Solving Nonlinear Polynomial Systems via Symbolic-Numeric Elimination Method

Lihong Zhi

Chinese Academy of Sciences http://mmrc.iss.ac.cn/~lzhi

Joint work with Greg Reid and Xiaoli Wu

Zero Dimensional Polynomial System Solving Consider a polynomial system $F \in \mathbb{C}[x_1, \dots, x_s]$ of degree *d*,

$$F: \begin{cases} f_1(x_1, \dots, x_s) = 0, \\ f_2(x_1, \dots, x_s) = 0, \\ \vdots \\ f_t(x_1, \dots, x_s) = 0. \end{cases}$$

We are going to find all the common solutions of F.

• Symbolic Algorithms: Gröbner bases, Characteristic sets, Involutive bases, H-bases, Border bases...

- Symbolic Algorithms: Gröbner bases, Characteristic sets, Involutive bases, H-bases, Border bases...
- Numeric Algorithms: Newton's method, Homotopy continuation, Optimization methods...

- Symbolic Algorithms: Gröbner bases, Characteristic sets, Involutive bases, H-bases, Border bases...
- Numeric Algorithms: Newton's method, Homotopy continuation, Optimization methods...
- Symbolic-Numeric Hybrid Approaches: Gröbner bases, Involutive system, Border bases, Resultant...

Matrix Eigenproblems

F can be written in terms of its coefficient matrix $M_d^{(0)}$ as

$$M_{d}^{(0)} \cdot \begin{pmatrix} x_{1}^{d} \\ x_{1}^{d-1} x_{2} \\ \vdots \\ x_{s}^{2} \\ x_{1} \\ \vdots \\ x_{s} \\ 1 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ \vdots \\ 0 \\ 0 \\ 0 \end{pmatrix}$$

Matrix Eigenproblems

F can be written in terms of its coefficient matrix $M_d^{(0)}$ as

$$M_{d}^{(0)} \cdot \begin{pmatrix} x_{1}^{d} \\ x_{1}^{d-1}x_{2} \\ \vdots \\ x_{s}^{2} \\ x_{1} \\ \vdots \\ x_{s} \\ 1 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ \vdots \\ 0 \\ 0 \\ 0 \end{pmatrix}$$

Remark: $[\xi_1, \xi_2, ..., \xi_s]$ is a solutions of the polynomial system $F \iff [\xi_1^d, \xi_1^{d-1}\xi_2, ..., \xi_s^2, \xi_1, ..., \xi_s, 1]^T$ is a null vector of the coefficient matrix $M_d^{(0)}$.

Translates *F* into a System of PDEs *R* The bijection

$$\phi: x_i \leftrightarrow \frac{\partial}{\partial x_i}, \ 1 \leq i \leq s,$$

 ϕ maps the system F to an equivalent system of linear PDES R:

$$M_{d}^{(0)} \cdot \begin{pmatrix} \frac{\partial^{d} u}{\partial x_{1}^{d}} \\ \frac{\partial^{d} u}{\partial x_{1}^{d-1} \partial x_{2}} \\ \vdots \\ \frac{\partial^{2} u}{\partial x_{s}^{2}} \\ \frac{\partial u}{\partial x_{1}} \\ \vdots \\ \frac{\partial u}{\partial x_{s}} \\ u \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ \vdots \\ 0 \\ 0 \\ \vdots \\ 0 \\ 0 \end{pmatrix}$$

Why Differential Equations? [Sturmfels'02]

• We do not lose any information by doing so.

Remark: A vector $\boldsymbol{\xi} = [\xi_1, \xi_2, \dots, \xi_s] \in \mathbb{C}^s$ is a solution to polynomial system *F* if and only if the exponential function $\exp(\boldsymbol{\xi} \cdot \boldsymbol{x}) = \exp(\xi_1 x_1 + \dots + \xi_s x_s)$ is a solution of the differential equations *R*.

Why Differential Equations? [Sturmfels'02]

• We do not lose any information by doing so.

Remark: A vector $\boldsymbol{\xi} = [\xi_1, \xi_2, \dots, \xi_s] \in \mathbb{C}^s$ is a solution to polynomial system *F* if and only if the exponential function $\exp(\boldsymbol{\xi} \cdot \boldsymbol{x}) = \exp(\xi_1 x_1 + \dots + \xi_s x_s)$ is a solution of the differential equations *R*.

• PDE formulation reveals more information than the polynomial formulation.

Example 1 [Sturmfels'02]

Consider the system of three polynomial equations

$$x^3 = yz, \quad y^3 = xz, \quad z^3 = xy.$$

We translate them to the three differential equations

$$\frac{\partial^3 u}{\partial x^3} = \frac{\partial^2 u}{\partial y \partial z}, \quad \frac{\partial^3 u}{\partial y^3} = \frac{\partial^2 u}{\partial x \partial z}, \quad \frac{\partial^3 u}{\partial z^3} = \frac{\partial^2 u}{\partial x \partial y}.$$

Example 1 (continued)

A solution basis for the PDEs is given by

$$\begin{split} &\exp(x+y+z), \exp(x-y-z), \exp(y-x-z), \exp(z-x-y), \\ &\exp(x+iy-iz), \exp(x-iy+iz), \exp(y+ix-iz), \exp(y-ix+iz), \\ &\exp(z+ix-iy), \exp(z-ix+iy), \exp(-x+iy+iz), \exp(-x-iy-iz), \\ &\exp(-y+ix+iz), \exp(-y-ix-iz), \exp(-z+iy+ix), \exp(-z-iy-ix), \\ &1, x, y, z, z^2, y^2, x^2, x^3 + 6yz, y^3 + 6xz, z^3 + 6xy, x^4 + y^4 + z^4 + 24xyz \end{split}$$

• The system has 17 distinct complex zeros, 5 are real.

