
Background CS Method Implementation Experiment Conclusion

A Characteristic Set Method for
Solving Boolean Equations

Chun-Ming Yuan

joint work with F.J. Chai & X.S. Gao

Institute of Systems Science
Chinese Academy of Sciences

MAP, ICTP, TRIESTE 2008.8.27

Background CS Method Implementation Experiment Conclusion

Outline

Background

A Characteristic Set Method for Boolean Equations

Implementation and Variation

Experimental Result with a Class of Stream Ciphers

Conclusion

Background CS Method Implementation Experiment Conclusion

Characteristic Set Method

P1(x1, . . . , xn) A1(u1, . . . , uq, y1)
P2(x1, . . . , xn) A2(u1, . . . , uq, y1, y2)

⇒ . . .
Pm(x1, . . . , xn) Ap(u1, . . . , uq, y1, . . . , yp)

Polynomial system ⇒ Triangular set

Background CS Method Implementation Experiment Conclusion

Characteristic Set Method: An Example

Example (Zhu Shijie)

P1 = xyz − xy2 − z − x − y ,

P2 = xz − x2 − z − y + x ,

P3 = z2 − x2 − y2.

We have:

Zero({P1, P2, P3}) = Zero(C1) ∪ Zero(C2) ∪ Zero(C3).

C1 = x − 3, y − 4, z − 5; One solution

C2 = x − 1, y , z + 1; One solution

C3 = x , y + z; Dimension one

Background CS Method Implementation Experiment Conclusion

Characteristic Set Method: An Example

Example (Zhu Shijie)

P1 = xyz − xy2 − z − x − y ,

P2 = xz − x2 − z − y + x ,

P3 = z2 − x2 − y2.

We have:

Zero({P1, P2, P3}) = Zero(C1) ∪ Zero(C2) ∪ Zero(C3).

C1 = x − 3, y − 4, z − 5; One solution

C2 = x − 1, y , z + 1; One solution

C3 = x , y + z; Dimension one

Background CS Method Implementation Experiment Conclusion

Existing Work on CS Method

Algebraic Equation over C: the most basic case, lots of
work since the pioneering paper of Wu in 1978.

Differential Equations: Ritt 1930s, Kolchin 1930-70s, Wu
1970s, etc. Also extensively studied.

Difference Equations: Theory: Ritt 1930s, Cohn 1950s.
Algorithms: Gao et al, since 2004.

Finite Fields, in particular, Boolean equations: ?.

Background CS Method Implementation Experiment Conclusion

Solving Boolean Equation Systems

Motivation.
Design and formal verification of hardware.
Cryptanalysis.
Deciding whether a Boolean polynomial system has
solutions is NP-complete.

Methods to solve Boolean equation systems.
Logic approaches: Quine normal form, Davis-Putnam, et
all.
Methods based on graphs: BDD/ZDD.
Probability and approximate methods.
Methods based on elimination: Boole’s method, Gröbner
basis, and the Characteristic set method.

Background CS Method Implementation Experiment Conclusion

Solving Boolean Equation Systems

Motivation.
Design and formal verification of hardware.
Cryptanalysis.
Deciding whether a Boolean polynomial system has
solutions is NP-complete.

Methods to solve Boolean equation systems.
Logic approaches: Quine normal form, Davis-Putnam, et
all.
Methods based on graphs: BDD/ZDD.
Probability and approximate methods.
Methods based on elimination: Boole’s method, Gröbner
basis, and the Characteristic set method.

Background CS Method Implementation Experiment Conclusion

Solving Boolean Equations with
Characteristic Set Method

Background CS Method Implementation Experiment Conclusion

Boolean Ring: Notations

F2 = Z/(2) = {0, 1}.
X = {x1, . . . , xn} a set of indeterminants
H = {x2

1 + x1, . . . , x2
n + xn}

A Boolean Ring:

R2 = R2,n = F2[X]/(H)

Connection between Boolean Ring and Boolean Algebra:

Boolean Algebra ⇒ Boolean Ring:
f ∧ g ⇒ f · g
f ∨ g ⇒ f · g + f + g

Boolean Ring ⇒ Boolean Algebra:
f · g ⇒ f ∧ g
f + g ⇒ f̄ ∧ g ∨ f ∧ ḡ

Background CS Method Implementation Experiment Conclusion

Boolean Ring: Notations

F2 = Z/(2) = {0, 1}.
X = {x1, . . . , xn} a set of indeterminants
H = {x2

1 + x1, . . . , x2
n + xn}

A Boolean Ring:

R2 = R2,n = F2[X]/(H)

Connection between Boolean Ring and Boolean Algebra:

Boolean Algebra ⇒ Boolean Ring:
f ∧ g ⇒ f · g
f ∨ g ⇒ f · g + f + g

Boolean Ring ⇒ Boolean Algebra:
f · g ⇒ f ∧ g
f + g ⇒ f̄ ∧ g ∨ f ∧ ḡ

Background CS Method Implementation Experiment Conclusion

Zeros of Boolean Polynomials

Variety: Zero(P) = {α ∈ Fn
2, s.t . ∀P ∈ P, P(α) = 0}.

Quasi Variety: Zero(P/D) = Zero(P) \ Zero(D).

Basic Properties.
Let U, V , D ∈ R2 and P ⊂ R2. We have

U 6= 1 ⇒ Zero(U) 6= ∅.
|Zero(P)| = 1 ⇔ (P) = (x1 − a1, . . . , xn − an).

Zero(UV + 1) = Zero({U + 1, V + 1}).
Zero(UV + U + V) = Zero({U, V}).
Zero(∅/D) = Zero(D + 1).

