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Zero Dimensional Polynomial System Solving

Consider a polynomial systefme C|xy, ..., Xs| of degreed,

[ fi(X1,... %) = O,

fa(Xq,...,%) = 0,

L fixe,.0%) = 0.

We are going to fincéll the common solutions df.
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* Numeric Algorithms: Newton’s method, Homotopy
continuation, Optimization methods...

* Symbolic-Numeric Hybrid Approaches: Grébner bases,
Involutive system, Border bases, Resultant...



Matrix Eigenproblems

F can be written in terms of its coefficient matl‘idéo) as
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Matrix Eigenproblems

F can be written in terms of its coefficient matl‘idéo) as
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Remark:|¢1,¢&2,. .., &g Is asolutionsof the polynomial systerf
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Translate$- into a System of PDER
The bijection
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Why Differential Equations? [Sturmfels’02]

* We do not lose any information by doing so.

Remark:A vectoré = [€1,&o,...,&s| € C°is a solution to
polynomial systent if and only if the exponential function

exp(& - X) = exp(&1Xy + - - - + EsXs) IS a solution of the
differential equation§:.



Why Differential Equations? [Sturmfels’02]

* We do not lose any information by doing so.

Remark:A vectoré = [€1,&o,...,&s| € C°is a solution to
polynomial systent if and only if the exponential function

exp(¢ - X) =exp(§1x1 + - - -+ EsXs) is a solution of the
differential equation§:.

e PDE formulation reveals more information than the
polynomial formulation.



Example 1 [Sturmfels’02]

Consider the system of three polynomial equations

X*=yz, Y=Xz, Z’=Xxy.
We translate them to the three differential equations

Fu_ R Pu_ R Fu_ o
0x3 oaydz 0dy3 oxdz" 073 Oxdy



Example 1 (continued)
A solution basis for the PDEs is given by

exp(X+Yy+2z),exp(x—y—z),exply — X—z),exp(z—x—y),
expix+iy—iz),exp(X—iy+iz),exply+ix—iz),exply—ix+iz),
exp(z+ix—iy),exp(z—ix+1y),exp(—x+1y+iz),exp(—x—iy—iz),
exp(—y+ix+iz),exp(—y—ix—iz),exp(—z+iy+ix),exp(—z—iy—ix),
1,X,V,2,22,¥%, X%, X3 + Byz y° + 6xZ 22 + 6xy, X* + y* + Z* + 24xyz

* The system has 17 distinct complex zeros, 5 are real.
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Example 1 (continued)
A solution basis for the PDEs is given by

exp(X+Yy+2z),exp(x—y—z),exply — X—z),exp(z—x—y),
expix+iy—iz),exp(X—iy+iz),exply+ix—iz),exply—ix+iz),
exp(z+ix—iy),exp(z—ix+1y),exp(—x+1y+iz),exp(—x—iy—iz),
exp(—y+ix+iz),exp(—y—ix—iz),exp(—z+iy+ix),exp(—z—iy—ix),
1,X,V,2,22,¥%, X%, X3 + Byz y° + 6xZ 22 + 6xy, X* + y* + Z* + 24xyz

* The system has 17 distinct complex zeros, 5 are real.
* The multiplicity of the origin(0,0,0) is eleven.
 Polynomial solutions gotten frond' + y* + 7* + 24xyzby

taking successive derivatives describe the multiplicity
structure of the polynomial system @t 0,0).



Symbolic-Numeric Completion of PDEs
We study the linear mapping:

R:vi— Méo)v

herev = [ldj,dul, e llJ, ul", andu denotes the formal jet
- j

coordinates corresponding to derivatives of order exactly



Symbolic-Numeric Completion of PDEs
We study the linear mapping:

R:vi— Méo)v

herev = [ldj,dul, e llJ, ul", andu denotes the formal jet
- j

coordinates corresponding to derivatives of order exactly

Jet space approaches study the jet variety

VIR ={(u, u,...,uu) €J9:R(u, u,....uu)=0
(R) {(d’d—l’ "1 )€ (d’d—l’ ’1’) J

whereJd ~ C% s a jet space of ordet andsy = ( szd ) .