Example 1 (continued)

A solution basis for the PDEs is given by

$$\begin{split} &\exp(x+y+z), \exp(x-y-z), \exp(y-x-z), \exp(z-x-y), \\ &\exp(x+iy-iz), \exp(x-iy+iz), \exp(y+ix-iz), \exp(y-ix+iz), \\ &\exp(z+ix-iy), \exp(z-ix+iy), \exp(-x+iy+iz), \exp(-x-iy-iz), \\ &\exp(-y+ix+iz), \exp(-y-ix-iz), \exp(-z+iy+ix), \exp(-z-iy-ix), \\ &1, x, y, z, z^2, y^2, x^2, x^3 + 6yz, y^3 + 6xz, z^3 + 6xy, x^4 + y^4 + z^4 + 24xyz \end{split}$$

- The system has 17 distinct complex zeros, 5 are real.
- The multiplicity of the origin (0,0,0) is eleven.

Example 1 (continued)

A solution basis for the PDEs is given by

$$\begin{split} &\exp(x+y+z), \exp(x-y-z), \exp(y-x-z), \exp(z-x-y), \\ &\exp(x+iy-iz), \exp(x-iy+iz), \exp(y+ix-iz), \exp(y-ix+iz), \\ &\exp(z+ix-iy), \exp(z-ix+iy), \exp(-x+iy+iz), \exp(-x-iy-iz), \\ &\exp(-y+ix+iz), \exp(-y-ix-iz), \exp(-z+iy+ix), \exp(-z-iy-ix), \\ &1, x, y, z, z^2, y^2, x^2, x^3 + 6yz, y^3 + 6xz, z^3 + 6xy, x^4 + y^4 + z^4 + 24xyz \end{split}$$

- The system has 17 distinct complex zeros, 5 are real.
- The multiplicity of the origin (0,0,0) is eleven.
- Polynomial solutions gotten from $x^4 + y^4 + z^4 + 24xyz$ by taking successive derivatives describe the multiplicity structure of the polynomial system at (0,0,0).

Symbolic-Numeric Completion of PDEs We study the linear mapping:

 $R: v \mapsto M_d^{(0)} v$

here $v = \begin{bmatrix} u, & u \\ d & d-1 \end{bmatrix}^T$, and $\begin{bmatrix} u \\ j \end{bmatrix}$ denotes the formal jet coordinates corresponding to derivatives of order exactly *j*.

Symbolic-Numeric Completion of PDEs We study the linear mapping:

 $R: v \mapsto M_d^{(0)} v$

here $v = \begin{bmatrix} u, & u \\ d & d-1 \end{bmatrix}^T$, and $\begin{bmatrix} u \\ j \end{bmatrix}$ denotes the formal jet coordinates corresponding to derivatives of order exactly *j*.

Jet space approaches study the jet variety

$$V(R) = \{ (\underbrace{u, u}_{d-1}, \dots, \underbrace{u, u}_{1}, u) \in J^{d} : R(\underbrace{u, u}_{d-1}, \dots, \underbrace{u, u}_{1}, u) = 0 \}$$

where $J^{d} \approx C^{s_{d}}$ is a jet space of order d and $s_{d} = \begin{pmatrix} s+d \\ d \end{pmatrix}$

Symbolic Prolongation

A single prolongation of a system R is defined as:

 $DR := \{ w \in J^{d+1} : R(w) = 0, \quad D_{x_1}R(w) = 0, \dots, D_{x_s}R(w) = 0 \}$

The prolonged system *DR* has order d + 1,

$$M_d^{(1)} \cdot \begin{pmatrix} u \\ d+1 \\ u \\ d \\ \vdots \\ u \\ 1 \\ u \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ \vdots \\ 0 \\ 0 \end{pmatrix}$$

Remark: $M_d^{(1)}$ is the coeff. matrix of the prolonged system $F^{(1)} = F \cup x_1 F \cup \cdots \cup x_s F$

Geometric Projection

A single geometric projection is defined as

$$\pi(R) := \{ (\underbrace{u}_{d-1}, \dots, \underbrace{u}_{1}, u) \in J^{d-1} : R(\underbrace{u}_{d}, \underbrace{u}_{d-1}, \dots, \underbrace{u}_{1}, u) = 0 \}$$

Remark: For polynomial system, the projection is equivalent to eliminating the monomials of the highest degree d.

• Symbolic elimination method using Gröbner basis algorithms or Ritt-Wu's characteristic algorithms.

Remark: variables have to be well ordered.

Geometric Projection

A single geometric projection is defined as

$$\pi(R) := \{ (\underbrace{u}_{d-1}, \dots, \underbrace{u}_{1}, u) \in J^{d-1} : R(\underbrace{u}_{d}, \underbrace{u}_{d-1}, \dots, \underbrace{u}_{1}, u) = 0 \}$$

Remark: For polynomial system, the projection is equivalent to eliminating the monomials of the highest degree d.