Zero(P) = Zero(P ∪ {U}) ∪ Zero(P ∪ {U + 1}).

Background CS Method Implementation Experiment Conclusion

Zeros of Boolean Polynomials

Variety: Zero(P) = {α ∈ Fn
2, s.t . ∀P ∈ P, P(α) = 0}.

Quasi Variety: Zero(P/D) = Zero(P) \ Zero(D).

Basic Properties.
Let U, V , D ∈ R2 and P ⊂ R2. We have

U 6= 1 ⇒ Zero(U) 6= ∅.

|Zero(P)| = 1 ⇔ (P) = (x1 − a1, . . . , xn − an).

Zero(UV + 1) = Zero({U + 1, V + 1}).
Zero(UV + U + V) = Zero({U, V}).
Zero(∅/D) = Zero(D + 1).

Zero(P) = Zero(P ∪ {U}) ∪ Zero(P ∪ {U + 1}).

Background CS Method Implementation Experiment Conclusion

Zeros of Boolean Polynomials

Variety: Zero(P) = {α ∈ Fn
2, s.t . ∀P ∈ P, P(α) = 0}.

Quasi Variety: Zero(P/D) = Zero(P) \ Zero(D).

Basic Properties.
Let U, V , D ∈ R2 and P ⊂ R2. We have

U 6= 1 ⇒ Zero(U) 6= ∅.
|Zero(P)| = 1 ⇔ (P) = (x1 − a1, . . . , xn − an).

Zero(UV + 1) = Zero({U + 1, V + 1}).
Zero(UV + U + V) = Zero({U, V}).
Zero(∅/D) = Zero(D + 1).

Zero(P) = Zero(P ∪ {U}) ∪ Zero(P ∪ {U + 1}).

Background CS Method Implementation Experiment Conclusion

Zeros of Boolean Polynomials

Variety: Zero(P) = {α ∈ Fn
2, s.t . ∀P ∈ P, P(α) = 0}.

Quasi Variety: Zero(P/D) = Zero(P) \ Zero(D).

Basic Properties.
Let U, V , D ∈ R2 and P ⊂ R2. We have

U 6= 1 ⇒ Zero(U) 6= ∅.
|Zero(P)| = 1 ⇔ (P) = (x1 − a1, . . . , xn − an).

Zero(UV + 1) = Zero({U + 1, V + 1}).

Zero(UV + U + V) = Zero({U, V}).
Zero(∅/D) = Zero(D + 1).

Zero(P) = Zero(P ∪ {U}) ∪ Zero(P ∪ {U + 1}).

Background CS Method Implementation Experiment Conclusion

Zeros of Boolean Polynomials

Variety: Zero(P) = {α ∈ Fn
2, s.t . ∀P ∈ P, P(α) = 0}.

Quasi Variety: Zero(P/D) = Zero(P) \ Zero(D).

Basic Properties.
Let U, V , D ∈ R2 and P ⊂ R2. We have

U 6= 1 ⇒ Zero(U) 6= ∅.
|Zero(P)| = 1 ⇔ (P) = (x1 − a1, . . . , xn − an).

Zero(UV + 1) = Zero({U + 1, V + 1}).
Zero(UV + U + V) = Zero({U, V}).

Zero(∅/D) = Zero(D + 1).

Zero(P) = Zero(P ∪ {U}) ∪ Zero(P ∪ {U + 1}).

Background CS Method Implementation Experiment Conclusion

Zeros of Boolean Polynomials

Variety: Zero(P) = {α ∈ Fn
2, s.t . ∀P ∈ P, P(α) = 0}.

Quasi Variety: Zero(P/D) = Zero(P) \ Zero(D).

Basic Properties.
Let U, V , D ∈ R2 and P ⊂ R2. We have

U 6= 1 ⇒ Zero(U) 6= ∅.
|Zero(P)| = 1 ⇔ (P) = (x1 − a1, . . . , xn − an).

Zero(UV + 1) = Zero({U + 1, V + 1}).
Zero(UV + U + V) = Zero({U, V}).
Zero(∅/D) = Zero(D + 1).

Zero(P) = Zero(P ∪ {U}) ∪ Zero(P ∪ {U + 1}).

Background CS Method Implementation Experiment Conclusion

Zeros of Boolean Polynomials

Variety: Zero(P) = {α ∈ Fn
2, s.t . ∀P ∈ P, P(α) = 0}.

Quasi Variety: Zero(P/D) = Zero(P) \ Zero(D).

Basic Properties.
Let U, V , D ∈ R2 and P ⊂ R2. We have

U 6= 1 ⇒ Zero(U) 6= ∅.
|Zero(P)| = 1 ⇔ (P) = (x1 − a1, . . . , xn − an).

Zero(UV + 1) = Zero({U + 1, V + 1}).
Zero(UV + U + V) = Zero({U, V}).
Zero(∅/D) = Zero(D + 1).

Zero(P) = Zero(P ∪ {U}) ∪ Zero(P ∪ {U + 1}).

Background CS Method Implementation Experiment Conclusion

Zeros of Triangular Sets

Monic Triangular Set:

A =

A1 = xc1 + U1(U)

· · ·
Ap = xcp + Up(U)

(1)

Parameter set: U = {xi |i 6= cj}.
Dimension of A: dim(A) = |U| = n − |A|.

Lemma

Let A be a monic triangular set. Then |Zero(A)| = 2dim(A).

A chain A is called conflict if IA = 0.

Lemma

Let A be a non-conflict chain. Then Zero(A/IA) 6= ∅.

Background CS Method Implementation Experiment Conclusion

Zeros of Triangular Sets

Monic Triangular Set:

A =

A1 = xc1 + U1(U)

· · ·
Ap = xcp + Up(U)

(1)

Parameter set: U = {xi |i 6= cj}.
Dimension of A: dim(A) = |U| = n − |A|.