Symbolic Prolongation
A singleprolongationof a systenR is defined as:

DR:={we J¥1:Rw) =0, Dy,RW)=0,...,DyR(W) =0}

The prolonged systemR has orded + 1,

( di1 / 0 \
0

u
d

I\/Iél)- : =
. 0
L u ) \OJ

Remark:Mél) IS the coeff. matrix of the prolonged system

FO —FUXFU---UxsF
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Geometric Projection

A single geometri@rojectionis defined as

R '={(u....u J91-Ru. u.....uu =0
T(R) :={( U, ,1,U)€ (d’d—l’ ,1,U) }

Remark:For polynomial system, the projection is equivalent to
eliminating the monomials of the highest degcee

e Symbolic eliminatiormethod using Grobner basis
algorithms or Ritt-Wu’s characteristic algorithms.

Remark:variables have to beell ordered
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Geometric Projection

A single geometri@rojectionis defined as

R '={(u....u J91-Ru. u.....uu =0
T[( ) {( Y 717u) E (d7d_17 717u) }

Remark:For polynomial system, the projection is equivalent to
eliminating the monomials of the highest degcee

e Symbolic eliminatiormethod using Grobner basis
algorithms or Ritt-Wu’s characteristic algorithms.

Remark:variables have to beell ordered

* Numerical projectiorvia singular value decomposition.
Remark:variables argartially ordered by total degrees



Numeric Projection via SVD

For a chosen toleranae

* Compute SVD of\/lc(,o), obtain abasisfor the null spaceof
RanddimR = dim Nullspacél\/léo));

12
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Numeric Projection via SVD

For a chosen toleranae

* Compute SVD of\/léo), obtain abasisfor the null spaceof
RanddimR = dim Nullspacél\/léo));

e Compute aspanning sefor 1(R) by deleting theénighest
order derivative®f the components of the basis for the null
space oR;

e Estimatedim1i(R) by applying SVD to thespanning seof
T(R).

 Proceeding in the same way, we can estinfitert (DkR).
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Symbol Involutive

The Symbol matrixof PDEs is Jacobian matrix of the system
w.r.t. itshighest ordejet coordinates,

dim (Symbo T[Z(DkR)> — dim 7¢(D*R) — dimm¢ 1 (D*R)

Remark:In case of polynomials, theymbol matrixis the
submatrix of the coefficient matrix of the system correspogd
to highest degremonomials.

Theorem 1. [Seiler 2002]For finite type PDEs (i.e.zero
dimensionapolynomial systems), ttgymbolof 1’ (D¥R) is
iInvolutiveif

dimm’ (D*R) = dimt "(D*R)



Involutive System

The systenik = 0 Is said to benvolutive at prolonged ordek
and projected ordey if ' (DX(R)) satisfies:

dimt (D¥R) = dim " 1(D*"1R)
and the Symbol oft’ (D¥R) is involutive.

Theorem 2. [Cartan-Kuranishi 1957]Two integers,| > 0 exist

for every regular differential equatioR such that’(D¥R) is
iInvolutive.

14
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Zero Dimensional Polynomial System

Theorem 3. [Zhi and Reid 2004]f the polynomial system has

only finite number of solutionghentd (D¥R) is involutiveif and
only if it satisfies:

dimm‘(D*R) = dimm*Y(D*"R) (projected elimination tejt

dimm’(DXR) = dimm*Y(D*R) (symbol involutive tejt
and by the bijectiomp, we have

numsol$F) = dim T (D¥R)



Symbolic-Numeric Elimination (SNEPSolver)

* Apply the symbolic-numeric completion methodRp
obtain thetable ofdim1d’ (D¥R).
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Symbolic-Numeric Elimination (SNEPSolver)

* Apply the symbolic-numeric completion methodRp
obtain thetable ofdim1d’ (D¥R).