- Symbolic elimination method using Gröbner basis algorithms or Ritt-Wu's characteristic algorithms.
 Remark: variables have to be well ordered.
- Numerical projection via singular value decomposition.
 Remark: variables are partially ordered by total degrees.

For a chosen tolerance τ :

• Compute SVD of $M_d^{(0)}$, obtain a basis for the null space of *R* and dim *R* = dim Nullspace $(M_d^{(0)})$;

For a chosen tolerance τ :

- Compute SVD of $M_d^{(0)}$, obtain a basis for the null space of *R* and dim *R* = dim Nullspace $(M_d^{(0)})$;
- Compute a spanning set for $\pi(R)$ by deleting the highest order derivatives of the components of the basis for the null space of *R*;

For a chosen tolerance τ :

- Compute SVD of $M_d^{(0)}$, obtain a basis for the null space of *R* and dim *R* = dim Nullspace $(M_d^{(0)})$;
- Compute a spanning set for $\pi(R)$ by deleting the highest order derivatives of the components of the basis for the null space of *R*;
- Estimate dim π(R) by applying SVD to the spanning set of π(R).

For a chosen tolerance τ :

- Compute SVD of $M_d^{(0)}$, obtain a basis for the null space of *R* and dim *R* = dim Nullspace $(M_d^{(0)})$;
- Compute a spanning set for $\pi(R)$ by deleting the highest order derivatives of the components of the basis for the null space of *R*;
- Estimate dim $\pi(R)$ by applying SVD to the spanning set of $\pi(R)$.
- Proceeding in the same way, we can estimate $\dim \pi^{\ell}(D^k R)$.

Symbol Involutive

The Symbol matrix of PDEs is Jacobian matrix of the system w.r.t. its highest order jet coordinates,

$$\dim\left(\operatorname{Symbol} \pi^{\ell}(D^k R)\right) = \dim \pi^{\ell}(D^k R) - \dim \pi^{\ell+1}(D^k R)$$

Remark: In case of polynomials, the **Symbol matrix** is the submatrix of the coefficient matrix of the system corresponding to highest degree monomials.

Theorem 1. [Seiler 2002] For finite type PDEs (i.e., zero dimensional polynomial systems), the Symbol of $\pi^{\ell}(D^k R)$ is involutive if

 $\dim \pi^{\ell}(D^k R) = \dim \pi^{\ell+1}(D^k R)$

Involutive System

The system R = 0 is said to be involutive at prolonged order k and projected order l, if $\pi^{\ell}(D^k(R))$ satisfies:

 $\dim \pi^{\ell}(D^k R) = \dim \pi^{\ell+1}(D^{k+1} R)$

and the Symbol of $\pi^{\ell}(D^k R)$ is involutive.

Theorem 2. [Cartan-Kuranishi 1957] Two integers $k, l \ge 0$ exist for every regular differential equation R such that $\pi^{\ell}(D^k R)$ is involutive.

Zero Dimensional Polynomial System

Theorem 3. [*Zhi and Reid* 2004] If the polynomial system has only finite number of solutions, then $\pi^{\ell}(D^k R)$ is involutive if and only if it satisfies:

 $\dim \pi^{\ell}(D^{k}R) = \dim \pi^{\ell+1}(D^{k+1}R) \text{ (projected elimination test)}$ $\dim \pi^{\ell}(D^{k}R) = \dim \pi^{\ell+1}(D^{k}R) \text{ (symbol involutive test)}$ and by the bijection ϕ , we have

numsols(F) = dim $\pi^{\ell}(D^k R)$

• Apply the symbolic-numeric completion method to *R*, obtain the table of dim $\pi^{\ell}(D^k R)$.

- Apply the symbolic-numeric completion method to *R*, obtain the table of dim $\pi^{\ell}(D^k R)$.
- Seek the smallest k such that there exists an l = 0,...,k with π^l(D^kR) approximately involutive. Choose the largest l if there are several such values for the given k.

- Apply the symbolic-numeric completion method to *R*, obtain the table of dim $\pi^{\ell}(D^k R)$.
- Seek the smallest k such that there exists an l = 0,...,k with π^l(D^kR) approximately involutive. Choose the largest l if there are several such values for the given k.
- The number of solutions of polynomial system *F* is $\dim \pi^{\ell}(D^k R)$.

- Apply the symbolic-numeric completion method to *R*, obtain the table of dim $\pi^{\ell}(D^k R)$.
- Seek the smallest k such that there exists an l = 0,...,k with π^l(D^kR) approximately involutive. Choose the largest l if there are several such values for the given k.
- The number of solutions of polynomial system *F* is $\dim \pi^{\ell}(D^k R)$.
- Apply eigenvalue method to the null space of $\pi^{\ell}(D^k R)$, $\pi^{\ell+1}(D^k R)$ to obtain the solutions of *F*.

