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Zero Dimensional Polynomial System Solving

Consider a polynomial systemF ∈ C[x1, . . . ,xs] of degreed,

F :























f1(x1, . . . ,xs) = 0,

f2(x1, . . . ,xs) = 0,
...

ft(x1, . . . ,xs) = 0.

We are going to findall the common solutions ofF.
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• Symbolic Algorithms: Gröbner bases, Characteristic sets,
Involutive bases, H-bases, Border bases...
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• Symbolic Algorithms: Gröbner bases, Characteristic sets,
Involutive bases, H-bases, Border bases...

• Numeric Algorithms: Newton’s method, Homotopy
continuation, Optimization methods...
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• Symbolic Algorithms: Gröbner bases, Characteristic sets,
Involutive bases, H-bases, Border bases...

• Numeric Algorithms: Newton’s method, Homotopy
continuation, Optimization methods...

• Symbolic-Numeric Hybrid Approaches: Gröbner bases,
Involutive system, Border bases, Resultant...
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Matrix Eigenproblems

F can be written in terms of its coefficient matrixM(0)
d as

M(0)
d ·
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Matrix Eigenproblems

F can be written in terms of its coefficient matrixM(0)
d as
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Remark:[ξ1,ξ2, . . . ,ξs] is asolutionsof the polynomial systemF
⇐⇒ [ξd

1,ξ
d−1
1 ξ2, . . . ,ξ2

s,ξ1, . . . ,ξs,1]T is anull vectorof the

coefficient matrixM(0)
d .
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TranslatesF into a System of PDEsR
The bijection

φ : xi ↔
∂

∂xi
, 1≤ i ≤ s,

φ maps the systemF to an equivalent system of linear PDESR:

M(0)
d ·
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Why Differential Equations? [Sturmfels’02]

• We do not lose any information by doing so.

Remark:A vectorξ = [ξ1,ξ2, . . . ,ξs] ∈ C
s is a solution to

polynomial systemF if and only if the exponential function
exp(ξ ·x) = exp(ξ1x1 + · · ·+ξsxs) is a solution of the
differential equationsR.
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Why Differential Equations? [Sturmfels’02]

• We do not lose any information by doing so.

Remark:A vectorξ = [ξ1,ξ2, . . . ,ξs] ∈ C
s is a solution to

polynomial systemF if and only if the exponential function
exp(ξ ·x) = exp(ξ1x1 + · · ·+ξsxs) is a solution of the
differential equationsR.

• PDE formulation reveals more information than the
polynomial formulation.
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Example 1 [Sturmfels’02]

Consider the system of three polynomial equations

x3 = yz, y3 = xz, z3 = xy.

We translate them to the three differential equations

∂3u
∂x3 =

∂2u
∂y∂z

,
∂3u
∂y3 =

∂2u
∂x∂z

,
∂3u
∂z3 =

∂2u
∂x∂y

.
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Example 1 (continued)
A solution basis for the PDEs is given by

exp(x+y+z),exp(x−y−z),exp(y−x−z),exp(z−x−y),

exp(x+ iy− iz),exp(x− iy+ iz),exp(y+ ix− iz),exp(y− ix+ iz),

exp(z+ ix− iy),exp(z− ix+ iy),exp(−x+ iy+ iz),exp(−x− iy− iz),

exp(−y+ ix+ iz),exp(−y− ix− iz),exp(−z+ iy+ ix),exp(−z− iy− ix),

1,x,y,z,z2,y2,x2,x3 +6yz,y3 +6xz,z3 +6xy,x4 +y4 +z4 +24xyz

• The system has 17 distinct complex zeros, 5 are real.
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Example 1 (continued)
A solution basis for the PDEs is given by

