))(≤Q)))(B(C(BS(B(B(⇒))(≤Q))))(≤Q))P f @ g@ h,

where S4 B(B(BW)C)(BB) and (⇒) and (≤Q) are prefix versions of these infix functions.
This substitution is sound because the combinator term and lambda expression can easily be
shown to be extensionally equivalent (by normalization), and map and ap are well-defined with
respect to extensional equality.

We found the required combinator form by using lambdabot5, a standard tool for Haskell
programmers. It would have been interesting to implement the algorithm for finding the combi-
nator form of a λ-term in Coq; however, this was not the aim of our current research.

Now that the lambda term is expressed in combinator form, we can repeatedly apply the
combinator equations from Section 3.3 and Section 4.4. These equations are exactly the rules
of ‘evaluation’ of this expression ‘applied’ to step functions. We put these equations into a
database of rewrite rules and use Coq’s autorewrite system as part of a small custom tactic to
automatically reduce this entire expression in one command, yielding

∀fgh : SQ. fold⋆(f 〈≤Q 〉g〈⇒ 〉g〈 ≤Q 〉h〈⇒ 〉f 〈≤Q 〉h).

5. http://www.cse.unsw.edu.au/~dons/lambdabot.html

12 A computer verified, monadic, functional implementation of the integral.

Finally, we need to push the fold⋆ inside. To do so, we have proved a lemma which allows us
to distribute implication over fold⋆:

∀PQ: S ⋆ .(fold⋆ (P 〈⇒ 〉Q))⇒ fold⋆P⇒ fold⋆Q (4)

Repeated application of this lemma yields

∀fgh: SQ. f {≤Q }g⇒ g{≤Q }h⇒ f {≤Q }h

as required.

4.6. The identity bounded function.

In order to integrate uniformly continuous functions, we compose them with the identity
bounded function to create a bounded function that can be integrated (see Section 3.7). This
requires defining the identity bounded function on [0,1].

The bounded functions are the completion of step functions under the L∞ metric. To create
a bounded function, we need to generate a step function within ε of the identity function for
every ε : Q+. The number of steps used in the approximation will determine the number of sam-
ples of the continuous function f that will be used. For efficiency, we want the approximation to
have the fewest number of steps possible. Therefore, we defined a function stepSample :
positive ⇒ SQ, where positive are the binary positive natural numbers, such that
stepSamplen produces the best approximation of the identity function with n steps.

Using binary positive natural numbers makes it easy to create a well-balanced tree to repre-
sent the step function by recursion. This is important because when a step function is inte-
grated, the glue points are recursively multiplied together to compute the length of each step.
Having a balanced tree means that O(n (log n)) multiplications are done rather than O(n2).

It is unfortunate that the width of each step is computed because we know that the result
will always be equivalent to

1

n
for these particular step functions. Perhaps some other data

structure for step functions could be used that explicitly stores the length of each step. How-
ever, we expect the time spent computing the length of the interval is much smaller that the
time it takes to sample the continuous function f .

4.7. Timings. The version of Riemann integration that we implemented applies to general

continuous functions and hence has bad complexity behavior. If we know more about the func-
tion, for instance if it is differentiable, faster algorithms can be used, also in the context of exact
real arithmetic [Eda99].

Function Time
(answer 3 (Integrate01 sin_uc)) 7.48s
(answer 3 (Integrate01 cos_uc)) 8.55s
(answer 3 (Integrate01 Cunit)) 0.18s
(answer 2 (Integrate01 cos_uc)) 0.52s

Table 2. Time Eval vm_compute in ... carries out the reduction using Coq’s virtual machine. answer

n asks for an answer to within 10−n. All computations where carried out on an IBM Thinkpad X41.

When extracted to OCaml, the functions run approximately five times faster when compiled
and optimized.

5. Future and related work

Many optimizations are possible. Most time is spend on evaluating the function at many points,
as can be seen by comparing the timings for the sin function and the identity function (CUnit)
which have the same modulus of continuity and hence the same partition.

