Solving Nonlinear Polynomial Systems via Symbolic-Numeric Elimination Method

Lihong Zhi

Chinese Academy of Sciences
http://mmrc.iss.ac.cn/~lzhi

Joint work with Greg Reid and Xiaoli Wu

Zero Dimensional Polynomial System Solving

Consider a polynomial system $F \in \mathbb{C}\left[x_{1}, \ldots, x_{s}\right]$ of degree d,

$$
F:\left\{\begin{aligned}
& f_{1}\left(x_{1}, \ldots, x_{s}\right)=0, \\
& f_{2}\left(x_{1}, \ldots, x_{s}\right)=0, \\
& \vdots \\
& f_{t}\left(x_{1}, \ldots, x_{s}\right)=0 .
\end{aligned}\right.
$$

We are going to find all the common solutions of F.

- Symbolic Algorithms: Gröbner bases, Characteristic sets, Involutive bases, H-bases, Border bases...
- Symbolic Algorithms: Gröbner bases, Characteristic sets, Involutive bases, H-bases, Border bases...
- Numeric Algorithms: Newton's method, Homotopy continuation, Optimization methods...
- Symbolic Algorithms: Gröbner bases, Characteristic sets, Involutive bases, H-bases, Border bases...
- Numeric Algorithms: Newton's method, Homotopy continuation, Optimization methods...
- Symbolic-Numeric Hybrid Approaches: Gröbner bases, Involutive system, Border bases, Resultant...

Matrix Eigenproblems

F can be written in terms of its coefficient matrix $M_{d}^{(0)}$ as

$$
M_{d}^{(0)} \cdot\left(\begin{array}{c}
x_{1}^{d} \\
x_{1}^{d-1} x_{2} \\
\vdots \\
x_{s}^{2} \\
x_{1} \\
\vdots \\
x_{s} \\
1
\end{array}\right)=\left(\begin{array}{c}
0 \\
0 \\
\vdots \\
0 \\
0 \\
\vdots \\
0 \\
0
\end{array}\right)
$$

Matrix Eigenproblems

F can be written in terms of its coefficient matrix $M_{d}^{(0)}$ as

$$
M_{d}^{(0)} \cdot\left(\begin{array}{c}
x_{1}^{d} \\
x_{1}^{d-1} x_{2} \\
\vdots \\
x_{s}^{2} \\
x_{1} \\
\vdots \\
x_{s} \\
1
\end{array}\right)=\left(\begin{array}{c}
0 \\
0 \\
\vdots \\
0 \\
0 \\
\vdots \\
0 \\
0
\end{array}\right)
$$

Remark: $\left[\xi_{1}, \xi_{2}, \ldots, \xi_{s}\right]$ is a solutions of the polynomial system F $\Longleftrightarrow\left[\xi_{1}^{d}, \xi_{1}^{d-1} \xi_{2}, \ldots, \xi_{s}^{2}, \xi_{1}, \ldots, \xi_{s}, 1\right]^{T}$ is a null vector of the coefficient matrix $M_{d}^{(0)}$.

Translates F into a System of PDEs R

The bijection

$$
\phi: x_{i} \leftrightarrow \frac{\partial}{\partial x_{i}}, \quad 1 \leq i \leq s,
$$

ϕ maps the system F to an equivalent system of linear PDES R :

$$
M_{d}^{(0)} \cdot\left(\begin{array}{c}
\frac{\partial^{d} u}{\partial x_{1}^{d}} \\
\frac{\partial^{d} u}{\partial x_{1}^{d-1} \partial x_{2}} \\
\vdots \\
\frac{\partial^{2} u}{\partial x_{s}^{2}} \\
\frac{\partial u}{\partial x_{1}} \\
\vdots \\
\frac{\partial u}{\partial x_{s}} \\
u
\end{array}\right)=\left(\begin{array}{c}
0 \\
0 \\
\vdots \\
0 \\
0 \\
\vdots \\
0 \\
0
\end{array}\right)
$$

Why Differential Equations? [Sturmfels'02]

- We do not lose any information by doing so.

Remark: A vector $\xi=\left[\xi_{1}, \xi_{2}, \ldots, \xi_{s}\right] \in \mathbb{C}^{s}$ is a solution to polynomial system F if and only if the exponential function $\exp (\xi \cdot x)=\exp \left(\xi_{1} x_{1}+\cdots+\xi_{s} x_{s}\right)$ is a solution of the differential equations R.

Why Differential Equations? [Sturmfels'02]

- We do not lose any information by doing so.

Remark: A vector $\xi=\left[\xi_{1}, \xi_{2}, \ldots, \xi_{s}\right] \in \mathbb{C}^{s}$ is a solution to polynomial system F if and only if the exponential function $\exp (\xi \cdot x)=\exp \left(\xi_{1} x_{1}+\cdots+\xi_{s} x_{s}\right)$ is a solution of the differential equations R.

- PDE formulation reveals more information than the polynomial formulation.

Example 1 [Sturmfels'02]

Consider the system of three polynomial equations

$$
x^{3}=y z, \quad y^{3}=x z, \quad z^{3}=x y .
$$

We translate them to the three differential equations

$$
\frac{\partial^{3} u}{\partial x^{3}}=\frac{\partial^{2} u}{\partial y \partial z}, \quad \frac{\partial^{3} u}{\partial y^{3}}=\frac{\partial^{2} u}{\partial x \partial z}, \quad \frac{\partial^{3} u}{\partial z^{3}}=\frac{\partial^{2} u}{\partial x \partial y} .
$$

Example 1 (continued)

A solution basis for the PDEs is given by

$$
\begin{gathered}
\exp (x+y+z), \exp (x-y-z), \exp (y-x-z), \exp (z-x-y), \\
\exp (x+\boldsymbol{i} y-\boldsymbol{i} z), \exp (x-\boldsymbol{i} y+\boldsymbol{i} z), \exp (y+\boldsymbol{i} x-\boldsymbol{i} z), \exp (y-\boldsymbol{i} x+\boldsymbol{i} z) \\
\exp (z+\boldsymbol{i} x-\boldsymbol{i} y), \exp (z-\boldsymbol{i} x+\boldsymbol{i} y), \exp (-x+\boldsymbol{i} y+\boldsymbol{i} z), \exp (-x-\boldsymbol{i} y-\boldsymbol{i} z) \\
\exp (-y+\boldsymbol{i} x+\boldsymbol{i} z), \exp (-y-\boldsymbol{i} x-\boldsymbol{i} z), \exp (-z+\boldsymbol{i} y+\boldsymbol{i} x), \exp (-z-\boldsymbol{i} y-\boldsymbol{i} x), \\
1, x, y, z, z^{2}, y^{2}, x^{2}, x^{3}+6 y z, y^{3}+6 x z, z^{3}+6 x y, x^{4}+y^{4}+z^{4}+24 x y z
\end{gathered}
$$

- The system has 17 distinct complex zeros, 5 are real.