exp(x+y+z),exp(x−y−z),exp(y−x−z),exp(z−x−y),

exp(x+ iy− iz),exp(x− iy+ iz),exp(y+ ix− iz),exp(y− ix+ iz),
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• The system has 17 distinct complex zeros, 5 are real.
• The multiplicity of the origin(0,0,0) is eleven.
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Example 1 (continued)
A solution basis for the PDEs is given by

exp(x+y+z),exp(x−y−z),exp(y−x−z),exp(z−x−y),

exp(x+ iy− iz),exp(x− iy+ iz),exp(y+ ix− iz),exp(y− ix+ iz),

exp(z+ ix− iy),exp(z− ix+ iy),exp(−x+ iy+ iz),exp(−x− iy− iz),

exp(−y+ ix+ iz),exp(−y− ix− iz),exp(−z+ iy+ ix),exp(−z− iy− ix),

1,x,y,z,z2,y2,x2,x3 +6yz,y3 +6xz,z3 +6xy,x4 +y4 +z4 +24xyz

• The system has 17 distinct complex zeros, 5 are real.
• The multiplicity of the origin(0,0,0) is eleven.

• Polynomial solutions gotten fromx4+y4+z4 +24xyzby
taking successive derivatives describe the multiplicity
structure of the polynomial system at(0,0,0).
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Symbolic-Numeric Completion of PDEs
We study the linear mapping:

R : v 7→ M(0)
d v

herev = [u
d
, u
d−1

, . . . ,u
1
,u]T , andu

j
denotes the formal jet

coordinates corresponding to derivatives of order exactlyj.
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Symbolic-Numeric Completion of PDEs
We study the linear mapping:

R : v 7→ M(0)
d v

herev = [u
d
, u
d−1

, . . . ,u
1
,u]T , andu

j
denotes the formal jet

coordinates corresponding to derivatives of order exactlyj.

Jet space approaches study the jet variety

V(R) = {(u
d
, u
d−1

, . . . ,u
1
,u) ∈ Jd : R(u

d
, u
d−1

, . . . ,u
1
,u) = 0}

whereJd ≈Csd is a jet space of orderd andsd =

(

s+d

d

)

.
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Symbolic Prolongation
A singleprolongationof a systemR is defined as:

DR := {w∈ Jd+1 : R(w) = 0, Dx1R(w) = 0, . . . ,DxsR(w) = 0}

The prolonged systemDR has orderd+1,

M(1)
d ·
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Remark:M(1)
d is the coeff. matrix of the prolonged system

F(1) = F ∪x1F ∪·· ·∪xsF
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Geometric Projection
A single geometricprojectionis defined as

π(R) := {( u
d−1

, . . . ,u
1
,u) ∈ Jd−1 : R(u

d
, u
d−1

, . . . ,u
1
,u) = 0}

Remark:For polynomial system, the projection is equivalent to
eliminating the monomials of the highest degreed.

• Symbolic eliminationmethod using Gröbner basis
algorithms or Ritt-Wu’s characteristic algorithms.

Remark:variables have to bewell ordered.
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Geometric Projection
A single geometricprojectionis defined as

π(R) := {( u
d−1

, . . . ,u
1
,u) ∈ Jd−1 : R(u

d
, u
d−1

, . . . ,u
1
,u) = 0}

Remark:For polynomial system, the projection is equivalent to
eliminating the monomials of the highest degreed.

• Symbolic eliminationmethod using Gröbner basis
algorithms or Ritt-Wu’s characteristic algorithms.

Remark:variables have to bewell ordered.

• Numerical projectionvia singular value decomposition.