Example 1 (continue)

Table 1: dim $\pi^{\ell}(D^k R)$

	k = 0	k = 1	<i>k</i> = 2	<i>k</i> = 3	<i>k</i> = 4	<i>k</i> = 5
$\ell = 0$	17	23	26	27	27	27
$\ell = 1$	10	17	23	26	27	27
$\ell = 2$	4	10	17	23	26	27
$\ell = 3$	1	4	10	17	23	26
$\ell = 4$		1	4	10	17	23
$\ell = 5$			1	4	10	17
$\ell = 6$				1	4	10
$\ell = 7$					1	4
$\ell = 8$						1

Example 1 (continued): Eigenvalue Method We obtain 16 simple solutions:

$$(1,1,1), (1,-1,-1), (1,-1,-1), (-1,-1,1), (1,-1,-1), (-1,-1,1), (1,i,-i), (1,i,-i), (i,1,-i), (-i,1,i), (i,1,-i), (-i,1,i), (i,-1,-i), (i,-1,-i), (i,-1,-i), (i,-1,-i), (i,-1,-i), (i,-1,-i), (i,-1,-i), (-i,-1,-i), (i,-1,-i), (-i,-1,-i), (-i,-1,-$$

and one multiple root

(0, 0, 0)

with multiplicity 11.

Computing Multiplicity Structure [Wu and Zhi'08]

• Compute an isolated primary component

Computing Multiplicity Structure [Wu and Zhi'08]

- Compute an isolated primary component
- Construct differential operators

Computing Multiplicity Structure [Wu and Zhi'08]

- Compute an isolated primary component
- Construct differential operators
- Refine an approximate singular solution

Theorem 4. [Van Der Waerden 1970] Suppose the polynomial ideal $I = (f_1, ..., f_t)$ has an isolated primary component Q whose associated prime P is maximal, and ρ is the index of Q, i.e., the minimal nonnegative integer s.t. $\sqrt{Q}^{\rho} \subset Q$.

• If $\sigma \leq \rho$, then

 $\dim(\mathbb{C}[\mathbf{x}]/(I,P^{\sigma-1})) < \dim(\mathbb{C}[\mathbf{x}]/(I,P^{\sigma})).$

• If $\sigma > \rho$, then

$$Q = (I, P^{\rho}) = (I, P^{\sigma}).$$

Corollary 5. The index is less than or equal to the multiplicity μ :

 $\rho \leq \mu = \dim(\mathbb{C}[\mathbf{x}]/Q).$
• Form the prime ideal $P = (x_1 - \hat{x}_1, \dots, x_s - \hat{x}_s)$.

- Form the prime ideal $P = (x_1 \hat{x}_1, \dots, x_s \hat{x}_s)$.
- Compute $d_k = \dim(\mathbb{C}[\mathbf{x}]/(I, P^k))$ by SNEPSolver for a given tolerance τ until $d_k = d_{k-1}$, set

$$\rho = k - 1, \ \mu = d_{\rho}, \ Q = (I, P^{\rho}).$$

- Form the prime ideal $P = (x_1 \hat{x}_1, \dots, x_s \hat{x}_s)$.
- Compute $d_k = \dim(\mathbb{C}[\mathbf{x}]/(I, P^k))$ by SNEPSolver for a given tolerance τ until $d_k = d_{k-1}$, set

$$\rho = k - 1, \ \mu = d_{\rho}, \ Q = (I, P^{\rho}).$$

• Compute the multiplication matrices M_{x_1}, \ldots, M_{x_s} of $\mathbb{C}[\mathbf{x}]/Q$ to obtain the primary component.

Example 2 [Ojika 1987]

$$I = (f_1 = x_1^2 + x_2 - 3, f_2 = x_1 + 0.125x_2^2 - 1.5)$$

(1,2) is a 3-fold solution. Form $P = (x_1 - 1, x_2 - 2)$, compute

Example 2 [Ojika 1987]

$$I = (f_1 = x_1^2 + x_2 - 3, f_2 = x_1 + 0.125x_2^2 - 1.5)$$

(1,2) is a 3-fold solution. Form $P = (x_1 - 1, x_2 - 2)$, compute

 $\dim(\mathbb{C}[\mathbf{x}]/(I,P^2)) = 2,$ $\dim(\mathbb{C}[\mathbf{x}]/(I,P^3)) = \dim(\mathbb{C}[\mathbf{x}]/(I,P^4)) = 3.$ Example 2 [Ojika 1987]

$$I = (f_1 = x_1^2 + x_2 - 3, f_2 = x_1 + 0.125x_2^2 - 1.5)$$

(1,2) is a 3-fold solution. Form $P = (x_1 - 1, x_2 - 2)$, compute

 $\dim(\mathbb{C}[\mathbf{x}]/(I,P^2)) = 2,$ $\dim(\mathbb{C}[\mathbf{x}]/(I,P^3)) = \dim(\mathbb{C}[\mathbf{x}]/(I,P^4)) = 3.$

So we have index $\rho = 3$, multiplicity $\mu = 3$.