Example 1 (continued)

A solution basis for the PDEs is given by

$$
\begin{gathered}
\exp (x+y+z), \exp (x-y-z), \exp (y-x-z), \exp (z-x-y) \\
\exp (x+\boldsymbol{i} y-\boldsymbol{i} z), \exp (x-\boldsymbol{i} y+\boldsymbol{i} z), \exp (y+\boldsymbol{i} x-\boldsymbol{i} z), \exp (y-\boldsymbol{i} x+\boldsymbol{i} z) \\
\exp (z+\boldsymbol{i} x-\boldsymbol{i} y), \exp (z-\boldsymbol{i} x+\boldsymbol{i} y), \exp (-x+\boldsymbol{i} y+\boldsymbol{i} z), \exp (-x-\boldsymbol{i} y-\boldsymbol{i} z) \\
\exp (-y+\boldsymbol{i} x+\boldsymbol{i} z), \exp (-y-\boldsymbol{i} x-\boldsymbol{i} z), \exp (-z+\boldsymbol{i} y+\boldsymbol{i} x), \exp (-z-\boldsymbol{i} y-\boldsymbol{i} x) \\
1, x, y, z, z^{2}, y^{2}, x^{2}, x^{3}+6 y z, y^{3}+6 x z, z^{3}+6 x y, x^{4}+y^{4}+z^{4}+24 x y z
\end{gathered}
$$

- The system has 17 distinct complex zeros, 5 are real.
- The multiplicity of the origin $(0,0,0)$ is eleven.

Example 1 (continued)

A solution basis for the PDEs is given by

$$
\begin{gathered}
\exp (x+y+z), \exp (x-y-z), \exp (y-x-z), \exp (z-x-y) \\
\exp (x+\boldsymbol{i} y-\boldsymbol{i} z), \exp (x-\boldsymbol{i} y+\boldsymbol{i} z), \exp (y+\boldsymbol{i} x-\boldsymbol{i} z), \exp (y-\boldsymbol{i} x+\boldsymbol{i} z) \\
\exp (z+\boldsymbol{i} x-\boldsymbol{i} y), \exp (z-\boldsymbol{i} x+\boldsymbol{i} y), \exp (-x+\boldsymbol{i} y+\boldsymbol{i} z), \exp (-x-\boldsymbol{i} y-\boldsymbol{i} z) \\
\exp (-y+\boldsymbol{i} x+\boldsymbol{i} z), \exp (-y-\boldsymbol{i} x-\boldsymbol{i} z), \exp (-z+\boldsymbol{i} y+\boldsymbol{i} x), \exp (-z-\boldsymbol{i} y-\boldsymbol{i} x), \\
1, x, y, z, z^{2}, y^{2}, x^{2}, x^{3}+6 y z, y^{3}+6 x z, z^{3}+6 x y, x^{4}+y^{4}+z^{4}+24 x y z
\end{gathered}
$$

- The system has 17 distinct complex zeros, 5 are real.
- The multiplicity of the origin $(0,0,0)$ is eleven.
- Polynomial solutions gotten from $x^{4}+y^{4}+z^{4}+24 x y z$ by taking successive derivatives describe the multiplicity structure of the polynomial system at $(0,0,0)$.

Symbolic-Numeric Completion of PDEs

We study the linear mapping:

$$
R: v \mapsto M_{d}^{(0)} v
$$

here $v=\left[\underset{d}{u}{ }_{d-1}^{u}, \ldots, u, u\right]^{T}$, and $\underset{j}{u}$ denotes the formal jet coordinates corresponding to derivatives of order exactly j.

Symbolic-Numeric Completion of PDEs

We study the linear mapping:

$$
R: v \mapsto M_{d}^{(0)} v
$$

here $v=\underset{d}{[u, d-1}, \underset{1}{u}, \ldots, u, u]^{T}$, and $\underset{j}{u}$ denotes the formal jet coordinates corresponding to derivatives of order exactly j.

Jet space approaches study the jet variety

$$
\left.V(R)=\left\{\underset{d^{\prime} d-1}{u}, \ldots, \underset{1}{u}, u\right) \in J^{d}: R\left(\underset{d^{\prime} d-1}{u}, \ldots, \underset{1}{u}, u\right)=0\right\}
$$

where $J^{d} \approx C^{s_{d}}$ is a jet space of order d and $s_{d}=\binom{s+d}{d}$.

Symbolic Prolongation
A single prolongation of a system R is defined as:
$D R:=\left\{w \in J^{d+1}: R(w)=0, \quad D_{x_{1}} R(w)=0, \ldots, D_{x_{s}} R(w)=0\right\}$
The prolonged system $D R$ has order $d+1$,

$$
M_{d}^{(1)} \cdot\left(\begin{array}{c}
u \\
d+1 \\
u \\
d \\
\vdots \\
u \\
1 \\
u
\end{array}\right)=\left(\begin{array}{c}
0 \\
0 \\
\vdots \\
0 \\
0
\end{array}\right)
$$

Remark: $M_{d}^{(1)}$ is the coeff. matrix of the prolonged system

$$
F^{(1)}=F \cup x_{1} F \cup \cdots \cup x_{s} F
$$

Geometric Projection

A single geometric projection is defined as

$$
\left.\pi(R):=\{\underset{d-1}{u}, \ldots, \underset{1}{u}, u) \in J^{d-1}: R(\underset{d}{u} \underset{d-1}{u}, \ldots, \underset{1}{u}, u)=0\right\}
$$

Remark: For polynomial system, the projection is equivalent to eliminating the monomials of the highest degree d.

- Symbolic elimination method using Gröbner basis algorithms or Ritt-Wu's characteristic algorithms.

Remark: variables have to be well ordered.