Remark:variables arepartially ordered by total degrees.
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Numeric Projection via SVD

For a chosen toleranceτ :

• Compute SVD ofM(0)
d , obtain abasisfor thenull spaceof

R anddimR= dim Nullspace(M(0)
d );
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Numeric Projection via SVD

For a chosen toleranceτ :

• Compute SVD ofM(0)
d , obtain abasisfor thenull spaceof

R anddimR= dim Nullspace(M(0)
d );

• Compute aspanning setfor π(R) by deleting thehighest
order derivativesof the components of the basis for the null
space ofR;
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π(R).
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Numeric Projection via SVD

For a chosen toleranceτ :

• Compute SVD ofM(0)
d , obtain abasisfor thenull spaceof

R anddimR= dim Nullspace(M(0)
d );

• Compute aspanning setfor π(R) by deleting thehighest
order derivativesof the components of the basis for the null
space ofR;

• Estimatedimπ(R) by applying SVD to thespanning setof
π(R).

• Proceeding in the same way, we can estimatedimπℓ(DkR).
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Symbol Involutive

TheSymbol matrixof PDEs is Jacobian matrix of the system
w.r.t. itshighest orderjet coordinates,

dim
(

Symbolπℓ(DkR)
)

= dim πℓ(DkR)−dimπℓ+1(DkR)

Remark:In case of polynomials, theSymbol matrixis the
submatrix of the coefficient matrix of the system corresponding
to highest degreemonomials.

Theorem 1. [Seiler 2002]For finite type PDEs (i.e.,zero
dimensionalpolynomial systems), theSymbolof πℓ(DkR) is
involutiveif

dimπℓ(DkR) = dimπℓ+1(DkR)
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Involutive System
The systemR= 0 is said to beinvolutive at prolonged orderk
and projected orderl , if πℓ(Dk(R)) satisfies:

dimπℓ(DkR) = dimπℓ+1(Dk+1R)

and the Symbol ofπℓ(DkR) is involutive.

Theorem 2. [Cartan-Kuranishi 1957]Two integersk, l ≥ 0 exist
for every regular differential equationR such thatπℓ(DkR) is
involutive.
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Zero Dimensional Polynomial System

Theorem 3. [Zhi and Reid 2004]If the polynomial system has
only finite number of solutions, thenπℓ(DkR) is involutiveif and
only if it satisfies:

dimπℓ(DkR) = dimπℓ+1(Dk+1R) (projected elimination test)

dimπℓ(DkR) = dimπℓ+1(DkR) (symbol involutive test)

and by the bijectionφ, we have

numsols(F) = dimπℓ(DkR)
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Symbolic-Numeric Elimination (SNEPSolver)

• Apply the symbolic-numeric completion method toR,
obtain thetable ofdimπℓ(DkR).
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• Apply the symbolic-numeric completion method toR,
obtain thetable ofdimπℓ(DkR).

• Seek thesmallestk such that there exists anℓ = 0, ...,k with
πℓ(DkR) approximately involutive. Choose thelargestℓ if
there are several such values for the givenk.
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Symbolic-Numeric Elimination (SNEPSolver)

• Apply the symbolic-numeric completion method toR,
obtain thetable ofdimπℓ(DkR).

• Seek thesmallestk such that there exists anℓ = 0, ...,k with
πℓ(DkR) approximately involutive. Choose thelargestℓ if
there are several such values for the givenk.

• The number of solutions of polynomial systemF is
dimπℓ(DkR).

• Apply eigenvalue method to thenull space ofπℓ(DkR),
πℓ+1(DkR) to obtain the solutions ofF.
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Example 1 (continue)

Table 1: dimπℓ(DkR)

k = 0 k = 1 k = 2 k = 3 k = 4 k = 5

ℓ = 0 17 23 26 27 27 27

ℓ = 1 10 17 23 26 27 27

ℓ = 2 4 10 17 23 26 27

ℓ = 3 1 4 10 17 23 26

ℓ = 4 1 4 10 17 23

ℓ = 5 1 4 10 17

ℓ = 6 1 4 10

ℓ = 7 1 4

ℓ = 8 1
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Example 1 (continued): Eigenvalue Method
We obtain 16 simple solutions:

(1,1,1),(1,−1,−1),(1,−1,−1),(−1,−1,1),

(1, i,−i),(1,−i, i),(i,1,−i),(−i,1, i),

(i,−i,1),(−i, i,1),(−1, i, i),(−1,−i,−i),

(i,−1, i),(−i,−1,−i),(i, i,−1),(−i,−i,−1)

and one multiple root
(0,0,0)

with multiplicity 11.
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Computing Multiplicity Structure [Wu and Zhi’08]

• Compute an isolated primary component
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Computing Multiplicity Structure [Wu and Zhi’08]

• Compute an isolated primary component

• Construct differential operators
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Computing Multiplicity Structure [Wu and Zhi’08]

• Compute an isolated primary component

• Construct differential operators

• Refine an approximate singular solution
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Theorem 4. [Van Der Waerden 1970]Suppose the polynomial
ideal I = ( f1, . . . , ft) has an isolated primary componentQ
whose associated primeP is maximal, andρ is the index ofQ,
i.e., the minimal nonnegative integer s.t.

√
Qρ ⊂ Q.

• If σ ≤ ρ, then

dim(C[x]/(I ,Pσ−1)) < dim(C[x]/(I ,Pσ)).

• If σ > ρ, then

Q = (I ,Pρ) = (I ,Pσ).

Corollary 5. The index is less than or equal to the multiplicityµ:

ρ ≤ µ= dim(C[x]/Q).

20



Compute Primary Component I

• Form the prime idealP = (x1− x̂1, . . . ,xs− x̂s).
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Compute Primary Component I

• Form the prime idealP = (x1− x̂1, . . . ,xs− x̂s).

• Computedk = dim(C[x]/(I ,Pk)) by SNEPSolverfor a
given toleranceτ until dk = dk−1, set

ρ = k−1, µ= dρ, Q = (I ,Pρ).
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Compute Primary Component I

• Form the prime idealP = (x1− x̂1, . . . ,xs− x̂s).

• Computedk = dim(C[x]/(I ,Pk)) by SNEPSolverfor a
given toleranceτ until dk = dk−1, set

ρ = k−1, µ= dρ, Q = (I ,Pρ).

• Compute the multiplication matricesMx1, . . . ,Mxs of
C[x]/Q to obtain the primary component.
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Example 2 [Ojika 1987]

I = ( f1 = x2
1 +x2−3, f2 = x1+0.125x2

2−1.5)

(1,2) is a3-fold solution. FormP = (x1−1,x2−2), compute
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I = ( f1 = x2
1 +x2−3, f2 = x1+0.125x2

2−1.5)

(1,2) is a3-fold solution. FormP = (x1−1,x2−2), compute

dim(C[x]/(I ,P2)) = 2,

dim(C[x]/(I ,P3)) = dim(C[x]/(I ,P4)) = 3.
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Example 2 [Ojika 1987]

I = ( f1 = x2
1 +x2−3, f2 = x1+0.125x2

2−1.5)

(1,2) is a3-fold solution. FormP = (x1−1,x2−2), compute

dim(C[x]/(I ,P2)) = 2,

dim(C[x]/(I ,P3)) = dim(C[x]/(I ,P4)) = 3.

So we have indexρ = 3, multiplicity µ= 3.

22



Example 2 (continued)

The multiplication matrices (local ring) w.r.t. {x1,x2,1}:

Mx1 =







0 −1 3

6 3 −10

1 0 0






, Mx2 =







6 3 −10

−8 0 12

0 1 0






.
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Example 2 (continued)

The multiplication matrices (local ring) w.r.t. {x1,x2,1}:

Mx1 =







0 −1 3

6 3 −10

1 0 0






, Mx2 =







6 3 −10

−8 0 12

0 1 0






.