* Seek thesmallesik such that there exists @n= 0, ..., k with

' (DXR) approximately involutive Choose théargest if
there are several such values for the giken

* The number of solutions of polynomial systéms
dimTt(D¥R).

* Apply eigenvalue method to theull space oft’(D¥R),
' 1(D*R) to obtain the solutions df.

16



Example 1 (continue)

Table 1. dimm(D*R)

k=0 k=1 k=2 k=3 k=4 k=5

17 23 26 27 27 27
10 17 23 26 27 27
4 10 17 23 26 27
1 4 10 17 23 26
1 4 10 17 23

1 4 10 17

1 4 10

1 4

1
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Example 1 (continued): Eigenvalue Method
We obtain 16 simple solutions:

(1,1,1),(1,-1,-1),(2,—-1,-1),(-1,—-1,1),
(1,i,—1),(1,—I |) (1,1, —1),(—1,1,1),
(i,—1,1), (=i,1,2),(=2,i,1), (=1, —1,—1),
(i,—=21,1),(—1,—=1,—1),(i,i,—=21),(—=i,—i,—1)

and one multiple root
(0,0,0)

with multiplicity 11.

18



Computing Multiplicity Structure [Wu and Zhi'08]

e Compute an isolated primary component
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Computing Multiplicity Structure [Wu and Zhi'08]

e Compute an isolated primary component

* Construct differential operators
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Computing Multiplicity Structure [Wu and Zhi'08]

e Compute an isolated primary component
* Construct differential operators

* Refine an approximate singular solution

19



Theorem 4. [Van Der Waerden 1970%uppose the polynomial
ideall = (fq,..., fi) has an isolated primary componet
whose associated printeis maximal, and is the index of),

i.e., the minimal nonnegative integer s,{Q° c Q.
* If 0 <p,then

dim(C[x]/(1,P°~1)) < dim(C[x]/(1,P°)).
* |If 0> p,then
Q= (I,PP) = (I,P°).
Corollary 5. The index is less than or equal to the multipliqgity

p < u=dim(C[x]/Q).

20



Compute Primary Component |

Zay

* Form the prime ideaP = (X3 — X1,...,Xs— Xs).

21



Compute Primary Component |

* Form the prime ideaP = (X3 — X1,...,Xs— Xs).

» Computed, = dim(C[x]/(I,P*)) by SNEPSolvefor a
given tolerance until d, = dy_1, set

p:k_17 U:dpa Q:(Iapp)
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Compute Primary Component |

* Form the prime ideaP = (X3 — X1,...,Xs— Xs).

» Computed, = dim(C[x]/(I,P*)) by SNEPSolvefor a
given tolerance until d, = dy_1, set

p=k—1, p=d,, Q=(I,P").

e Compute the multiplication matricégy, , ..., My, of
C[x|/Q to obtain the primary component.

21



Example 2 [Ojika 1987]

| = (fi =X +%—3, fo=x;+0.1255 — 1.5)
(1,2) is a3-fold solution. FormP = (x; — 1,x2 — 2), compute
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Example 2 [Ojika 1987]

| = (fi =X +%—3, fo=x;+0.1255 — 1.5)
(1,2) is a3-fold solution. FormP = (x; — 1,x2 — 2), compute

dim(C[x]/(1,P?)) = 2,
dim(C[x]/(1,P%)) = dim(C[x]/(I,P%) = 3.

So we have inder = 3, multiplicity p= 3.

22



Example 2 (continued)
The multiplication matriceddgcal ring) w.r.t. {x1,xo,1}:

0 -1 3 6 3 —10
My, = |6 3 —10|,My,=|-8 0 12
1 0 O 0 1 O




Example 2 (continued)
The multiplication matriceddgcal ring) w.r.t. {x1,xo,1}:

0 -1 3 6 3 —10
My, = |6 3 —10|,My,=|-8 0 12
1 0 0 0 1 0

The primary component dfassociated to1,2) is

(x% +Xo — 3, x% + 8x1 — 12 X1Xp — 6X1 — 3x2 + 10).