Example 2 (continued)

The multiplication matrices (local ring) w.r.t. $\{x_1, x_2, 1\}$:

$$M_{x_1} = \begin{bmatrix} 0 & -1 & 3 \\ 6 & 3 & -10 \\ 1 & 0 & 0 \end{bmatrix}, M_{x_2} = \begin{bmatrix} 6 & 3 & -10 \\ -8 & 0 & 12 \\ 0 & 1 & 0 \end{bmatrix}.$$

Example 2 (continued)

The multiplication matrices (local ring) w.r.t. $\{x_1, x_2, 1\}$:

$$M_{x_1} = \begin{bmatrix} 0 & -1 & 3 \\ 6 & 3 & -10 \\ 1 & 0 & 0 \end{bmatrix}, M_{x_2} = \begin{bmatrix} 6 & 3 & -10 \\ -8 & 0 & 12 \\ 0 & 1 & 0 \end{bmatrix}.$$

The primary component of I associated to (1,2) is

$$(x_1^2 + x_2 - 3, x_2^2 + 8x_1 - 12, x_1x_2 - 6x_1 - 3x_2 + 10).$$

Differential Operators

• Let $D(\alpha) = D(\alpha_1, \dots, \alpha_s) : \mathbb{C}[\mathbf{x}] \to \mathbb{C}[\mathbf{x}]$ denote the differential operator defined by:

$$D(\alpha_1,\ldots,\alpha_s)=\frac{1}{\alpha_1!\cdots\alpha_s!}\partial x_1^{\alpha_1}\cdots\partial x_s^{\alpha_s},$$

Differential Operators

• Let $D(\alpha) = D(\alpha_1, \dots, \alpha_s) : \mathbb{C}[\mathbf{x}] \to \mathbb{C}[\mathbf{x}]$ denote the differential operator defined by:

$$D(\alpha_1,\ldots,\alpha_s)=\frac{1}{\alpha_1!\cdots\alpha_s!}\partial x_1^{\alpha_1}\cdots\partial x_s^{\alpha_s},$$

• Let $\mathfrak{D} = \{D(\alpha) | |\alpha| \ge 0\}$, we define the space associated to *I* and $\hat{\mathbf{x}}$ as

$$\triangle_{\hat{\mathbf{x}}} := \{ L \in Span_{\mathbb{C}}(\mathfrak{D}) | L(f) |_{\mathbf{x} = \hat{\mathbf{x}}} = 0, \ \forall f \in I \}.$$

Construct Differential Operators I

• Write Taylor expansion of $h \in \mathbb{C}[x]$ at \hat{x} :

$$T_{\rho-1}h(x_1,\ldots,x_s)=\sum_{\alpha\in\mathbb{N}^s,|\alpha|<\rho}c_{\alpha}(x_1-\hat{x}_1)^{\alpha_1}\cdots(x_s-\hat{x}_s)^{\alpha_s}.$$

Construct Differential Operators I

• Write Taylor expansion of $h \in \mathbb{C}[x]$ at \hat{x} :

$$T_{\rho-1}h(x_1,\ldots,x_s)=\sum_{\alpha\in\mathbb{N}^s,|\alpha|<\rho}c_{\alpha}(x_1-\hat{x}_1)^{\alpha_1}\cdots(x_s-\hat{x}_s)^{\alpha_s}.$$

• Compute NF(h), and expand it at $\hat{\mathbf{x}}$

$$\mathrm{NF}(h(x)) = \sum_{\beta} d_{\beta} (\mathbf{x} - \hat{\mathbf{x}})^{\beta},$$

and find scalars $a_{\alpha\beta} \in \mathbb{C}$ such that $d_{\beta} = \sum_{\alpha} a_{\alpha\beta} c_{\alpha}$.

Construct Differential Operators I

• Write Taylor expansion of $h \in \mathbb{C}[x]$ at \hat{x} :

$$T_{\rho-1}h(x_1,\ldots,x_s)=\sum_{\alpha\in\mathbb{N}^s, |\alpha|<\rho}c_{\alpha}(x_1-\hat{x}_1)^{\alpha_1}\cdots(x_s-\hat{x}_s)^{\alpha_s}.$$

• Compute NF(h), and expand it at $\hat{\mathbf{x}}$

$$NF(h(x)) = \sum_{\beta} d_{\beta} (\mathbf{x} - \hat{\mathbf{x}})^{\beta},$$

and find scalars $a_{\alpha\beta} \in \mathbb{C}$ such that $d_{\beta} = \sum_{\alpha} a_{\alpha\beta} c_{\alpha}$.

• For each β such that $d_{\beta} \neq 0$, return

$$L_{\beta} = \sum_{\alpha} a_{\alpha\beta} \frac{1}{\alpha_1 ! \cdots \alpha_s !} \partial x_1^{\alpha_1} \cdots \partial x_s^{\alpha_s} = \sum_{\alpha} a_{\alpha\beta} D(\alpha).$$
$$L = \{L_1, \dots, L_{\mu}\} \text{ is a set of basis for } \Delta_{\hat{\mathbf{x}}}.$$
$$[\text{Damiano, Sabadini, Struppa '07}]$$

Example 2 (continued)

Write Taylor expansion at (1,2) up to degree $\rho - 1 = 2$,

$$h(\mathbf{x}) = c_{0,0} + c_{1,0}(x_1 - 1) + c_{0,1}(x_2 - 2) + c_{2,0}(x_1 - 1)^2 + c_{1,1}(x_1 - 1)(x_2 - 2) + c_{0,2}(x_2 - 2)^2.$$

Obtain the normal form of *h* by replacing x_1^2, x_1x_2, x_2^2 with

$$x_1^2 = -x_2 + 3, x_1x_2 = 6x_1 + 3x_2 - 10, x_2^2 = -8x_1 + 12.$$

The differential operators are:

$$\begin{cases} L_1 = D(0,0), \\ L_2 = D(0,1) - D(2,0) + 2D(1,1) - 4D(0,2), \\ L_3 = D(1,0) - 2D(2,0) + 4D(1,1) - 8D(0,2). \end{cases}$$