Lemma

Let A be a monic triangular set. Then |Zero(A)| = 2dim(A).

A chain A is called conflict if IA = 0.

Lemma

Let A be a non-conflict chain. Then Zero(A/IA) 6= ∅.

Background CS Method Implementation Experiment Conclusion

Zeros of Triangular Sets

Monic Triangular Set:

A =

A1 = xc1 + U1(U)

· · ·
Ap = xcp + Up(U)

(1)

Parameter set: U = {xi |i 6= cj}.
Dimension of A: dim(A) = |U| = n − |A|.

Lemma

Let A be a monic triangular set. Then |Zero(A)| = 2dim(A).

A chain A is called conflict if IA = 0.

Lemma

Let A be a non-conflict chain. Then Zero(A/IA) 6= ∅.

Background CS Method Implementation Experiment Conclusion

Characteristic Set

Ordering: A = A1, . . . , Ar , B = B1, . . . , Bs
A ≺ B if

either ∃k st A1 ∼ B1, . . . , Ak−1 ∼ Bk−1, and Ak ≺ Bk ;
or r > s and A1 ∼ B1, . . . , As ∼ Bs.

Lemma

A sequence of triangular sets steadily lower in ordering is finite.
Let A1 � A2 � · · · � Am. Then m ≤ 2n.

Definition (Characteristic Set)
P be a set of Boolean polynomials. The smallest triangular set
in P is called the CS of P.

Background CS Method Implementation Experiment Conclusion

Characteristic Set

Ordering: A = A1, . . . , Ar , B = B1, . . . , Bs
A ≺ B if

either ∃k st A1 ∼ B1, . . . , Ak−1 ∼ Bk−1, and Ak ≺ Bk ;
or r > s and A1 ∼ B1, . . . , As ∼ Bs.

Lemma

A sequence of triangular sets steadily lower in ordering is finite.
Let A1 � A2 � · · · � Am. Then m ≤ 2n.

Definition (Characteristic Set)
P be a set of Boolean polynomials. The smallest triangular set
in P is called the CS of P.

Background CS Method Implementation Experiment Conclusion

Characteristic Set

Ordering: A = A1, . . . , Ar , B = B1, . . . , Bs
A ≺ B if

either ∃k st A1 ∼ B1, . . . , Ak−1 ∼ Bk−1, and Ak ≺ Bk ;
or r > s and A1 ∼ B1, . . . , As ∼ Bs.

Lemma

A sequence of triangular sets steadily lower in ordering is finite.
Let A1 � A2 � · · · � Am. Then m ≤ 2n.

Definition (Characteristic Set)
P be a set of Boolean polynomials. The smallest triangular set
in P is called the CS of P.

Background CS Method Implementation Experiment Conclusion

Pseudo-remainder

Pseudo-remainder of Boolean Polynomials
P = Ixc + U with cls(P) = c.
Q = I1xc + U1.
Pseudo-remainder: R = prem(Q, P) = IU1 + I1U.
Remainder Formula: init(P)Q = BP + R.
Reduced: R is reduced wrt P: xc does not occur in R.

Pseudo-remainder of Boolean Polynomials wrt TS
R = prem(Q,A) = prem(prem(Q, Ar), A1, . . . , Ar−1)
Remainder Formula: IAG =

∑
i QiAi + R

IA: product of the initials of the polynomials in A.

Background CS Method Implementation Experiment Conclusion

Pseudo-remainder

Pseudo-remainder of Boolean Polynomials
P = Ixc + U with cls(P) = c.
Q = I1xc + U1.
Pseudo-remainder: R = prem(Q, P) = IU1 + I1U.
Remainder Formula: init(P)Q = BP + R.
Reduced: R is reduced wrt P: xc does not occur in R.

Pseudo-remainder of Boolean Polynomials wrt TS
R = prem(Q,A) = prem(prem(Q, Ar), A1, . . . , Ar−1)
Remainder Formula: IAG =

∑
i QiAi + R

IA: product of the initials of the polynomials in A.

Background CS Method Implementation Experiment Conclusion

Well-Ordering Principle

Let P0 be a finite Boolean polynomial set.

P = P0 P1 · · · Pi · · · Pm
C0 C1 · · · Ci · · · Cm = C
R0 R1 · · · Ri · · · Rm = ∅

(2)

Ci = a characteristic set of Pi
Ri = prem(Pi , Ci)
Pi+1 = Pi ∪ Ri

Fact. m ≤ 2n.

Wu Characteristic Set of P: C
(1) ∀P ∈ P, prem(P, C) = 0.
(2) C ⊂ (P).

Fact: Cm is a Wu CS of P.

Background CS Method Implementation Experiment Conclusion

Well-Ordering Principle

Let P0 be a finite Boolean polynomial set.

P = P0 P1 · · · Pi · · · Pm
C0 C1 · · · Ci · · · Cm = C
R0 R1 · · · Ri · · · Rm = ∅

(2)

Ci = a characteristic set of Pi
Ri = prem(Pi , Ci)
Pi+1 = Pi ∪ Ri

Fact. m ≤ 2n.

Wu Characteristic Set of P: C
(1) ∀P ∈ P, prem(P, C) = 0.
(2) C ⊂ (P).

Fact: Cm is a Wu CS of P.

Background CS Method Implementation Experiment Conclusion

Well-Ordering Principle

Let P0 be a finite Boolean polynomial set.