The primary component ofI associated to(1,2) is

(x2
1 +x2−3, x2

2 +8x1−12, x1x2−6x1−3x2+10).
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Differential Operators
• Let D(α) = D(α1, . . . ,αs) : C[x] → C[x] denote the

differential operator defined by:

D(α1, . . . ,αs) =
1

α1! · · ·αs!
∂xα1

1 · · ·∂xαs
s ,

24



Differential Operators
• Let D(α) = D(α1, . . . ,αs) : C[x] → C[x] denote the

differential operator defined by:

D(α1, . . . ,αs) =
1

α1! · · ·αs!
∂xα1

1 · · ·∂xαs
s ,

• Let D = {D(α)| |α| ≥ 0}, we define the space associated to
I andx̂ as

△x̂ := {L ∈ SpanC(D)|L( f )|x=x̂ = 0, ∀ f ∈ I}.

24



Construct Differential Operators I
• Write Taylor expansion ofh∈ C[x] at x̂:

Tρ−1h(x1, . . . ,xs) = ∑
α∈Ns,|α|<ρ

cα(x1− x̂1)
α1 · · ·(xs− x̂s)

αs.
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Tρ−1h(x1, . . . ,xs) = ∑
α∈Ns,|α|<ρ

cα(x1− x̂1)
α1 · · ·(xs− x̂s)

αs.

• ComputeNF(h), and expand it at̂x

NF(h(x)) = ∑
β

dβ(x− x̂)β,

and find scalarsaαβ ∈ C such thatdβ = ∑α aαβcα.
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Construct Differential Operators I
• Write Taylor expansion ofh∈ C[x] at x̂:

Tρ−1h(x1, . . . ,xs) = ∑
α∈Ns,|α|<ρ

cα(x1− x̂1)
α1 · · ·(xs− x̂s)

αs.

• ComputeNF(h), and expand it at̂x

NF(h(x)) = ∑
β

dβ(x− x̂)β,

and find scalarsaαβ ∈ C such thatdβ = ∑α aαβcα.

• For eachβ such thatdβ 6= 0, return

Lβ = ∑
α

aαβ
1

α1! · · ·αs!
∂xα1

1 · · ·∂xαs
s = ∑

α
aαβD(α).

L = {L1, . . . ,Lµ} is a set of basis for△x̂.

[Damiano, Sabadini, Struppa ’07]
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Example 2 (continued)

Write Taylor expansion at(1,2) up to degreeρ−1 = 2,

h(x) = c0,0 +c1,0(x1−1)+c0,1(x2−2)+c2,0(x1−1)2

+c1,1(x1−1)(x2−2)+c0,2(x2−2)2.

Obtain the normal form ofh by replacingx2
1,x1x2,x2

2 with

x2
1 = −x2+3,x1x2 = 6x1 +3x2−10,x2

2 = −8x1+12.

The differential operators are:










L1 = D(0,0),

L2 = D(0,1)−D(2,0)+2D(1,1)−4D(0,2),

L3 = D(1,0)−2D(2,0)+4D(1,1)−8D(0,2).
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Criterion of Involution ofFk

Let Tk( fi) = ∑|α|<k fi,α(x− x̂)α, and

Fk = {Tk( f1), . . . ,Tk( ft), (x1− x̂1)
α1 · · ·(xs− x̂s)

αs, ∑αi = k}.

Symbol matrices ofFk and prolongations are offull column rank.

M( j)
k denotes coeff. matrices of the truncated prolonged system

Tk(F( j)) with
(k+s−1

s

)

columns,d( j)
k = dim Nullspace(M( j)

k ).

Theorem 6. Fk is involutive at prolongation orderm if and only
if

d(m)
k = d(m+1)

k

anddk = dim(C[x]/(I ,Pk)) = d(m)
k .
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Compute Primary Component II

• Form the matrixM(0)
k by computing the truncated Taylor

series expansions off1, . . . , ft at x̂ to orderk. The prolonged

matrix M( j)
k is computed by shiftingM(0)

k accordingly.
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series expansions off1, . . . , ft at x̂ to orderk. The prolonged

matrix M( j)
k is computed by shiftingM(0)

k accordingly.