Criterion of Involution of F_k

Let
$$\mathbf{T}_k(f_i) = \sum_{|\alpha| < k} f_{i,\alpha} (\mathbf{x} - \hat{\mathbf{x}})^{\alpha}$$
, and

$$F_k = \{ \mathbf{T}_k(f_1), \dots, \mathbf{T}_k(f_t), \ (x_1 - \hat{x}_1)^{\alpha_1} \cdots (x_s - \hat{x}_s)^{\alpha_s}, \ \sum \alpha_i = k \}.$$

Symbol matrices of F_k and prolongations are of full column rank. $M_k^{(j)}$ denotes coeff. matrices of the truncated prolonged system $T_k(F^{(j)})$ with $\binom{k+s-1}{s}$ columns, $d_k^{(j)} = \dim \text{Nullspace}(M_k^{(j)})$.

Theorem 6. F_k is involutive at prolongation order *m* if and only if

$$d_k^{(m)} = d_k^{(m+1)}$$

and $d_k = \dim(\mathbb{C}[\mathbf{x}]/(I, P^k)) = d_k^{(m)}$.

• Form the matrix $M_k^{(0)}$ by computing the truncated Taylor series expansions of f_1, \ldots, f_t at \hat{x} to order k. The prolonged matrix $M_k^{(j)}$ is computed by shifting $M_k^{(0)}$ accordingly.

- Form the matrix $M_k^{(0)}$ by computing the truncated Taylor series expansions of f_1, \ldots, f_t at \hat{x} to order k. The prolonged matrix $M_k^{(j)}$ is computed by shifting $M_k^{(0)}$ accordingly.
- Compute $d_k^{(j)} = \dim \operatorname{Nullspace}(M_k^{(j)})$ for a given τ , until $d_k^{(m)} = d_k^{(m+1)} = d_k$.

- Form the matrix $M_k^{(0)}$ by computing the truncated Taylor series expansions of f_1, \ldots, f_t at \hat{x} to order k. The prolonged matrix $M_k^{(j)}$ is computed by shifting $M_k^{(0)}$ accordingly.
- Compute $d_k^{(j)} = \dim \operatorname{Nullspace}(M_k^{(j)})$ for a given τ , until $d_k^{(m)} = d_k^{(m+1)} = d_k$.
- If $d_k = d_{k-1}$, then set $\rho = k 1$ and $\mu = d_{\rho}$.

- Form the matrix $M_k^{(0)}$ by computing the truncated Taylor series expansions of f_1, \ldots, f_t at \hat{x} to order k. The prolonged matrix $M_k^{(j)}$ is computed by shifting $M_k^{(0)}$ accordingly.
- Compute $d_k^{(j)} = \dim \operatorname{Nullspace}(M_k^{(j)})$ for a given τ , until $d_k^{(m)} = d_k^{(m+1)} = d_k$.
- If $d_k = d_{k-1}$, then set $\rho = k 1$ and $\mu = d_{\rho}$.
- Compute the multiplication matrices M_{x_1}, \ldots, M_{x_s} from the null vectors of $M_{\rho+1}^{(m)}$.

Example 3 [Leykin et al. 2006]

 $\{f_1 = x_1^3 + x_2^2 + x_3^2 - 1, f_2 = x_1^2 + x_2^3 + x_3^2 - 1, f_3 = x_1^2 + x_2^2 + x_3^3 - 1\}$

has a 4-fold solution $\hat{\mathbf{x}} = (1, 0, 0)$. Transform it to the origin:

$$\begin{cases} g_1 = y_1^3 + 3y_1^2 + 3y_1 + y_2^2 + y_3^2, \\ g_2 = y_1^2 + 2y_1 + y_2^3 + y_3^2, \\ g_3 = y_1^2 + 2y_1 + y_2^2 + y_3^3. \end{cases}$$

has the 4-fold solution $\hat{\mathbf{y}} = (0, 0, 0)$. Let $I = (g_1, g_2, g_3)$, $P = (y_1, y_2, y_3)$.

$$\begin{bmatrix} \mathbf{T}_3(g_1), \mathbf{T}_3(g_2), \mathbf{T}_3(g_3) \end{bmatrix}^T = M_3^{(0)} \cdot \begin{bmatrix} y_1^2, \dots, y_3, 1 \end{bmatrix}^T, \\ M_3^{(0)} = \begin{bmatrix} 3 & 0 & 0 & 1 & 0 & 1 & 3 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 1 & 2 & 0 & 0 & 0 \\ 1 & 0 & 0 & 1 & 0 & 0 & 2 & 0 & 0 & 0 \end{bmatrix}$$

Example 3 (continued)

•
$$d_3^{(0)} = 7, d_3^{(1)} = d_3^{(2)} = 4 \Longrightarrow d_3 = \dim(\mathbb{C}[\mathbf{y}]/(I, P^3)) = 4.$$

•
$$d_4^{(0)} = 17, d_4^{(1)} = 8, d_4^{(2)} = d_4^{(3)} = 4,$$

 $\implies d_4 = \dim(\mathbb{C}[\mathbf{y}]/(I, P^4)) = 4.$

• $d_3 = d_4 = 4$, then index $\rho = 3$, multiplicity $\mu = 4$.