Geometric Projection

A single geometric projection is defined as

$$
\pi(R):=\left\{\left(\underset{d-1}{u}, \ldots, \frac{u}{1}, u\right) \in J^{d-1}: R\left(\underset{d}{u}{ }_{d-1}^{u}, \ldots, \frac{u}{1}, u\right)=0\right\}
$$

Remark: For polynomial system, the projection is equivalent to eliminating the monomials of the highest degree d.

- Symbolic elimination method using Gröbner basis algorithms or Ritt-Wu's characteristic algorithms.

Remark: variables have to be well ordered.

- Numerical projection via singular value decomposition.

Remark: variables are partially ordered by total degrees.

Numeric Projection via SVD

For a chosen tolerance τ :

- Compute SVD of $M_{d}^{(0)}$, obtain a basis for the null space of R and $\operatorname{dim} R=\operatorname{dim} \operatorname{Nullspace}\left(M_{d}^{(0)}\right)$;

Numeric Projection via SVD

For a chosen tolerance τ :

- Compute SVD of $M_{d}^{(0)}$, obtain a basis for the null space of R and $\operatorname{dim} R=\operatorname{dim} \operatorname{Nullspace}\left(M_{d}^{(0)}\right)$;
- Compute a spanning set for $\pi(R)$ by deleting the highest order derivatives of the components of the basis for the null space of R;

Numeric Projection via SVD

For a chosen tolerance τ :

- Compute SVD of $M_{d}^{(0)}$, obtain a basis for the null space of R and $\operatorname{dim} R=\operatorname{dim} \operatorname{Nullspace}\left(M_{d}^{(0)}\right)$;
- Compute a spanning set for $\pi(R)$ by deleting the highest order derivatives of the components of the basis for the null space of R;
- Estimate $\operatorname{dim} \pi(R)$ by applying SVD to the spanning set of $\pi(R)$.

Numeric Projection via SVD

For a chosen tolerance τ :

- Compute SVD of $M_{d}^{(0)}$, obtain a basis for the null space of R and $\operatorname{dim} R=\operatorname{dim} \operatorname{Nullspace}\left(M_{d}^{(0)}\right)$;
- Compute a spanning set for $\pi(R)$ by deleting the highest order derivatives of the components of the basis for the null space of R;
- Estimate $\operatorname{dim} \pi(R)$ by applying SVD to the spanning set of $\pi(R)$.
- Proceeding in the same way, we can estimate $\operatorname{dim} \pi^{\ell}\left(D^{k} R\right)$.

Symbol Involutive

The Symbol matrix of PDEs is Jacobian matrix of the system w.r.t. its highest order jet coordinates,

$$
\operatorname{dim}\left(\operatorname{Symbol} \pi^{\ell}\left(D^{k} R\right)\right)=\operatorname{dim} \pi^{\ell}\left(D^{k} R\right)-\operatorname{dim} \pi^{\ell+1}\left(D^{k} R\right)
$$

Remark: In case of polynomials, the Symbol matrix is the submatrix of the coefficient matrix of the system corresponding to highest degree monomials.

Theorem 1. [Seiler 2002] For finite type PDEs (i.e., zero dimensional polynomial systems), the Symbol of $\pi^{\ell}\left(D^{k} R\right)$ is involutive if

$$
\operatorname{dim} \pi^{\ell}\left(D^{k} R\right)=\operatorname{dim} \pi^{\ell+1}\left(D^{k} R\right)
$$

Involutive System

The system $R=0$ is said to be involutive at prolonged order k and projected order l, if $\pi^{\ell}\left(D^{k}(R)\right)$ satisfies:

$$
\operatorname{dim} \pi^{\ell}\left(D^{k} R\right)=\operatorname{dim} \pi^{\ell+1}\left(D^{k+1} R\right)
$$

and the Symbol of $\pi^{\ell}\left(D^{k} R\right)$ is involutive.

Theorem 2. [Cartan-Kuranishi 1957] Two integers $k, l \geq 0$ exist for every regular differential equation R such that $\pi^{\ell}\left(D^{k} R\right)$ is involutive.

Zero Dimensional Polynomial System

Theorem 3. [Zhi and Reid 2004] If the polynomial system has only finite number of solutions, then $\pi^{\ell}\left(D^{k} R\right)$ is involutive if and only if it satisfies:
$\operatorname{dim} \pi^{\ell}\left(D^{k} R\right)=\operatorname{dim} \pi^{\ell+1}\left(D^{k+1} R\right)$ (projected elimination test)
$\operatorname{dim} \pi^{\ell}\left(D^{k} R\right)=\operatorname{dim} \pi^{\ell+1}\left(D^{k} R\right)$ (symbol involutive test)
and by the bijection ϕ, we have

$$
\operatorname{numsols}(F)=\operatorname{dim} \pi^{\ell}\left(D^{k} R\right)
$$

Symbolic-Numeric Elimination (SNEPSolver)

- Apply the symbolic-numeric completion method to R, obtain the table of $\operatorname{dim} \pi^{\ell}\left(D^{k} R\right)$.

Symbolic-Numeric Elimination (SNEPSolver)

- Apply the symbolic-numeric completion method to R, obtain the table of $\operatorname{dim} \pi^{\ell}\left(D^{k} R\right)$.
- Seek the smallest k such that there exists an $\ell=0, \ldots, k$ with $\pi^{\ell}\left(D^{k} R\right)$ approximately involutive. Choose the largest ℓ if there are several such values for the given k.

Symbolic-Numeric Elimination (SNEPSolver)

- Apply the symbolic-numeric completion method to R, obtain the table of $\operatorname{dim} \pi^{\ell}\left(D^{k} R\right)$.
- Seek the smallest k such that there exists an $\ell=0, \ldots, k$ with $\pi^{\ell}\left(D^{k} R\right)$ approximately involutive. Choose the largest ℓ if there are several such values for the given k.
- The number of solutions of polynomial system F is $\operatorname{dim} \pi^{\ell}\left(D^{k} R\right)$.