Ways of speeding up the computation of these functions are discussed in [O’C08a]. Most
notable are:

• the use of dyadic rationals;

• the use of machine integers, (which will enter Coq in the near future);

Russell O’Connor, Bas Spitters 13

• the use of forward propagation of errors instead of our a priori estimates of conver-
gence [BK08];

• the use of parallelism. Our use of maps and folds makes it easy to run the algorithm in
parallel. In fact, adding parallelism to the extacted O’Caml code by hand speeds up the
evalutation by a factor three on a four processor machine. This only required making a
single function, DistrComplete (a fold), be evaluated in parallel.

We hope that the technology of parallel functional programming will included in Coq
in the future.

An interesting algorithm for Riemann integration is suggested by Simpson [Sim98]. However,
the verification of the termination of this algorithm is not possible in the type theory of Coq,
unless one adds an axiom such as bar induction to it or one treats the real numbers as a formal
space [Sam87][Bau08].

The constructive real numbers have already been used to provide a semi-decision procedure
for inequalities of real numbers. Not only for the constructive real numbers, but also for the
non-computational real numbers in the Coq standard library [KO08]. The same technique can
be applied here.

Previously, the CoRN project [CFGW04] showed that the formalization of constructive anal-
ysis in a type theory is feasible. However, the extraction of programs from such developments is
difficult [CFS03]. On the contrary, in the present article we have shown that if one takes an
algorithmic attitude from the start it is possible to obtain feasible programs.

6. Conclusions

We have implemented Riemann integration in constructive mathematics based on type theory.
Type checking guarantees that the implementation is correct. The use of the completion and the
step function monads helped to structure the program/proof, as did the use of applicative func-
tors.

Building on the previous implementation of the completion of a metric space [O’C08a] and
the library [CF04], the current implementation was completed in four man-months. The pro-
gram/proof consists of 1155 lines of specifications, 3380 lines of proof, and 170,137 total charac-
ters. The size of the gzipped tarball (gzip -9) of all the source files is 37,039 bytes, which is an
estimate of the information content.

Together with the work in [O’C07, O’C08a, O’C08b], the current project may be seen as the
beginning of the realization of Bishop’s program to use constructive mathematics, based on type
theory, as a programming language for exact analysis.

7. Acknowledgements

We thank Cezary Kaliszyk for helping us to implement parallelism.

Bibliography

[ABF+05] B. Aydemir, A. Bohannon, M. Fairbairn, J. Foster, B. Pierce, P. Sewell, D. Vytiniotis, G. Wash-

burn, S. Weirich, and S. Zdancewic. Mechanized metatheory for the masses: The POPLmark challenge. In

Proceedings of the Eighteenth International Conference on Theorem Proving in Higher Order Logics
(TPHOLs 2005), 2005.

[Bau08] Andrej Bauer. Efficient computation with dedekind reals. Extended abstract for CCA2008, 2008.

[BB85] Errett Bishop and Douglas Bridges. Constructive Analysis. Number 279 in Grundlehren der mathe-

matischen Wissenschaften. Springer-Verlag, 1985.

[Bis67] Errett A. Bishop. Foundations of constructive analysis. McGraw-Hill Publishing Company, Ltd.,

1967.

[Bis70] Errett Bishop. Mathematics as a numerical language. In Intuitionism and Proof Theory (Proceed-
ings of the summer Conference at Buffalo, N.Y., 1968), pages 53–71. North-Holland, Amsterdam, 1970.

[BK08] Andrej Bauer and Iztok Kavkler. A constructive theory of domains suitable for implementation.

http://math.andrej.com/wp-content/uploads/2008/01/constructive-domains.pdf, 2008.

[CF04] L. Cruz-Filipe. Constructive Real Analysis: a Type-Theoretical Formalization and Applications.
PhD thesis, University of Nijmegen, April 2004.

14 A computer verified, monadic, functional implementation of the integral.

[CFGW04] L. Cruz-Filipe, H. Geuvers, and F. Wiedijk. C-corn: the constructive coq repository at

nijmegen. In A. Asperti, G. Bancerek, and A. Trybulec, editors, Mathematical Knowledge Management,
Third International Conference, MKM 2004, volume 3119 of LNCS, pages 88–103. Springer–Verlag, 2004.