Construct Differential Operators II

Theorem 7. Let $Q = (I, P^{\rho})$ be an isolated primary component of I at $\hat{\mathbf{x}}$ and $\mu \ge 1$. Suppose $F_{\rho} = T_{\rho}(F) \cup P^{\rho}$ is involutive after m prolongations, the null space of the matrix $M_{\rho}^{(m)}$ is generated by $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_{\mu}$. Then differential operators are:

 $L_j = \mathbf{L} \cdot \mathbf{v}_j, \quad for \ 1 \leq j \leq \mu,$

 $\mathbf{L} = [D(\rho - 1, 0, \dots, 0), D(\rho - 2, 1, 0, \dots, 0), \dots, D(0, \dots, 0)].$

See also [Dayton and Zeng 2005].

Example 3 (continued)

Since $\rho = 3$, $\mu = 4$, and $d_3^{(0)} = 7$, $d_3^{(1)} = d_3^{(2)} = 4$, the null space of $M_3^{(1)}$ is:

$$N_3^{(1)} = [e_{10}, e_9, e_8, e_5],$$

Multiplying the diff. operators of order less than 3:

{D(0,0,0), D(0,0,1), D(0,1,0), D(0,1,1)}.

Example 1 (continued)

Since $\rho = 5$, $\mu = 11$, and

$$d_5^{(0)} = 23, \ d_5^{(1)} = d_5^{(2)} = 11,$$

Multiplying the diff. operators of order less than 5 w.r.t. to the null vectors of $M_5^{(1)}(35 \times 30)$, we get

$$\begin{split} D(0,0,0), \ D(1,0,0), \ D(0,0,1), D(0,1,0), \\ D(2,0,0), \ D(0,2,0), D(0,0,2), \\ D(0,0,3) + D(1,1,0), \ D(0,3,0) + D(1,0,1), \ D(3,0,0) + D(0,1,1), \\ D(0,0,4) + D(0,4,0) + D(4,0,0) + D(1,1,1) \end{split}$$

Complexity for Computing Differential Operators

The complexity of our algorithm is:

$$O\left(t\left(\frac{\rho+s-1}{s}\right)^3\right)$$

The complexity of algorithm in [Mourrain MEGA'96] is:

 $O((s^2+t)\mu^3).$

Notice $\mu \leq {\binom{\rho+s-1}{s}}$.

• Suppose $\hat{\mathbf{x}}$ is an approximate singular solution of F:

 $\hat{\mathbf{x}} = \hat{\mathbf{x}}_{\text{exact}} + \hat{\mathbf{x}}_{\text{error}}.$

• Suppose $\hat{\mathbf{x}}$ is an approximate singular solution of F:

 $\hat{\mathbf{x}} = \hat{\mathbf{x}}_{\text{exact}} + \hat{\mathbf{x}}_{\text{error}}.$

• Transform $\hat{\mathbf{x}}$ to the origin, and we get a new system $G = \{g_1, \dots, g_t\}$, where $g_i = f_i(y_1 + \hat{x}_1, \dots, y_s + \hat{x}_s)$.

• Suppose $\hat{\mathbf{x}}$ is an approximate singular solution of F:

 $\hat{\mathbf{x}} = \hat{\mathbf{x}}_{\text{exact}} + \hat{\mathbf{x}}_{\text{error}}.$

- Transform $\hat{\mathbf{x}}$ to the origin, and we get a new system $G = \{g_1, \dots, g_t\}$, where $g_i = f_i(y_1 + \hat{x}_1, \dots, y_s + \hat{x}_s)$.
- $\hat{\mathbf{y}} = -\hat{\mathbf{x}}_{error} = (-\hat{x}_{1,error}, \dots, -\hat{x}_{s,error})$ is an exact solution of the system *G*.

• Suppose $\hat{\mathbf{x}}$ is an approximate singular solution of F:

 $\hat{\mathbf{x}} = \hat{\mathbf{x}}_{\text{exact}} + \hat{\mathbf{x}}_{\text{error}}.$

- Transform $\hat{\mathbf{x}}$ to the origin, and we get a new system $G = \{g_1, \dots, g_t\}$, where $g_i = f_i(y_1 + \hat{x}_1, \dots, y_s + \hat{x}_s)$.
- $\hat{\mathbf{y}} = -\hat{\mathbf{x}}_{error} = (-\hat{x}_{1,error}, \dots, -\hat{x}_{s,error})$ is an exact solution of the system *G*.
- Construct multiplication matrices locally to refine the solution.

• For approximate $\hat{\mathbf{x}}$ and tolerance τ , the prime ideal $P = (x_1 - \hat{x}_1, \dots, x_s - \hat{x}_s)$, estimate μ and ρ .

- For approximate $\hat{\mathbf{x}}$ and tolerance τ , the prime ideal $P = (x_1 \hat{x}_1, \dots, x_s \hat{x}_s)$, estimate μ and ρ .
- $G_{\rho+1} = T_{\rho+1}(G) \cup P^{\rho+1}$ is involutive at *m*, form M_{x_1}, \dots, M_{x_s} from null vectors of $M_{\rho+1}^{(m)}$ and compute $\hat{\mathbf{y}}$.