Symbolic-Numeric Elimination (SNEPSolver)

- Apply the symbolic-numeric completion method to R, obtain the table of $\operatorname{dim} \pi^{\ell}\left(D^{k} R\right)$.
- Seek the smallest k such that there exists an $\ell=0, \ldots, k$ with $\pi^{\ell}\left(D^{k} R\right)$ approximately involutive. Choose the largest ℓ if there are several such values for the given k.
- The number of solutions of polynomial system F is $\operatorname{dim} \pi^{\ell}\left(D^{k} R\right)$.
- Apply eigenvalue method to the null space of $\pi^{\ell}\left(D^{k} R\right)$, $\pi^{\ell+1}\left(D^{k} R\right)$ to obtain the solutions of F.

Example 1 (continue)

Table 1: $\operatorname{dim} \pi^{\ell}\left(D^{k} R\right)$

	$k=0$	$k=1$	$k=2$	$k=3$	$k=4$	$k=5$
$\ell=0$	17	23	26	27	27	27
$\ell=1$	10	17	23	26	27	27
$\ell=2$	4	10	17	23	26	27
$\ell=3$	1	4	10	17	23	26
$\ell=4$		1	4	10	17	23
$\ell=5$			1	4	10	17
$\ell=6$				1	4	10
$\ell=7$					1	4
$\ell=8$						1

Example 1 (continued): Eigenvalue Method We obtain 16 simple solutions:

$$
\begin{aligned}
& (1,1,1),(1,-1,-1),(1,-1,-1),(-1,-1,1), \\
& (1, i,-i),(1,-i, i),(i, 1,-i),(-i, 1, i), \\
& (i,-i, 1),(-i, i, 1),(-1, i, i),(-1,-i,-i), \\
& (i,-1, i),(-i,-1,-i),(i, i,-1),(-i,-i,-1)
\end{aligned}
$$

and one multiple root

$$
(0,0,0)
$$

with multiplicity 11.

Computing Multiplicity Structure [Wu and Zhi'08]

- Compute an isolated primary component

Computing Multiplicity Structure [Wu and Zhi'08]

- Compute an isolated primary component
- Construct differential operators

Computing Multiplicity Structure [Wu and Zhi'08]

- Compute an isolated primary component
- Construct differential operators
- Refine an approximate singular solution

Theorem 4. [Van Der Waerden 1970] Suppose the polynomial ideal $I=\left(f_{1}, \ldots, f_{t}\right)$ has an isolated primary component Q whose associated prime P is maximal, and ρ is the index of Q, i.e., the minimal nonnegative integer s.t. $\sqrt{Q}^{\rho} \subset Q$.

- If $\sigma \leq \rho$, then

$$
\operatorname{dim}\left(\mathbb{C}[\mathbf{x}] /\left(I, P^{\sigma-1}\right)\right)<\operatorname{dim}\left(\mathbb{C}[\mathbf{x}] /\left(I, P^{\sigma}\right)\right)
$$

- If $\sigma>\rho$, then

$$
Q=\left(I, P^{\rho}\right)=\left(I, P^{\sigma}\right) .
$$

Corollary 5. The index is less than or equal to the multiplicity μ :

$$
\rho \leq \mu=\operatorname{dim}(\mathbb{C}[\mathbf{x}] / Q) .
$$

Compute Primary Component I

- Form the prime ideal $P=\left(x_{1}-\hat{x}_{1}, \ldots, x_{s}-\hat{x}_{s}\right)$.

Compute Primary Component I

- Form the prime ideal $P=\left(x_{1}-\hat{x}_{1}, \ldots, x_{s}-\hat{x}_{s}\right)$.
- Compute $d_{k}=\operatorname{dim}\left(\mathbb{C}[\mathbf{x}] /\left(I, P^{k}\right)\right)$ by SNEPSolver for a given tolerance τ until $d_{k}=d_{k-1}$, set

$$
\rho=k-1, \mu=d_{\rho}, Q=\left(I, P^{\rho}\right)
$$

Compute Primary Component I

- Form the prime ideal $P=\left(x_{1}-\hat{x}_{1}, \ldots, x_{s}-\hat{x}_{s}\right)$.
- Compute $d_{k}=\operatorname{dim}\left(\mathbb{C}[\mathbf{x}] /\left(I, P^{k}\right)\right)$ by SNEPSolver for a given tolerance τ until $d_{k}=d_{k-1}$, set

$$
\rho=k-1, \mu=d_{\rho}, Q=\left(I, P^{\rho}\right)
$$

- Compute the multiplication matrices $M_{x_{1}}, \ldots, M_{x_{s}}$ of $\mathbb{C}[\mathbf{x}] / Q$ to obtain the primary component.

Example 2 [Ojika 1987]

$$
I=\left(f_{1}=x_{1}^{2}+x_{2}-3, f_{2}=x_{1}+0.125 x_{2}^{2}-1.5\right)
$$

$(1,2)$ is a 3 -fold solution. Form $P=\left(x_{1}-1, x_{2}-2\right)$, compute

Example 2 [Ojika 1987]

$$
I=\left(f_{1}=x_{1}^{2}+x_{2}-3, f_{2}=x_{1}+0.125 x_{2}^{2}-1.5\right)
$$

$(1,2)$ is a 3 -fold solution. Form $P=\left(x_{1}-1, x_{2}-2\right)$, compute

$$
\begin{gathered}
\operatorname{dim}\left(\mathbb{C}[\mathbf{x}] /\left(I, P^{2}\right)\right)=2, \\
\operatorname{dim}\left(\mathbb{C}[\mathbf{x}] /\left(I, P^{3}\right)\right)=\operatorname{dim}\left(\mathbb{C}[\mathbf{x}] /\left(I, P^{4}\right)\right)=3 .
\end{gathered}
$$

Example 2 [Ojika 1987]

$$
I=\left(f_{1}=x_{1}^{2}+x_{2}-3, f_{2}=x_{1}+0.125 x_{2}^{2}-1.5\right)
$$

$(1,2)$ is a 3 -fold solution. Form $P=\left(x_{1}-1, x_{2}-2\right)$, compute

$$
\begin{gathered}
\operatorname{dim}\left(\mathbb{C}[\mathbf{x}] /\left(I, P^{2}\right)\right)=2, \\
\operatorname{dim}\left(\mathbb{C}[\mathbf{x}] /\left(I, P^{3}\right)\right)=\operatorname{dim}\left(\mathbb{C}[\mathbf{x}] /\left(I, P^{4}\right)\right)=3 .
\end{gathered}
$$

So we have index $\rho=3$, multiplicity $\mu=3$.