Differential Operators

e LetD(a)=D(aq,...,0s) : C[x] — C[x]| denote the
differential operator defined by:
1

D(Gl,...,as) — aq!---0gl aX(]]_1°°°aXSS7

24
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Differential Operators

e LetD(a)=D(aq,...,0s) : C[x] — C[x]| denote the
differential operator defined by:
1

D(Gl,...,as) — aq!---0gl aX(]]_1°°°aXSS7

* Let® ={D(a)||a| > 0}, we define the space associated to
| andx as

Ng = {L e Span(D)|L(f)|x=x =0, Vf €1}.



Construct Differential Operators |

* Write Taylor expansion dfi € C[x] atX:

Tp_lh(X]-??XS) — Z Ca(Xl—)’zl)al

aeNS |a|<p

(Xs — Xs)s.

25



Construct Differential Operators |

* Write Taylor expansion dfi € C[x] atX:

N\

To-1h(Xe,.... %) = 5 Ca(Xg—%)™ - (Xs— %)™

aeNS |a|<p

 ComputeNF(h), and expand it at

NF(h(x) = 5 dg(x—%)P,
B

and find scalarg,g € C such thatlz = 3 ; a4pCq-

25



25
Construct Differential Operators |

* Write Taylor expansion dfi € C[x] atX:

To-1h(Xe,.... %) = 5 Ca(Xg—%)™ - (Xs— %)™
aeNS |a|<p
 ComputeNF(h), and expand it at
— ZdB(X— X
B

and find scalarg,g € C such thatlz = 3 ; a4pCq-
* For eachp such thatg # O, return

_ 1 a1 as_
LB_ZaaBal!“-us!axl . ZaaBD

L ={L1,...,L,} is a set of basis for\y.
[Damiano, Sabadini, Struppa '07]
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Example 2 (continued)

Write Taylor expansion atl,2) up to degree — 1 = 2,
h(X) = Coo+Cro(x1 — 1) + Co1(X2 — 2) +C20(¥1 — 1)
+e11(Xa — 1) (%2 — 2) + Co2(%e — 2)%.
Obtain the normal form offi by replacingxs, x;xo, x5 with
2
1

X2 = —Xo 4 3,X1X0 = 6x1 + 3% — 10,X5 = —8xq + 12

The differential operators are:

I—l — D(O7O)7
L, — D(0,1)—D(2,0)+2D(1,1) — 4D(0,2),
L3 = D(1,0)—2D(2,0)+4D(1,1) —8D(0,2).
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Criterion of Involution off

Let Ty(fi) = 3 jaj<k fi,a (X —X)%, and

= {Tw(f1),..., Tk(ft), (xg — X))+ (Xs— KXs)“, ZO(i = k}.

Symbol matrices oy and prolongations are @flll column rank

(j) denotes coeff. matrices of the truncated prolonged system
Tk(F( ) with (457 columnsd!” = dim Nullspacém ).

Theorem 6. F¢ is involutive at prolongation ordem if and only
If
dlEm) _ d;imﬂ)

anddy = dim(C[x]/(I,P*)) = d{™.



Compute Primary Component Il

* Form the matri>d\/|l£0) by computing the truncated Taylor

series expansions df, . ... f; atX to orderk. The prolonged

matrix ij) IS computed by shiftin@/llgo) accordingly.
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series expansions df, ..., f; atX to orderk. The prolonged
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d™ = d™ Y = q.
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Compute Primary Component |

* Form the matri>d\/|l£0) by computing the truncated Taylor
series expansions df, ..., f; atX to orderk. The prolonged

matrix Mlij) IS computed by shiftin@/llgo) accordingly.

. Computedlij) = dim NuIIspacéMl((j)) for a givent, until
d™ = d™ Y = q.

* If dy =dx_1,thensep =k—1landy = dp.
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Compute Primary Component Il

* Form the matri>d\/|l£0) by computing the truncated Taylor

series expansions df, . ... f; atX to orderk. The prolonged

matrix ij) IS computed by shiftin@/llgo) accordingly.