• Computed( j)
k = dim Nullspace(M( j)
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k accordingly.

• Computed( j)
k = dim Nullspace(M( j)

k ) for a givenτ, until

d(m)
k = d(m+1)

k = dk.

• If dk = dk−1, then setρ = k−1 andµ= dρ.
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Compute Primary Component II

• Form the matrixM(0)
k by computing the truncated Taylor

series expansions off1, . . . , ft at x̂ to orderk. The prolonged

matrix M( j)
k is computed by shiftingM(0)

k accordingly.

• Computed( j)
k = dim Nullspace(M( j)

k ) for a givenτ, until

d(m)
k = d(m+1)

k = dk.

• If dk = dk−1, then setρ = k−1 andµ= dρ.

• Compute the multiplication matricesMx1, . . . ,Mxs from the

null vectors ofM(m)
ρ+1.

28



Example 3 [Leykin et al. 2006]

{ f1 = x3
1 +x2

2 +x2
3−1, f2 = x2

1 +x3
2 +x2

3−1, f3 = x2
1 +x2

2+x3
3−1}

has a4-fold solutionx̂ = (1,0,0). Transform it to the origin:










g1 = y3
1 +3y2

1+3y1+y2
2+y2

3,

g2 = y2
1 +2y1+y3

2+y2
3,

g3 = y2
1 +2y1+y2

2+y3
3.

has the4-fold solutionŷ = (0,0,0). Let I = (g1,g2,g3),
P = (y1,y2,y3).

[T3(g1),T3(g2),T3(g3)]
T = M(0)

3 ·
[

y2
1, . . . ,y3,1

]T
,

M(0)
3 =







3 0 0 1 0 1 3 0 0 0

1 0 0 0 0 1 2 0 0 0

1 0 0 1 0 0 2 0 0 0
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M(1)
3 =

















































3 0 0 0 0 0 0 0 0 0

2 0 0 0 0 0 0 0 0 0

2 0 0 0 0 0 0 0 0 0

0 3 0 0 0 0 0 0 0 0

0 2 0 0 0 0 0 0 0 0

0 2 0 0 0 0 0 0 0 0

0 0 3 0 0 0 0 0 0 0

0 0 2 0 0 0 0 0 0 0

0 0 2 0 0 0 0 0 0 0

3 0 0 1 0 1 3 0 0 0

1 0 0 0 0 1 2 0 0 0

1 0 0 1 0 0 2 0 0 0

















































.
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Example 3 (continued)

• d(0)
3 = 7, d(1)

3 = d(2)
3 = 4 =⇒ d3 = dim(C[y]/(I ,P3)) = 4.

• d(0)
4 = 17, d(1)

4 = 8, d(2)
4 = d(3)

4 = 4,
=⇒ d4 = dim(C[y]/(I ,P4)) = 4.

• d3 = d4 = 4, then indexρ = 3, multiplicity µ= 4.
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Construct Differential Operators II

Theorem 7. LetQ = (I ,Pρ) be an isolated primary component
of I at x̂ andµ≥ 1. SupposeFρ = Tρ(F)∪Pρ is involutive after

m prolongations, the null space of the matrixM(m)
ρ is generated

by v1,v2, . . . ,vµ. Then differential operators are:

L j = L ·v j , for 1≤ j ≤ µ,

L = [D(ρ−1,0, . . . ,0),D(ρ−2,1,0, . . . ,0), . . . ,D(0, . . . ,0)].