Example 2 (continued)

The multiplication matrices (local ring) w.r.t. $\left\{x_{1}, x_{2}, 1\right\}$:

$$
M_{x_{1}}=\left[\begin{array}{ccc}
0 & -1 & 3 \\
6 & 3 & -10 \\
1 & 0 & 0
\end{array}\right], M_{x_{2}}=\left[\begin{array}{ccc}
6 & 3 & -10 \\
-8 & 0 & 12 \\
0 & 1 & 0
\end{array}\right] .
$$

Example 2 (continued)
The multiplication matrices (local ring) w.r.t. $\left\{x_{1}, x_{2}, 1\right\}$:

$$
M_{x_{1}}=\left[\begin{array}{ccc}
0 & -1 & 3 \\
6 & 3 & -10 \\
1 & 0 & 0
\end{array}\right], M_{x_{2}}=\left[\begin{array}{ccc}
6 & 3 & -10 \\
-8 & 0 & 12 \\
0 & 1 & 0
\end{array}\right] .
$$

The primary component of I associated to $(1,2)$ is

$$
\left(x_{1}^{2}+x_{2}-3, x_{2}^{2}+8 x_{1}-12, x_{1} x_{2}-6 x_{1}-3 x_{2}+10\right) .
$$

Differential Operators

- Let $D(\alpha)=D\left(\alpha_{1}, \ldots, \alpha_{s}\right): \mathbb{C}[\mathbf{x}] \rightarrow \mathbb{C}[\mathbf{x}]$ denote the differential operator defined by:

$$
D\left(\alpha_{1}, \ldots, \alpha_{s}\right)=\frac{1}{\alpha_{1}!\cdots \alpha_{s}!} \partial x_{1}^{\alpha_{1}} \cdots \partial x_{s}^{\alpha_{s}}
$$

Differential Operators

- Let $D(\alpha)=D\left(\alpha_{1}, \ldots, \alpha_{s}\right): \mathbb{C}[\mathbf{x}] \rightarrow \mathbb{C}[\mathbf{x}]$ denote the differential operator defined by:

$$
D\left(\alpha_{1}, \ldots, \alpha_{s}\right)=\frac{1}{\alpha_{1}!\cdots \alpha_{s}!} \partial x_{1}^{\alpha_{1}} \cdots \partial x_{s}^{\alpha_{s}},
$$

- Let $\mathfrak{D}=\{D(\alpha)| | \alpha \mid \geq 0\}$, we define the space associated to I and $\hat{\mathbf{x}}$ as

$$
\triangle_{\hat{\mathbf{x}}}:=\left\{L \in \operatorname{Span}_{\mathbb{C}}(\mathfrak{D})|L(f)|_{\mathbf{x}=\hat{\mathbf{x}}}=0, \forall f \in I\right\} .
$$

Construct Differential Operators I

- Write Taylor expansion of $h \in \mathbb{C}[x]$ at \hat{x} :

$$
T_{\rho-1} h\left(x_{1}, \ldots, x_{s}\right)=\sum_{\alpha \in \mathbb{N}^{s},|\alpha|<\rho} c_{\alpha}\left(x_{1}-\hat{x}_{1}\right)^{\alpha_{1}} \cdots\left(x_{s}-\hat{x}_{s}\right)^{\alpha_{s}} .
$$

Construct Differential Operators I

- Write Taylor expansion of $h \in \mathbb{C}[x]$ at \hat{x} :

$$
T_{\rho-1} h\left(x_{1}, \ldots, x_{s}\right)=\sum_{\alpha \in \mathbb{N}_{s},|\alpha|<\rho} c_{\alpha}\left(x_{1}-\hat{x}_{1}\right)^{\alpha_{1}} \cdots\left(x_{s}-\hat{x}_{s}\right)^{\alpha_{s}} .
$$

- Compute NF (h), and expand it at $\hat{\mathbf{x}}$

$$
\mathrm{NF}(h(x))=\sum_{\beta} d_{\beta}(\mathbf{x}-\hat{\mathbf{x}})^{\beta},
$$

and find scalars $a_{\alpha \beta} \in \mathbb{C}$ such that $d_{\beta}=\sum_{\alpha} a_{\alpha \beta} c_{\alpha}$.

Construct Differential Operators I

- Write Taylor expansion of $h \in \mathbb{C}[x]$ at \hat{x} :

$$
T_{\rho-1} h\left(x_{1}, \ldots, x_{s}\right)=\sum_{\alpha \in \mathbb{N}^{s},|\alpha|<\rho} c_{\alpha}\left(x_{1}-\hat{x}_{1}\right)^{\alpha_{1}} \cdots\left(x_{s}-\hat{x}_{s}\right)^{\alpha_{s}} .
$$

- Compute NF (h), and expand it at $\hat{\mathbf{x}}$

$$
\mathrm{NF}(h(x))=\sum_{\beta} d_{\beta}(\mathbf{x}-\hat{\mathbf{x}})^{\beta},
$$

and find scalars $a_{\alpha \beta} \in \mathbb{C}$ such that $d_{\beta}=\sum_{\alpha} a_{\alpha \beta} c_{\alpha}$.

- For each β such that $d_{\beta} \neq 0$, return

$$
L_{\beta}=\sum_{\alpha} a_{\alpha \beta} \frac{1}{\alpha_{1}!\cdots \alpha_{s}!} \partial x_{1}^{\alpha_{1}} \cdots \partial x_{s}^{\alpha_{s}}=\sum_{\alpha} a_{\alpha \beta} D(\alpha)
$$

$L=\left\{L_{1}, \ldots, L_{\mu}\right\}$ is a set of basis for $\triangle_{\hat{\mathbf{x}}}$.
[Damiano, Sabadini, Struppa '07]

Example 2 (continued)
Write Taylor expansion at $(1,2)$ up to degree $\rho-1=2$,

$$
\begin{array}{r}
h(\mathbf{x})=c_{0,0}+c_{1,0}\left(x_{1}-1\right)+c_{0,1}\left(x_{2}-2\right)+c_{2,0}\left(x_{1}-1\right)^{2} \\
+c_{1,1}\left(x_{1}-1\right)\left(x_{2}-2\right)+c_{0,2}\left(x_{2}-2\right)^{2} .
\end{array}
$$