[CFS03] L. Cruz-Filipe and B. Spitters. Program extraction from large proof developments. In D. Basin and

B. Wolff, editors, Theorem Proving in Higher Order Logics, 16th International Conference, TPHOLs
2003, volume 2758 of LNCS, pages 205–220. Springer–Verlag, 2003.

[Eda99] Abbas Edalat. Numerical integration with exact real arithmetic. In Automata, Languages and Pro-
gramming, 26th International Colloquium, ICALPâĂŹ99, Prague, Czech 227 Republic, July 11-15, 1999,
Proceedings, volume 1644 of Lecture Notes in Computer Science, pages 90–104. Springer, 1999.

[GNSW07] Herman Geuvers, Milad Niqui, Bas Spitters, and Freek Wiedijk. Constructive analysis, types

and exact real numbers (overview article). Mathematical Structures in Computer Science, 17(1):3–36,

2007.

[JD93] Mark P. Jones and Luke Duponcheel. Composing monads. Technical Report YALEU/DCS/RR-

1004, Yale University, 1993.

[KO08] Cezary Kaliszyk and Russell O’Connor. Computing with classical real numbers. Submitted for pub-

lication to the Journal of Automated Reasoning, 2008.

[ML82] Per Martin-Löf. Constructive mathematics and computer programming. In Logic, methodology and
philosophy of science, VI (Hannover, 1979), volume 104 of Stud. Logic Found. Math., pages 153–175.

North-Holland, Amsterdam, 1982.

[ML98] Per Martin-Löf. An intuitionistic theory of types. In Twenty-five years of constructive type theory
(Venice, 1995), volume 36 of Oxford Logic Guides, pages 127–172. Oxford Univ. Press, 1998.

[MM04] Conor McBride and James McKinna. The view from the left. Journal of Functional Programming,
14(1):69–111, 2004.

[Mog89] E. Moggi. Computational lambda-calculus and monads. In Proceedings of the Fourth Annual Sym-
posium on Logic in computer science, pages 14–23, Piscataway, NJ, USA, 1989. IEEE Press.

[MP08] Conor Mcbride and Ross Paterson. Applicative programming with effects. J. Funct. Program.,
18(1):1–13, 2008.

[O’C05] Russell O’Connor. Essential incompleteness of arithmetic verified by coq. In Joe Hurd and

Thomas F. Melham, editors, TPHOLs, volume 3603 of Lecture Notes in Computer Science, pages 245–

260. Springer, 2005.

[O’C07] Russell O’Connor. A monadic, functional implementation of real numbers. Mathematical Structures
in Computer Science, 17(1):129–159, 2007.

[O’C08a] Russell O’Connor. Certified exact transcendental real number computation in Coq. In Otmane

Ait-Mohamed, editor, TPHOLs, volume 5170 of Lecture Notes in Computer Science, pages 246–261.

Springer, 2008.

[O’C08b] Russell O’Connor. A computer verified theory of compact sets. In Bruno Buchberger, Tetsuo Ida,

and Temur Kutsia, editors, SCSS 2008, number 08-08 in RISC-Linz Report Series, pages 148–162, Castle

of Hagenberg, Austria, July 2008. RISC.

[Sam87] Giovanni Sambin. Intuitionistic formal spaces - a first communication. In D. Skordev, editor, Math-
ematical logic and its Applications, pages 187–204. Plenum, 1987.

[Sch08] Helmut Schwichtenberg. Realizability interpretation of proofs in constructive analysis. To appear in

ToCS, 2008.

[Sim98] Alex K. Simpson. Lazy functional algorithms for exact real functionals. Lecture Notes in Computer
Science, 1450:456–464, 1998.

[Tea08] The Coq Development Team. The Coq Proof Assistant Reference Manual. INRIA-Rocquencourt,

2008.

[Tho91] S. Thompson. Type Theory and Functional Programming. Addison Wesley, 1991.

[Wad92] P. Wadler. Monads for functional programming. In Proceedings of the Marktoberdorf Summer
School on Program Design Calculi, August 1992.

Russell O’Connor, Bas Spitters 15