. Computedlij) = dim NuIIspacéMl((j)) for a givent, until
d™ = d™ Y = q.

* If dy =dx_1,thensep =k—1landy = dp.

* Compute the multiplication matricég,,, ..., My, from the

(M)
null vectors ofM; ;.
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Example 3 [Leykin et al. 2006]
(f1=X4+X+%—1, =X+ +x35—1 f3=xX+x5+x3—1}

has ad-fold solutionx = (1,0,0). Transform it to the origin:
(01 = 332431+ Y3+Y3

{2 = R+ Y3+,

O = VAtV HYE.

has thed-fold solutiony = (0,0,0). Let! = (g1,02,03),
P = (y1,Y2,¥3).
.

T3(01), T3(g2), Ta(g3)] ' = M;(D,O) ¥5,-- 8,1

MY =

R = W
o O O
o O O
_ O =
o O O
O =
N N W
o O O

O O o
O O O,
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Example 3 (continued)
o d¥ =7, d" =d? = 4= d3=dim(Cly]/(1,P%))

e d” =17,d{” =8,d? =d}? =4,

— d4 = dim(Cly]/(1,P*)) 4_

* d3 =ds =4, then indexp = 3, multiplicity p= 4.

4.

31
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Construct Differential Operators Il

Theorem 7. LetQ = (I, PP) be an isolated primary component
of | atX andp > 1. Supposé, = T,(F)UPP is involutive after

m prolongations, the null space of the matMém) IS generated
byvi,vo,...,vy. Then differential operators are:

Li=L-vj, forl< )<y,

L = [D(p—1,0,...,0),D(p—2,1,0,...,0),...,D(0,...,0)].

See alsgDayton and Zeng 2005]



Example 3 (continued)
Sincep = 3, u =4, anddéo) =1, dél) = déz) — 4, the null space
of I\/Iél) IS:
N:gl) — [910, €9, €8, 65]7
Multiplying the diff. operators of order less th&@n

{D(0,0,0), D(0,0,1), D(0,1,0), D(0,1,1)}.

33
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Example 1 (continued)

Sincep =5, u= 11, and

d¥ =23 d\P =d\? =11,

Multiplying the diff. operators of order less thamw.r.t. to the
null vectors oﬂ\/lél) (35x 30), we get

D(0,0,0), D(1,0,0), D(0,0,1),D(0,1,0),
D(2,0,0), D(0,2,0),D(0,0,2),
D(0,0,3) + D(1,1,0), D(0,3,0)+D(1,0,1), D(3,0,0)+D(0,1,1),
D(0,0,4) + D(0,4,0) + D(4,0,0) + D(1,1,1)



Complexity for Computing Differential Operators

The complexity of our algorithm is:

3
5 <t<p+s 1) )
S
The complexity of algorithm imMourrain MEGA'96] is:

O((S*+ D))

Noticep < (P75,

35



Approximate Singular Solution
* Suppose& is an approximate singular solution l6f

X = Xexact1 Xerror-

36



Approximate Singular Solution
* Suppose& is an approximate singular solution l6f

X = Xexact1 Xerror-

* Transformx to the origin, and we get a new system
G= {gla' X 7gt}’ Wheregi — fi (yl_l_)’zla- X 7yS+)’zS)'
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36
Approximate Singular Solution

* Suppose& is an approximate singular solution l6f
X = 5\(exact‘|‘ f(error-
* Transformx to the origin, and we get a new system
G= {917 - 7gt}’ Wheregi — fi (y1_|')217 " 7yS+)’zS)'

® S\/ — —f(error — (—)217error, c .oy —)’zS’error) |S an exaCt SO|UtIOn Of
the systent.



36
Approximate Singular Solution

* Suppose& is an approximate singular solution l6f
X = 5\(exacH’ >A(error-
* Transformx to the origin, and we get a new system
G=1{01....,0t}, whereg; = fi(yr +X1,...,Ys+Xs).