Obtain the normal form of h by replacing $x_{1}^{2}, x_{1} x_{2}, x_{2}^{2}$ with

$$
x_{1}^{2}=-x_{2}+3, x_{1} x_{2}=6 x_{1}+3 x_{2}-10, x_{2}^{2}=-8 x_{1}+12 .
$$

The differential operators are:

$$
\left\{\begin{array}{l}
L_{1}=D(0,0) \\
L_{2}=D(0,1)-D(2,0)+2 D(1,1)-4 D(0,2) \\
L_{3}=D(1,0)-2 D(2,0)+4 D(1,1)-8 D(0,2)
\end{array}\right.
$$

Criterion of Involution of F_{k}

Let $\mathrm{T}_{k}\left(f_{i}\right)=\sum_{|\alpha|<k} f_{i, \alpha}(\mathbf{x}-\hat{\mathbf{x}})^{\alpha}$, and

$$
F_{k}=\left\{\mathrm{T}_{k}\left(f_{1}\right), \ldots, \mathrm{T}_{k}\left(f_{t}\right),\left(x_{1}-\hat{x}_{1}\right)^{\alpha_{1}} \cdots\left(x_{s}-\hat{x}_{s}\right)^{\alpha_{s}}, \sum \alpha_{i}=k\right\} .
$$

Symbol matrices of F_{k} and prolongations are of full column rank. $M_{k}^{(j)}$ denotes coeff. matrices of the truncated prolonged system $\mathrm{T}_{k}\left(F^{(j)}\right)$ with $\binom{k+s-1}{s}$ columns, $d_{k}^{(j)}=\operatorname{dim} \operatorname{Nullspace}\left(M_{k}^{(j)}\right)$.

Theorem 6. F_{k} is involutive at prolongation order m if and only if

$$
d_{k}^{(m)}=d_{k}^{(m+1)}
$$

and $d_{k}=\operatorname{dim}\left(\mathbb{C}[\mathbf{x}] /\left(I, P^{k}\right)\right)=d_{k}^{(m)}$.

Compute Primary Component II

- Form the matrix $M_{k}^{(0)}$ by computing the truncated Taylor series expansions of f_{1}, \ldots, f_{t} at \hat{x} to order k. The prolonged matrix $M_{k}^{(j)}$ is computed by shifting $M_{k}^{(0)}$ accordingly.

Compute Primary Component II

- Form the matrix $M_{k}^{(0)}$ by computing the truncated Taylor series expansions of f_{1}, \ldots, f_{t} at \hat{x} to order k. The prolonged matrix $M_{k}^{(j)}$ is computed by shifting $M_{k}^{(0)}$ accordingly.
- Compute $d_{k}^{(j)}=\operatorname{dim} \operatorname{Nullspace}\left(M_{k}^{(j)}\right)$ for a given τ, until $d_{k}^{(m)}=d_{k}^{(m+1)}=d_{k}$.

Compute Primary Component II

- Form the matrix $M_{k}^{(0)}$ by computing the truncated Taylor series expansions of f_{1}, \ldots, f_{t} at \hat{x} to order k. The prolonged matrix $M_{k}^{(j)}$ is computed by shifting $M_{k}^{(0)}$ accordingly.
- Compute $d_{k}^{(j)}=\operatorname{dim} \operatorname{Nullspace}\left(M_{k}^{(j)}\right)$ for a given τ, until $d_{k}^{(m)}=d_{k}^{(m+1)}=d_{k}$.
- If $d_{k}=d_{k-1}$, then set $\rho=k-1$ and $\mu=d_{\rho}$.

Compute Primary Component II

- Form the matrix $M_{k}^{(0)}$ by computing the truncated Taylor series expansions of f_{1}, \ldots, f_{t} at \hat{x} to order k. The prolonged matrix $M_{k}^{(j)}$ is computed by shifting $M_{k}^{(0)}$ accordingly.
- Compute $d_{k}^{(j)}=\operatorname{dim} \operatorname{Nullspace}\left(M_{k}^{(j)}\right)$ for a given τ, until $d_{k}^{(m)}=d_{k}^{(m+1)}=d_{k}$.
- If $d_{k}=d_{k-1}$, then set $\rho=k-1$ and $\mu=d_{\rho}$.
- Compute the multiplication matrices $M_{x_{1}}, \ldots, M_{x_{s}}$ from the null vectors of $M_{\rho+1}^{(m)}$.

Example 3 [Leykin et al. 2006]
$\left\{f_{1}=x_{1}^{3}+x_{2}^{2}+x_{3}^{2}-1, f_{2}=x_{1}^{2}+x_{2}^{3}+x_{3}^{2}-1, f_{3}=x_{1}^{2}+x_{2}^{2}+x_{3}^{3}-1\right\}$
has a 4-fold solution $\hat{\mathbf{x}}=(1,0,0)$. Transform it to the origin:

$$
\left\{\begin{array}{l}
g_{1}=y_{1}^{3}+3 y_{1}^{2}+3 y_{1}+y_{2}^{2}+y_{3}^{2}, \\
g_{2}=y_{1}^{2}+2 y_{1}+y_{2}^{3}+y_{3}^{2}, \\
g_{3}=y_{1}^{2}+2 y_{1}+y_{2}^{2}+y_{3}^{3} .
\end{array}\right.
$$

has the 4 -fold solution $\hat{\mathbf{y}}=(0,0,0)$. Let $I=\left(g_{1}, g_{2}, g_{3}\right)$, $P=\left(y_{1}, y_{2}, y_{3}\right)$.

$$
\begin{gathered}
{\left[\mathrm{T}_{3}\left(g_{1}\right), \mathrm{T}_{3}\left(g_{2}\right), \mathrm{T}_{3}\left(g_{3}\right)\right]^{T}=M_{3}^{(0)} \cdot\left[y_{1}^{2}, \ldots, y_{3}, 1\right]^{T},} \\
M_{3}^{(0)}=\left[\begin{array}{llllllllll}
3 & 0 & 0 & 1 & 0 & 1 & 3 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 & 1 & 2 & 0 & 0 & 0 \\
1 & 0 & 0 & 1 & 0 & 0 & 2 & 0 & 0 & 0
\end{array}\right]
\end{gathered}
$$

$$
M_{3}^{(1)}=\left[\begin{array}{llllllllll}
3 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
2 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
2 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 3 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 2 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 2 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 3 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 2 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 2 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
3 & 0 & 0 & 1 & 0 & 1 & 3 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 & 1 & 2 & 0 & 0 & 0 \\
1 & 0 & 0 & 1 & 0 & 0 & 2 & 0 & 0 & 0
\end{array}\right] .
$$