P = P0 P1 · · · Pi · · · Pm
C0 C1 · · · Ci · · · Cm = C
R0 R1 · · · Ri · · · Rm = ∅

(2)

Ci = a characteristic set of Pi
Ri = prem(Pi , Ci)
Pi+1 = Pi ∪ Ri

Fact. m ≤ 2n.

Wu Characteristic Set of P: C
(1) ∀P ∈ P, prem(P, C) = 0.
(2) C ⊂ (P).

Fact: Cm is a Wu CS of P.

Background CS Method Implementation Experiment Conclusion

Zero Decomposition Theorem

P: a finite Boolean polynomial set.

Theorem (Well-ordering principle (1))

Let C = C1, . . . , Cp be a Wu CS of P. Then

Zero(P) = Zero(C/IC)
⋃
∪p

i=1Zero(P ∪ C ∪ {Ii})

where Ii = init(Ci).

Fact. ICP =
∑

i BiCi , for P ∈ P.

Theorem (Zero Decomposition Theorem)

We can construct chains Aj , j = 1, . . . , s such that

Zero(P) = ∪s
j=1Zero(Aj/IAj).

Background CS Method Implementation Experiment Conclusion

Zero Decomposition Theorem

P: a finite Boolean polynomial set.

Theorem (Well-ordering principle (1))

Let C = C1, . . . , Cp be a Wu CS of P. Then

Zero(P) = Zero(C/IC)
⋃
∪p

i=1Zero(P ∪ C ∪ {Ii})

where Ii = init(Ci).

Fact. ICP =
∑

i BiCi , for P ∈ P.

Theorem (Zero Decomposition Theorem)

We can construct chains Aj , j = 1, . . . , s such that

Zero(P) = ∪s
j=1Zero(Aj/IAj).

Background CS Method Implementation Experiment Conclusion

Monic Zero Decomposition Theorem

P: a finite Boolean polynomial set.

Theorem (Well-ordering principle (2))

Let C = C1, . . . , Cp be a Wu CS of P with Ii = init(Ci). Then

Zero(P) = Zero(C ∪ {I1 + 1, . . . , Ip + 1}) ∪p
i=1 Zero(P ∪ C ∪ {Ii})

Fact. Zero(/IC) = Zero(IC + 1) = Zero(I1 + 1, . . . , Ip + 1)

Theorem (Monic Zero Decomposition Theorem)

We can construct monic chains Aj , j = 1, . . . , t such that

Zero(P) = ∪t
j=1Zero(Aj).

Background CS Method Implementation Experiment Conclusion

Monic Zero Decomposition Theorem

P: a finite Boolean polynomial set.

Theorem (Well-ordering principle (2))

Let C = C1, . . . , Cp be a Wu CS of P with Ii = init(Ci). Then

Zero(P) = Zero(C ∪ {I1 + 1, . . . , Ip + 1}) ∪p
i=1 Zero(P ∪ C ∪ {Ii})

Fact. Zero(/IC) = Zero(IC + 1) = Zero(I1 + 1, . . . , Ip + 1)

Theorem (Monic Zero Decomposition Theorem)

We can construct monic chains Aj , j = 1, . . . , t such that

Zero(P) = ∪t
j=1Zero(Aj).

Background CS Method Implementation Experiment Conclusion

Example
Let P = x1x2x3 + 1.

By ZDT, Zero(P) = Zero(P/x1x2) 6= ∅.

By MZDT,

Zero(P) = Zero(x1 + 1, x2 + 1, P) ∪ Zero(x1, P) ∪ Zero(x2, P)
= Zero(x1 + 1, x2 + 1, x3 + 1).

Background CS Method Implementation Experiment Conclusion

Well-ordering principle

P: a finite Boolean polynomial set.

Theorem (Well-ordering principle)

Let C = C1, . . . , Cp be a Wu CS of P. Then

Zero(P) = Zero(C ∪ {I1 + 1, . . . , Ip + 1}) ∪
Zero(Q ∪ {I1}) ∪ Zero(Q ∪ {I1 + 1, I2})∪ · · ·
Zero(Q ∪ {I1 + 1, . . . , Ip−1 + 1, Ip})

where Ii = init(Ci), Q = P ∪ C.

Fact. Zero({P}) ∪ Zero({Q}) = Zero(P) ∪ Zero(Q/P)
Note that every pair of components is disjoint.

Background CS Method Implementation Experiment Conclusion

Disjoint Monic Zero Decomposition Theorem

Theorem (DMZDT)

We can find monic chains Aj , j = 1, . . . , s such that

Zero(P) = ∪s
i=1Zero(Ai)

and Zero(Ai) ∩ Zero(Aj) = ∅ for i 6= j .
As a consequence,

|Zero(P)| =
s∑

i=1

2dim(Ai).

Background CS Method Implementation Experiment Conclusion

Example

P = {x1x2 + x2 + x1 + 1}.

We have, Zero(P) = Zero(A1) ∪ Zero(A2),

A1 = x1, x2 + 1;
A2 = x1 + 1.

Then, |Zero(P)| = 20 + 21 = 3.

Background CS Method Implementation Experiment Conclusion

Complexity of Modified Well-ordering Principle

Modified Well-ordering Principle

P = P0 P1 · · · Pi · · · Pm
C0 C1 · · · Ci · · · Cm = C
R0 R1 · · · Ri · · · Rm = ∅

(3)

Ci = a characteristic set of Pi
Ri = prem(Pi , Ci)
Pi+1 = Ci ∪ Ri ; (Pi+1 = Pi ∪ Ri)

Theorem

Let l = |P|. In the modified well-ordering principle, we have
• m ≤ n,
• need O(n2l) polynomial multiplications.