- For approximate $\hat{\mathbf{x}}$ and tolerance $\boldsymbol{\tau}$, the prime ideal $P = (x_1 \hat{x}_1, \dots, x_s \hat{x}_s)$, estimate μ and ρ .
- $G_{\rho+1} = T_{\rho+1}(G) \cup P^{\rho+1}$ is involutive at *m*, form M_{x_1}, \dots, M_{x_s} from null vectors of $M_{\rho+1}^{(m)}$ and compute $\hat{\mathbf{y}}$.
- Set $\hat{\mathbf{x}} = \hat{\mathbf{x}} + \hat{\mathbf{y}}$ and run the first two steps for the refined solution and smaller τ .

- For approximate $\hat{\mathbf{x}}$ and tolerance $\boldsymbol{\tau}$, the prime ideal $P = (x_1 \hat{x}_1, \dots, x_s \hat{x}_s)$, estimate μ and ρ .
- $G_{\rho+1} = T_{\rho+1}(G) \cup P^{\rho+1}$ is involutive at *m*, form M_{x_1}, \dots, M_{x_s} from null vectors of $M_{\rho+1}^{(m)}$ and compute $\hat{\mathbf{y}}$.
- Set $\hat{\mathbf{x}} = \hat{\mathbf{x}} + \hat{\mathbf{y}}$ and run the first two steps for the refined solution and smaller τ .
- If $\hat{\mathbf{y}}$ converges to the origin, we get $\hat{\mathbf{x}}$ with high accuracy.

Example 3 (continued)

Given an approximate solution $\hat{\mathbf{x}} = (1.001, -0.002, -0.001i)$.

Example 3 (continued)

Given an approximate solution $\hat{\mathbf{x}} = (1.001, -0.002, -0.001 i)$. Set $\tau = 10^{-2}$, we compute the singular solution of *G*: $\hat{\mathbf{y}} = (-0.0009994 - 7.5315 \times 10^{-10} i,$ $0.002001 + 2.8002 \times 10^{-8} i,$ $-1.4949 \times 10^{-6} + 0.0010000 i).$
Example 3 (continued)

Given an approximate solution $\hat{\mathbf{x}} = (1.001, -0.002, -0.001 i)$. Set $\tau = 10^{-2}$, we compute the singular solution of G: $\hat{\mathbf{y}} = (-0.0009994 - 7.5315 \times 10^{-10} i,$ $0.002001 + 2.8002 \times 10^{-8} i,$ $-1.4949 \times 10^{-6} + 0.0010000 i).$

> $\hat{\mathbf{x}} = (1 + 0.6 \times 10^{-6} - 7.5315 \times 10^{-10} i,$ $0.1 \times 10^{-5} + 2.8002 \times 10^{-8} i,$ $-1.4949 \times 10^{-6}).$

Example 3 (continued)

Given an approximate solution $\hat{\mathbf{x}} = (1.001, -0.002, -0.001 i)$. Set $\tau = 10^{-2}$, we compute the singular solution of G: $\hat{\mathbf{y}} = (-0.0009994 - 7.5315 \times 10^{-10} i,$ $0.002001 + 2.8002 \times 10^{-8} i,$ $-1.4949 \times 10^{-6} + 0.0010000 i).$

> $\hat{\mathbf{x}} = (1 + 0.6 \times 10^{-6} - 7.5315 \times 10^{-10} i,$ $0.1 \times 10^{-5} + 2.8002 \times 10^{-8} i,$ $-1.4949 \times 10^{-6}).$

Apply twice for $\tau = 10^{-5}$, 10^{-8} respectively, we get: $\hat{\mathbf{x}} = (1 + 7.0405 \times 10^{-18} - 7.8146 \times 10^{-19} i, 1.0307 \times 10^{-16} - 1.9293 \times 10^{-17} i, 1.5694 \times 10^{-16} + 7.9336 \times 10^{-17} i).$

Algorithm Performance

System	Zero	ρ	μ	RASS
cmbs1	(0, 0, 0)	5	11	$3 \rightarrow 11 \rightarrow 15$
cmbs2	(0, 0, 0)	4	8	$3 \rightarrow 13 \rightarrow 15$
mth191	(0, 1, 0)	3	4	$4 \rightarrow 9 \rightarrow 15$
LVZ	(0, 0, -1)	7	18	$5 \rightarrow 10 \rightarrow 14$
KSS	(1, 1, 1, 1, 1, 1)	5	16	$5 \rightarrow 11 \rightarrow 14$
Caprasse	$(2,-i\sqrt{3},2,i\sqrt{3})$	3	4	$4 \rightarrow 12 \rightarrow 15$
DZ1	(0, 0, 0, 0)	11	131	$5 \rightarrow 14$
DZ2	(0, 0, -1)	8	16	$4 \rightarrow 7 \rightarrow 14$
D2	(0, 0, 0)	5	5	$5 \rightarrow 10 \rightarrow 15$
Ojika1	(1, 2)	3	3	$3 \rightarrow 6 \rightarrow 18$
Ojika2	(0, 1, 0)	2	2	$5 \rightarrow 10 \rightarrow 14$

Examples cited from http://www.math.uic.edu/~jan/,

[Dayton, Zeng '05, Dayton '07].

Thank you!

Grazie mille!