Example 3 (continued)

$$
\text { - } d_{3}^{(0)}=7, d_{3}^{(1)}=d_{3}^{(2)}=4 \Longrightarrow d_{3}=\operatorname{dim}\left(\mathbb{C}[\mathbf{y}] /\left(I, P^{3}\right)\right)=4
$$

- $d_{4}^{(0)}=17, d_{4}^{(1)}=8, d_{4}^{(2)}=d_{4}^{(3)}=4$, $\Longrightarrow d_{4}=\operatorname{dim}\left(\mathbb{C}[\mathbf{y}] /\left(I, P^{4}\right)\right)=4$.
- $d_{3}=d_{4}=4$, then index $\rho=3$, multiplicity $\mu=4$.

Construct Differential Operators II

Theorem 7. Let $Q=\left(I, P^{\rho}\right)$ be an isolated primary component of I at $\hat{\mathbf{x}}$ and $\mu \geq 1$. Suppose $F_{\rho}=\mathrm{T}_{\rho}(F) \cup P^{\rho}$ is involutive after m prolongations, the null space of the matrix $M_{\rho}^{(m)}$ is generated by $\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{\mu}$. Then differential operators are:

$$
\begin{gathered}
L_{j}=\mathbf{L} \cdot \mathbf{v}_{j}, \quad \text { for } 1 \leq j \leq \mu \\
\mathbf{L}=[D(\rho-1,0, \ldots, 0), D(\rho-2,1,0, \ldots, 0), \ldots, D(0, \ldots, 0)]
\end{gathered}
$$

See also [Dayton and Zeng 2005].

Example 3 (continued)
Since $\rho=3, \mu=4$, and $d_{3}^{(0)}=7, d_{3}^{(1)}=d_{3}^{(2)}=4$, the null space of $M_{3}^{(1)}$ is:

$$
N_{3}^{(1)}=\left[e_{10}, e_{9}, e_{8}, e_{5}\right]
$$

Multiplying the diff. operators of order less than 3:

$$
\{D(0,0,0), D(0,0,1), D(0,1,0), D(0,1,1)\}
$$

Example 1 (continued)
Since $\rho=5, \mu=11$, and

$$
d_{5}^{(0)}=23, d_{5}^{(1)}=d_{5}^{(2)}=11,
$$

Multiplying the diff. operators of order less than 5 w.r.t. to the null vectors of $M_{5}^{(1)}(35 \times 30)$, we get

$$
\begin{gathered}
D(0,0,0), D(1,0,0), D(0,0,1), D(0,1,0), \\
D(2,0,0), D(0,2,0), D(0,0,2), \\
D(0,0,3)+D(1,1,0), D(0,3,0)+D(1,0,1), D(3,0,0)+D(0,1,1), \\
D(0,0,4)+D(0,4,0)+D(4,0,0)+D(1,1,1)
\end{gathered}
$$

Complexity for Computing Differential Operators

The complexity of our algorithm is:

$$
O\left(t\binom{\rho+s-1}{s}^{3}\right)
$$

The complexity of algorithm in [Mourrain MEGA'96] is:

$$
O\left(\left(s^{2}+t\right) \mu^{3}\right)
$$

Notice $\mu \leq\binom{\rho+s-1}{s}$.

Approximate Singular Solution

- Suppose $\hat{\mathbf{x}}$ is an approximate singular solution of F :

$$
\hat{\mathbf{x}}=\hat{\mathbf{x}}_{\text {exact }}+\hat{\mathbf{x}}_{\text {error }} .
$$

Approximate Singular Solution

- Suppose $\hat{\mathbf{x}}$ is an approximate singular solution of F :

$$
\hat{\mathbf{x}}=\hat{\mathbf{x}}_{\text {exact }}+\hat{\mathbf{x}}_{\text {error }}
$$

- Transform $\hat{\mathbf{x}}$ to the origin, and we get a new system $G=\left\{g_{1}, \ldots, g_{t}\right\}$, where $g_{i}=f_{i}\left(y_{1}+\hat{x}_{1}, \ldots, y_{s}+\hat{x}_{s}\right)$.

Approximate Singular Solution

- Suppose $\hat{\mathbf{x}}$ is an approximate singular solution of F :

$$
\hat{\mathbf{x}}=\hat{\mathbf{x}}_{\text {exact }}+\hat{\mathbf{x}}_{\text {error }}
$$

- Transform $\hat{\mathbf{x}}$ to the origin, and we get a new system $G=\left\{g_{1}, \ldots, g_{t}\right\}$, where $g_{i}=f_{i}\left(y_{1}+\hat{x}_{1}, \ldots, y_{s}+\hat{x}_{s}\right)$.
- $\hat{\mathbf{y}}=-\hat{\mathbf{x}}_{\text {error }}=\left(-\hat{x}_{1, \text { error }}, \ldots,-\hat{x}_{s, \text { error }}\right)$ is an exact solution of the system G.

Approximate Singular Solution

- Suppose $\hat{\mathbf{x}}$ is an approximate singular solution of F :

$$
\hat{\mathbf{x}}=\hat{\mathbf{x}}_{\text {exact }}+\hat{\mathbf{x}}_{\text {error }} .
$$

- Transform $\hat{\mathbf{x}}$ to the origin, and we get a new system $G=\left\{g_{1}, \ldots, g_{t}\right\}$, where $g_{i}=f_{i}\left(y_{1}+\hat{x}_{1}, \ldots, y_{s}+\hat{x}_{s}\right)$.
- $\hat{\mathbf{y}}=-\hat{\mathbf{x}}_{\text {error }}=\left(-\hat{x}_{1, \text { error }}, \ldots,-\hat{x}_{s, \text { error }}\right)$ is an exact solution of the system G.
- Construct multiplication matrices locally to refine the solution.

Refining Approximate Singular Solution(RASS)

- For approximate $\hat{\mathbf{x}}$ and tolerance τ, the prime ideal $P=\left(x_{1}-\hat{x}_{1}, \ldots, x_{s}-\hat{x}_{s}\right)$, estimate μ and ρ.