Background CS Method Implementation Experiment Conclusion

Complexity of Modified Well-ordering Principle

Modified Well-ordering Principle

P = P0 P1 · · · Pi · · · Pm
C0 C1 · · · Ci · · · Cm = C
R0 R1 · · · Ri · · · Rm = ∅

(3)

Ci = a characteristic set of Pi
Ri = prem(Pi , Ci)
Pi+1 = Ci ∪ Ri ; (Pi+1 = Pi ∪ Ri)

Theorem

Let l = |P|. In the modified well-ordering principle, we have
• m ≤ n,
• need O(n2l) polynomial multiplications.

Background CS Method Implementation Experiment Conclusion

Theorem (Modified well-ordering principle)

Let I1, . . . , Is be the initials of the polynomials in Cm, . . . , C0,
Hj = prem(Ii , C), j = 1, . . . , s, and Jm the product for all the Hj .
Then,

Zero(P)

= Zero(C/Jm)
⋃
∪s

i=1Zero(P ∪ C ∪ {H1 + 1, . . . , Hi−1 + 1, Hi})

= Zero(C ∪ {I1 + 1, . . . , Is + 1})
⋃
∪s

i Zero(P ∪ C ∪ {Ii})

Background CS Method Implementation Experiment Conclusion

Comments of the CS Methods

Compare to the general CS method:

We have a disjoint monic zero decomposition.
Well ordering principle needs a polynomial number of
arithmetic operations.

The method tries to find a balance point between space
growth and the branch growth:

To find one Wu CS needs a polynomial number of
arithmetic operations.
If the Wu CS is conflict, split the problem into smaller ones.

The method gives a clear and compact way to represent
the solutions of Boolean equation systems.

Background CS Method Implementation Experiment Conclusion

Comments of the CS Methods

Compare to the general CS method:

We have a disjoint monic zero decomposition.
Well ordering principle needs a polynomial number of
arithmetic operations.

The method tries to find a balance point between space
growth and the branch growth:

To find one Wu CS needs a polynomial number of
arithmetic operations.
If the Wu CS is conflict, split the problem into smaller ones.

The method gives a clear and compact way to represent
the solutions of Boolean equation systems.

Background CS Method Implementation Experiment Conclusion

Comments of the CS Methods

Compare to the general CS method:

We have a disjoint monic zero decomposition.
Well ordering principle needs a polynomial number of
arithmetic operations.

The method tries to find a balance point between space
growth and the branch growth:

To find one Wu CS needs a polynomial number of
arithmetic operations.
If the Wu CS is conflict, split the problem into smaller ones.

The method gives a clear and compact way to represent
the solutions of Boolean equation systems.

Background CS Method Implementation Experiment Conclusion

Implementation and Variations of the
Method

Background CS Method Implementation Experiment Conclusion

Implementation

System and Data Structure

Using C, both in Linux and Windows (VC++) systems.

Principle Balance Between Sizes and Branches.

Boolean polynomial representation
• Polynomial: Linked list of monomials.
• Recursive representation: P = Ixc + U.
• SZDD.

Parallel implementation

Background CS Method Implementation Experiment Conclusion

Implementation

System and Data Structure

Using C, both in Linux and Windows (VC++) systems.

Principle Balance Between Sizes and Branches.

Boolean polynomial representation
• Polynomial: Linked list of monomials.
• Recursive representation: P = Ixc + U.
• SZDD.

Parallel implementation

Background CS Method Implementation Experiment Conclusion

Solving Boolean Equations: Two Extreme Cases

Truth Table: 2n

x1 x2 x3 f
0 0 0 0
0 0 1 1
0 1 0 0
0 1 1 1
1 0 0 0
1 0 1 1
1 1 0 1
1 1 1 1

Reduce to One Equation

f (x1, . . . , xn) = g(x1, . . . , xn)
⇔
h = f̄ ∧ g ∨ ḡ ∧ f = 0.
f1 = f2 = · · · fm = 0
⇔
f = f1 ∨ f2 ∨ · · · ∨ fm = 0.
Quine Normal Form:
f = 0 has a unique solution
⇔
f = x1 ∨ x̄2 ∨ · · · ∨ xn.

Background CS Method Implementation Experiment Conclusion

Solving Boolean Equations: Two Extreme Cases

Truth Table: 2n

x1 x2 x3 f
0 0 0 0
0 0 1 1
0 1 0 0
0 1 1 1
1 0 0 0
1 0 1 1
1 1 0 1
1 1 1 1

Reduce to One Equation

f (x1, . . . , xn) = g(x1, . . . , xn)
⇔
h = f̄ ∧ g ∨ ḡ ∧ f = 0.
f1 = f2 = · · · fm = 0
⇔
f = f1 ∨ f2 ∨ · · · ∨ fm = 0.
Quine Normal Form:
f = 0 has a unique solution
⇔
f = x1 ∨ x̄2 ∨ · · · ∨ xn.

Background CS Method Implementation Experiment Conclusion

Balance Between Sizes and Branches

Comparison.

Truth Table. Need to test many cases, but to test one case
is fast.
Quine Normal Form. Need to test one case, but generally
will produce large polynomial.

Principle of Balance Between Sizes and Branches. Try to
produce as few branches as possible under the constraint that
the memory of the computers to be sufficiently used.

Background CS Method Implementation Experiment Conclusion

Balance Between Sizes and Branches

Comparison.

Truth Table. Need to test many cases, but to test one case
is fast.
Quine Normal Form. Need to test one case, but generally
will produce large polynomial.

Principle of Balance Between Sizes and Branches. Try to
produce as few branches as possible under the constraint that
the memory of the computers to be sufficiently used.

Background CS Method Implementation Experiment Conclusion

Top-Down Algorithm for Zero Decomposition (I)

TDZDT. Input: P a finite Boolean polynomial set.