® S\/ — —f(error — (—Xl’error, c .oy —Xs’error) |S an exaCt SO|UtIOﬂ Of
the systent.

e Construct multiplication matrices locally to refine the
solution.



Refining Approximate Singular Solution(RASS)

* For approximate and tolerance, the prime ideal
P=(X1—Xq,...,X— Xs), estimate. andp.
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Refining Approximate Singular Solution(RASS)

* For approximate and tolerance, the prime ideal
P=(X1—Xq,...,X— Xs), estimate. andp.

* Gpi1=Tp1(G)UPP™is involutive atm, form

(m)

My, ... My, from null vectors ofVi; "y

and compute.
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Refining Approximate Singular Solution(RASS)

* For approximate and tolerance, the prime ideal
P=(X1—Xq,...,X— Xs), estimate. andp.

* Gpi1=Tp1(G)UPP™is involutive atm, form

My, . ... My, from null vectors oﬂ\/lf()n;)1 and computs.

e SetXx = X+ y and run the first two steps for the refined
solution and smaller.
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Refining Approximate Singular Solution(RASS)

* For approximate and tolerance, the prime ideal
P=(X1—Xq,...,X— Xs), estimate. andp.

* Gpi1=Tp1(G)UPP™is involutive atm, form

(m)

51 and computey.

My, ..., My, from null vectors ofV

e SetXx = X+ y and run the first two steps for the refined
solution and smaller.

* |f ¥ converges to the origin, we getwith high accuracy.



Example 3 (continued)
Given an approximate solution= (1.001 —0.002 —0.001i).
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Example 3 (continued)

Given an approximate solution= (1.001 —0.002 —0.001i).

Sett = 10~2, we compute the singular solution Gf
J = (—0.0009994- 7.5315x 10~ 19j,

0.002001+ 2.8002x 10~ 8i,
—1.4949x 10~°+0.0010000).
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Example 3 (continued)

Given an approximate solution= (1.001 —0.002 —0.001i).
Sett = 10~2, we compute the singular solution Gf
J = (—0.0009994- 7.5315x 10 19j,

0.002001+ 2.8002x 10~ 8i,
—1.4949x 10~ °+0.0010000).

X =(14+0.6x10°—7.5315x 1019,
0.1x 10>+ 2.8002x 107 %i,
—1.4949x 10°°).

38



38
Example 3 (continued)

Given an approximate solution= (1.001 —0.002 —0.001i).
Sett = 10~2, we compute the singular solution Gf
J = (—0.0009994- 7.5315x 10 19j,

0.002001+ 2.8002x 10~ 8i,
—1.4949x 10~ °+0.0010000).

X =(14+0.6x10°—7.5315x 1019,
0.1x 10>+ 2.8002x 107 %i,
—1.4949x 10°°).

Apply twice fort = 107,108 respectively, we get:
X = (14 7.0405x 10718 —7.8146x 10719,

1.0307x 10 10— 1.9293x 10 /i,
1.5694x 10~ 1°+7.9336x 107 17i).



Algorithm Performance

Systen) Zero | U [RASS
cmbs] (0,0,0) 5111|3— 11— 15
cmbs2 (0,0,0) 41 8 |3—13—15

mth191 (0,1,0) 3/ 4|4—-9—-15

LVZ (0,0,—1) 7118|5— 10— 14

KSS| (1,1,1,1,11) |5|/16(5— 11— 14

Caprassg2, —iv/3,2,iv/3)| 3| 4 |4— 12— 15

DZ1 (0,0,0,0) 11|1131/5— 14

DZ2 (0,0,—1) 8116|4—7— 14

D2 (0,0,0) 5/ 5]|5—10— 15
Ojikal (1,2) 3] 3|3—-6—18

Ojika2 (0,1,0) 2| 2 |5—10— 14

Examples cited frontt t p: / / www. mat h. ui c. edu/ ~] an/,

[Dayton, Zenq '’

05, Dayton '07].
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http://www.math.uic.edu/~jan/

Thank youl!

Grazie mille!
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