Refining Approximate Singular Solution(RASS)

- For approximate $\hat{\mathbf{x}}$ and tolerance τ, the prime ideal $P=\left(x_{1}-\hat{x}_{1}, \ldots, x_{s}-\hat{x}_{s}\right)$, estimate μ and ρ.
- $G_{\rho+1}=\mathrm{T}_{\rho+1}(G) \cup P^{\rho+1}$ is involutive at m, form $M_{x_{1}}, \ldots, M_{x_{s}}$ from null vectors of $M_{\rho+1}^{(m)}$ and compute $\hat{\mathbf{y}}$.

Refining Approximate Singular Solution(RASS)

- For approximate $\hat{\mathbf{x}}$ and tolerance τ, the prime ideal $P=\left(x_{1}-\hat{x}_{1}, \ldots, x_{s}-\hat{x}_{s}\right)$, estimate μ and ρ.
- $G_{\rho+1}=\mathrm{T}_{\rho+1}(G) \cup P^{\rho+1}$ is involutive at m, form $M_{x_{1}}, \ldots, M_{x_{s}}$ from null vectors of $M_{\rho+1}^{(m)}$ and compute $\hat{\mathbf{y}}$.
- Set $\hat{\mathbf{x}}=\hat{\mathbf{x}}+\hat{\mathbf{y}}$ and run the first two steps for the refined solution and smaller τ.

Refining Approximate Singular Solution(RASS)

- For approximate $\hat{\mathbf{x}}$ and tolerance τ, the prime ideal $P=\left(x_{1}-\hat{x}_{1}, \ldots, x_{s}-\hat{x}_{s}\right)$, estimate μ and ρ.
- $G_{\rho+1}=\mathrm{T}_{\rho+1}(G) \cup P^{\rho+1}$ is involutive at m, form $M_{x_{1}}, \ldots, M_{x_{s}}$ from null vectors of $M_{\rho+1}^{(m)}$ and compute $\hat{\mathbf{y}}$.
- Set $\hat{\mathbf{x}}=\hat{\mathbf{x}}+\hat{\mathbf{y}}$ and run the first two steps for the refined solution and smaller τ.
- If $\hat{\mathbf{y}}$ converges to the origin, we get $\hat{\mathbf{x}}$ with high accuracy.

Example 3 (continued)

Given an approximate solution $\hat{\mathbf{x}}=(1.001,-0.002,-0.001 i)$.

Example 3 (continued)

Given an approximate solution $\hat{\mathbf{x}}=(1.001,-0.002,-0.001 i)$.
Set $\tau=10^{-2}$, we compute the singular solution of G :

$$
\begin{aligned}
\hat{\mathbf{y}}= & \left(-0.0009994-7.5315 \times 10^{-10} i,\right. \\
& 0.002001+2.8002 \times 10^{-8} i, \\
& \left.-1.4949 \times 10^{-6}+0.0010000 i\right) .
\end{aligned}
$$

Example 3 (continued)
Given an approximate solution $\hat{\mathbf{x}}=(1.001,-0.002,-0.001 i)$.
Set $\tau=10^{-2}$, we compute the singular solution of G :

$$
\begin{array}{r}
\hat{\mathbf{y}}=\left(-0.0009994-7.5315 \times 10^{-10} i\right. \\
0.002001+2.8002 \times 10^{-8} i \\
\left.-1.4949 \times 10^{-6}+0.0010000 i\right) \\
\hat{\mathbf{x}}=\left(1+0.6 \times 10^{-6}-7.5315 \times 10^{-10} i\right. \\
0.1 \times 10^{-5}+2.8002 \times 10^{-8} i \\
\left.-1.4949 \times 10^{-6}\right)
\end{array}
$$

Example 3 (continued)
Given an approximate solution $\hat{\mathbf{x}}=(1.001,-0.002,-0.001 i)$.
Set $\tau=10^{-2}$, we compute the singular solution of G :

$$
\begin{array}{r}
\hat{\mathbf{y}}=\left(-0.0009994-7.5315 \times 10^{-10} i\right. \\
0.002001+2.8002 \times 10^{-8} i \\
\left.-1.4949 \times 10^{-6}+0.0010000 i\right) \\
\hat{\mathbf{x}}=\left(1+0.6 \times 10^{-6}-7.5315 \times 10^{-10} i\right. \\
0.1 \times 10^{-5}+2.8002 \times 10^{-8} i \\
\left.-1.4949 \times 10^{-6}\right)
\end{array}
$$

Apply twice for $\tau=10^{-5}, 10^{-8}$ respectively, we get:

$$
\begin{aligned}
\hat{\mathbf{x}}=(1+7.0405 & \times 10^{-18}-7.8146 \times 10^{-19} i, \\
1.0307 & \times 10^{-16}-1.9293 \times 10^{-17} i, \\
1.5694 & \left.\times 10^{-16}+7.9336 \times 10^{-17} i\right) .
\end{aligned}
$$

Algorithm Performance

System	Zero	ρ	μ	RASS
cmbs1	$(0,0,0)$	5	11	$3 \rightarrow 11 \rightarrow 15$
cmbs2	$(0,0,0)$	4	8	$3 \rightarrow 13 \rightarrow 15$
mth191	$(0,1,0)$	3	4	$4 \rightarrow 9 \rightarrow 15$
LVZ	$(0,0,-1)$	7	18	$5 \rightarrow 10 \rightarrow 14$
KSS	$(1,1,1,1,1,1)$	5	16	$5 \rightarrow 11 \rightarrow 14$
Caprasse	$(2,-i \sqrt{3}, 2, i \sqrt{3})$	3	4	$4 \rightarrow 12 \rightarrow 15$
DZ1	$(0,0,0,0)$	11	131	$5 \rightarrow 14$
DZ2	$(0,0,-1)$	8	16	$4 \rightarrow 7 \rightarrow 14$
D2	$(0,0,0)$	5	5	$5 \rightarrow 10 \rightarrow 15$
Ojika1	$(1,2)$	3	3	$3 \rightarrow 6 \rightarrow 18$
Ojika2	$(0,1,0)$	2	2	$5 \rightarrow 10 \rightarrow 14$

Examples cited from http://www.math.uic.edu/~jan/,
[Dayton, Zeng '05, Dayton '07].

Thank you!

Grazie mille!