1 H: the polynomials with the highest class in P.

2 P: a polynomial in H with a “simple" initial.
3 P = Ixc + U with cls(P) = c, init(P) = I.
4 If I = 1, then we can eliminate xc :

Zero(H) = Zero({P} ∪ {H|xc=U)})

5 If I 6= 1, then

Zero(H) = Zero(H ∪ {I + 1}) ∪ Zero(H ∪ {I})
= Zero((H \ {P}) ∪ {xc + U, I + 1}) ∪

Zero((H \ {P}) ∪ {I, U}).

Background CS Method Implementation Experiment Conclusion

Top-Down Algorithm for Zero Decomposition (I)

TDZDT. Input: P a finite Boolean polynomial set.

1 H: the polynomials with the highest class in P.
2 P: a polynomial in H with a “simple" initial.

3 P = Ixc + U with cls(P) = c, init(P) = I.
4 If I = 1, then we can eliminate xc :

Zero(H) = Zero({P} ∪ {H|xc=U)})

5 If I 6= 1, then

Zero(H) = Zero(H ∪ {I + 1}) ∪ Zero(H ∪ {I})
= Zero((H \ {P}) ∪ {xc + U, I + 1}) ∪

Zero((H \ {P}) ∪ {I, U}).

Background CS Method Implementation Experiment Conclusion

Top-Down Algorithm for Zero Decomposition (I)

TDZDT. Input: P a finite Boolean polynomial set.

1 H: the polynomials with the highest class in P.
2 P: a polynomial in H with a “simple" initial.
3 P = Ixc + U with cls(P) = c, init(P) = I.

4 If I = 1, then we can eliminate xc :

Zero(H) = Zero({P} ∪ {H|xc=U)})

5 If I 6= 1, then

Zero(H) = Zero(H ∪ {I + 1}) ∪ Zero(H ∪ {I})
= Zero((H \ {P}) ∪ {xc + U, I + 1}) ∪

Zero((H \ {P}) ∪ {I, U}).

Background CS Method Implementation Experiment Conclusion

Top-Down Algorithm for Zero Decomposition (I)

TDZDT. Input: P a finite Boolean polynomial set.

1 H: the polynomials with the highest class in P.
2 P: a polynomial in H with a “simple" initial.
3 P = Ixc + U with cls(P) = c, init(P) = I.
4 If I = 1, then we can eliminate xc :

Zero(H) = Zero({P} ∪ {H|xc=U)})

5 If I 6= 1, then

Zero(H) = Zero(H ∪ {I + 1}) ∪ Zero(H ∪ {I})
= Zero((H \ {P}) ∪ {xc + U, I + 1}) ∪

Zero((H \ {P}) ∪ {I, U}).

Background CS Method Implementation Experiment Conclusion

Top-Down Algorithm for Zero Decomposition (I)

TDZDT. Input: P a finite Boolean polynomial set.

1 H: the polynomials with the highest class in P.
2 P: a polynomial in H with a “simple" initial.
3 P = Ixc + U with cls(P) = c, init(P) = I.
4 If I = 1, then we can eliminate xc :

Zero(H) = Zero({P} ∪ {H|xc=U)})

5 If I 6= 1, then

Zero(H) = Zero(H ∪ {I + 1}) ∪ Zero(H ∪ {I})

= Zero((H \ {P}) ∪ {xc + U, I + 1}) ∪
Zero((H \ {P}) ∪ {I, U}).

Background CS Method Implementation Experiment Conclusion

Top-Down Algorithm for Zero Decomposition (I)

TDZDT. Input: P a finite Boolean polynomial set.

1 H: the polynomials with the highest class in P.
2 P: a polynomial in H with a “simple" initial.
3 P = Ixc + U with cls(P) = c, init(P) = I.
4 If I = 1, then we can eliminate xc :

Zero(H) = Zero({P} ∪ {H|xc=U)})

5 If I 6= 1, then

Zero(H) = Zero(H ∪ {I + 1}) ∪ Zero(H ∪ {I})
= Zero((H \ {P}) ∪ {xc + U, I + 1}) ∪

Zero((H \ {P}) ∪ {I, U}).

Background CS Method Implementation Experiment Conclusion

Top-Down Algorithm for Zero Decomposition (I)

TDZDT. Input: P a finite Boolean polynomial set.

1 H: the polynomials with the highest class in P.
2 P: a polynomial in H with a “simple" initial.
3 P = Ixc + U with cls(P) = c, init(P) = I.
4 If I = 1, then we can eliminate xc :

Zero(H) = Zero({P} ∪ {H|xc=U)})

5 If I 6= 1, then

Zero(H) = Zero(H ∪ {I + 1}) ∪ Zero(H ∪ {I})
= Zero((H \ {P}) ∪ {xc + U, I + 1}) ∪

Zero((H \ {P}) ∪ {I, U}).

Background CS Method Implementation Experiment Conclusion

Top-Down Algorithm for Zero Decomposition (II)

TDZDT. Input: P a finite Boolean polynomial set.

1 H: the polynomials with the highest class in P.
2 P: a polynomial in H with a “simple" initial.
3 P = Ixc + U with cls(P) = c, init(P) = I.
4 If I = 1, then we can eliminate xc :

Zero(H) = Zero({P} ∪ {H|xc=U)})

5 If I 6= 1, then

Zero(H) = Zero(H ∪ {I + 1}) ∪ Zero(H ∪ {I})
= Zero((H \ {P}) ∪ {xc + U, I + 1}) ∪

Zero((H \ {P}) ∪ {IU + U + I}).

Background CS Method Implementation Experiment Conclusion

Properties of the Top-Down Algorithm

It gives a disjoint monic decomposition:

Zero(P) = ∪s
i=1Zero(Ai)

|Zero(P)| =
s∑

i=1

2dim(Ai).

The algorithm does not need polynomial multiplications
and the degree of all the polynomials occurring in the
algorithm is bounded by maxP∈P deg(P).

Background CS Method Implementation Experiment Conclusion

Properties of the Top-Down Algorithm(II)

It gives a disjoint monic decomposition:

Zero(P) = ∪s
i=1Zero(Ai)

|Zero(P)| =
s∑

i=1

2dim(Ai).

One round of elimination from xn to x1 needs O(nl)
polynomial arithmetic operations where l = |P|.

Background CS Method Implementation Experiment Conclusion

Shared Zero-suppressed BDD: SZDD

nx2

�
�	

@
@Rnx1

��	 @
@R

0 1

nx1

��	 @
@R

0 1

P1 = x2x1 + x1

nx2

�
�	

@
@Rnx1 1

�
�	

@
@R

0 1

P2 = x2 + x1

nx2

@
@R

@
@R

nx2
�����
�

�
�

�
��

nx1

��	 @
@R

0 1

SZDD for {P1, P2}
Figure: SZDD for a polynomial set

Minto, S. Zero-Sppressed BDDs for Set Manipulation, Proc.
ACM Design Automation, 1993.

Background CS Method Implementation Experiment Conclusion

Experimental Results with a Class of
Stream Ciphers

Background CS Method Implementation Experiment Conclusion

Nonlinear Filter Generators

LFSR of length L:
Initial State: S0 = (s0, s1, . . . , sL−1) ∈ FL

2
An infinite sequence satisfying
si = c1si−1 + c2si−2 + · · · cLsi−L, i = L, L + 1, · · · .

Nonlinear Filter.
f (x1, . . . , xm): a Boolean polynomial with m variables.
A new sequence: zi = f (si−m, . . . , si−1), i = m, m + 1, · · · .

The Test Problem. Given f , ci , and zm, zm+1, . . . , zr ·m, recover
the initial state S0 from the following algebraic equations:

zi = f (si−m, . . . , si−1), i = m, m + 1, · · · , r ·m.

Background CS Method Implementation Experiment Conclusion

Filtering Functions Used in the Experiments

CanFil 1, x1x2x3 + x1x4 + x2x5 + x3

CanFil 2, x1x2x3 + x1x2x4 + x1x2x5 + x1x4 + x2x5 + x3 + x4 + x5

CanFil 3, x2x3x4x5 + x1x2x3 + x2x4 + x3x5 + x4 + x5

CanFil 4, x1x2x3 + x1x4x5 + x2x3 + x1

CanFil 5, x2x3x4x5 + x2x3 + x1

CanFil 6, x1x2x3x5 + x2x3 + x4

CanFil 7, x1x2x3 + x2x3x4 + x2x3x5 + x1 + x2 + x3

CanFil 8, x1x2x3 + x2x3x6 + x1x2 + x3x4 + x5x6 + x4 + x5

CanFil 9,
x2x4x5x7 +x2x5x6x7 +x3x4x6x7 +x1x2x4x7 +x1x3x4x7 +x1x3x6x7 +
x1x4x5x7 +x1x2x5x7 +x1x2x6x7 +x1x4x6x7 +x3x4x5x7 +x2x4x6x7 +
x3x5x6x7+x1x3x5x7+x1x2x3x7+x3x4x5+x3x4x7+x3x6x7+x5x6x7+
x2x6x7+x1x4x6+x1x5x7+x2x4x5+x2x3x7+x1x2x7+x1x4x5+x6x7+
x4x6+x4x7+x5x7+x2x5+x3x4+x3x5+x1x4+x2x7+x6+x5+x2+x1

CanFil 10, x1x2x3 + x2x3x4 + x2x3x5 + x6x7 + x3 + x2 + x1

Background CS Method Implementation Experiment Conclusion

Main Efficiency Issues

Large Expressions.
Currently, not the major problem.
Improvement Techniques:

Using SZDD to represent Boolean polynomials
Using annihilator to reduce the degree
Using monic polynomials to keep the degree low

Branch Control/Number of Solutions.
Number of branches/solutions strongly related to speed.
c/s mostly ranges from 1/20 to 4.
Our current system works fine:
But, this is the major time consuming part.

Solutions:
Using Parallel computation.
Find new techniques to reduce the branch.

Background CS Method Implementation Experiment Conclusion

Main Efficiency Issues

Large Expressions.
Currently, not the major problem.
Improvement Techniques:

Using SZDD to represent Boolean polynomials
Using annihilator to reduce the degree
Using monic polynomials to keep the degree low

Branch Control/Number of Solutions.
Number of branches/solutions strongly related to speed.
c/s mostly ranges from 1/20 to 4.

Our current system works fine:
But, this is the major time consuming part.

Solutions:
Using Parallel computation.
Find new techniques to reduce the branch.

Background CS Method Implementation Experiment Conclusion

Main Efficiency Issues

Large Expressions.
Currently, not the major problem.
Improvement Techniques:

Using SZDD to represent Boolean polynomials
Using annihilator to reduce the degree
Using monic polynomials to keep the degree low

Branch Control/Number of Solutions.
Number of branches/solutions strongly related to speed.
c/s mostly ranges from 1/20 to 4.
Our current system works fine:
But, this is the major time consuming part.

Solutions:
Using Parallel computation.
Find new techniques to reduce the branch.

Background CS Method Implementation Experiment Conclusion

Main Efficiency Issues

Large Expressions.
Currently, not the major problem.
Improvement Techniques:

Using SZDD to represent Boolean polynomials
Using annihilator to reduce the degree
Using monic polynomials to keep the degree low

Branch Control/Number of Solutions.
Number of branches/solutions strongly related to speed.
c/s mostly ranges from 1/20 to 4.
Our current system works fine:
But, this is the major time consuming part.

Solutions:
Using Parallel computation.
Find new techniques to reduce the branch.

Background CS Method Implementation Experiment Conclusion

Cryptanalysis of stream ciphers based on nonlinear filter
generators can be reduced to solving equations over F2.
CS Method: Algorithm TDZDTA implemented with C++.
GB Method: F4 algorithm in Magma.
Machine: PC with a 3.19G CPU and 2G memory

L (# of variables) 40 60 81 100 128
CanFil1 time for CS 0.04 0.00 0.01 0.05 0.06
Deg=3 time for GB 0.91 0.43 8.12 3.61 1997.22

of polynomials 1.3L 1.9L 1.9L 1.4L 1.8L
CanFil2 time for CS 0.03 0.05 0.02 0.10 0.07
Deg=3 time for GB 0.92 30.65 0.02 55.09 •

of polynomials 1.1L 1.2L 1.7L 1.4L 1.7L
CanFil3 time for CS 1.77 0.01 0.29 0.76* 1.27*
Deg=4 time for GB 178.57 1.68 • 1.99* •

of polynomials 1.6L 1.9L 2L 1.2L L
CanFil4 time for CS 0.63 0.01 0.01 0.01* 0.02*
Deg=3 time for GB 0.65 2.24 0.39 0.99* 22.57*

of polynomials 1.5L 2.8L 1.9L 1.5L 1.4L
CanFil5 time for CS 0.00 0.00 0.00 0.01 0.01
Deg=4 time for GB 0.10 0.06 0.10 0.50 0.85

of polynomials L L L L L

•: Memory overflow.

Background CS Method Implementation Experiment Conclusion

CanFil6 time for CS 0.01 0.00 0.01 0.03 0.06
Deg=4 time for GB 0.24 0.09 0.01 0.65 •

of polynomials 1.3L 1.8L 1.8L 1.6L 1.8L
CanFil7 time for CS 0.01 0.01 0.01 0.07 0.07
Deg=3 time for GB 0.27 0.40 0.01 831.89 •

of polynomials L 2L 1.9L 1.5L 1.7L
CanFil8 time for CS 0.02 0.03 0.02 0.23 0.22
Deg=3 time for GB 0.88 0.56 92.51 20.03 •

of polynomials 1.1L L 1.9L 1.4L 1.7L
CanFil9 time for CS 4.83* 0.56 1.63 1.93 50.78*
Deg=4 time for GB • 90.49 1.63 • •

of polynomials 1.2L 1.7L 1.4L 1.1L 1.7L
CanFil10 time for CS 0.17 0.06 0.06 0.10 0.32
Deg=3 time for GB 28.72 2.21 492.16 • •

of polynomials 1.1L 1.5L 1.5L 1.4L 1.6L

•: Memory overflow.

Background CS Method Implementation Experiment Conclusion

Observations

r ranges from 1 to 2.8: we need at most 3L equations in
order to find a unique solution.

For the system with rL equations, it is much faster than the
system with L equations.

Using SZDD significantly reduces the speed.

Our algorithm produces many branches which share many
polynomials.

Background CS Method Implementation Experiment Conclusion

Conclusion

1 We give the monic and disjoint monic zero decomposition
theorems for polynomial equations over F2.

2 We may compute a Wu characteristic set of a Boolean
polynomial system with a polynomial number of arithmetic
operations.

3 The method is comparable with F5 for moderately large
size polynomial systems.

4 For very large systems, we still need improvements.

Background CS Method Implementation Experiment Conclusion

Conclusion

1 We give the monic and disjoint monic zero decomposition
theorems for polynomial equations over F2.

2 We may compute a Wu characteristic set of a Boolean
polynomial system with a polynomial number of arithmetic
operations.

3 The method is comparable with F5 for moderately large
size polynomial systems.

4 For very large systems, we still need improvements.

Background CS Method Implementation Experiment Conclusion

Further Work

1 CS Program System: Better techniques of branch control;
good parallel strategies.

2 CS Method for finite fields.

Gao and Huang, A Characteristic Set Method for Equation
Solving in Finite Fields, MM-Preprints, Vol. 26, 2008.

3 Approximate/probabilistic/quantum algorithms.

Is there a polynomial approximate/probabilistic/quantum
algorithm to solve Boolean equations?

Background CS Method Implementation Experiment Conclusion

Further Work

1 CS Program System: Better techniques of branch control;
good parallel strategies.

2 CS Method for finite fields.

Gao and Huang, A Characteristic Set Method for Equation
Solving in Finite Fields, MM-Preprints, Vol. 26, 2008.

3 Approximate/probabilistic/quantum algorithms.

Is there a polynomial approximate/probabilistic/quantum
algorithm to solve Boolean equations?

Background CS Method Implementation Experiment Conclusion

Further Work

1 CS Program System: Better techniques of branch control;
good parallel strategies.

2 CS Method for finite fields.

Gao and Huang, A Characteristic Set Method for Equation
Solving in Finite Fields, MM-Preprints, Vol. 26, 2008.

3 Approximate/probabilistic/quantum algorithms.

Is there a polynomial approximate/probabilistic/quantum
algorithm to solve Boolean equations?

Background CS Method Implementation Experiment Conclusion

Thanks !

	Background
	CS Method over in Boolean Rings
	Implementation and Variation of the Method
	Preliminary Experimental Result
	Conclusion and Further Work