See also[Dayton and Zeng 2005].
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Example 3 (continued)

Sinceρ = 3, µ= 4, andd(0)
3 = 7, d(1)

3 = d(2)
3 = 4, the null space

of M(1)
3 is:

N(1)
3 = [e10,e9,e8,e5],

Multiplying the diff. operators of order less than3:

{D(0,0,0), D(0,0,1), D(0,1,0), D(0,1,1)}.
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Example 1 (continued)
Sinceρ = 5, µ= 11, and

d(0)
5 = 23, d(1)

5 = d(2)
5 = 11,

Multiplying the diff. operators of order less than5 w.r.t. to the

null vectors ofM(1)
5 (35×30), we get

D(0,0,0), D(1,0,0), D(0,0,1),D(0,1,0),

D(2,0,0), D(0,2,0),D(0,0,2),

D(0,0,3)+D(1,1,0), D(0,3,0)+D(1,0,1), D(3,0,0)+D(0,1,1),

D(0,0,4)+D(0,4,0)+D(4,0,0)+D(1,1,1)
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Complexity for Computing Differential Operators

The complexity of our algorithm is:

O

(

t

(

ρ+s−1
s

)3
)

.

The complexity of algorithm in[Mourrain MEGA’96] is:

O ((s2 + t)µ3).

Noticeµ≤
(ρ+s−1

s

)

.
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Approximate Singular Solution
• Supposêx is an approximate singular solution ofF:

x̂ = x̂exact+ x̂error.
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Approximate Singular Solution
• Supposêx is an approximate singular solution ofF:

x̂ = x̂exact+ x̂error.

• Transformx̂ to the origin, and we get a new system
G = {g1, . . . ,gt}, wheregi = fi(y1+ x̂1, . . . ,ys+ x̂s).

• ŷ = −x̂error= (−x̂1,error, . . . ,−x̂s,error) is an exact solution of
the systemG.

• Construct multiplication matrices locally to refine the
solution.
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Refining Approximate Singular Solution(RASS)

• For approximatêx and toleranceτ, the prime ideal
P = (x1− x̂1, . . . ,xs− x̂s), estimateµ andρ.

37



Refining Approximate Singular Solution(RASS)
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37



Refining Approximate Singular Solution(RASS)
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Refining Approximate Singular Solution(RASS)

• For approximatêx and toleranceτ, the prime ideal
P = (x1− x̂1, . . . ,xs− x̂s), estimateµ andρ.

• Gρ+1 = Tρ+1(G)∪Pρ+1 is involutive atm, form

Mx1, . . . ,Mxs from null vectors ofM(m)
ρ+1 and computêy.

• Setx̂ = x̂+ ŷ and run the first two steps for the refined
solution and smallerτ.

• If ŷ converges to the origin, we getx̂ with high accuracy.
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Example 3 (continued)

Given an approximate solution̂x = (1.001,−0.002,−0.001i).
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Example 3 (continued)

Given an approximate solution̂x = (1.001,−0.002,−0.001i).
Setτ = 10−2, we compute the singular solution ofG:

ŷ = (−0.0009994−7.5315×10−10 i,

0.002001+2.8002×10−8 i,

−1.4949×10−6 +0.0010000i).
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Setτ = 10−2, we compute the singular solution ofG:

ŷ = (−0.0009994−7.5315×10−10 i,

0.002001+2.8002×10−8 i,

−1.4949×10−6 +0.0010000i).

x̂ = (1+0.6×10−6−7.5315×10−10 i,

0.1×10−5 +2.8002×10−8 i,

−1.4949×10−6).
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Example 3 (continued)

Given an approximate solution̂x = (1.001,−0.002,−0.001i).
Setτ = 10−2, we compute the singular solution ofG:

ŷ = (−0.0009994−7.5315×10−10 i,

0.002001+2.8002×10−8 i,

−1.4949×10−6 +0.0010000i).

x̂ = (1+0.6×10−6−7.5315×10−10 i,

0.1×10−5 +2.8002×10−8 i,

−1.4949×10−6).

Apply twice for τ = 10−5,10−8 respectively, we get:
x̂ = (1+7.0405×10−18−7.8146×10−19 i,

1.0307×10−16−1.9293×10−17 i,

1.5694×10−16+7.9336×10−17 i).
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Algorithm Performance
System Zero ρ µ RASS

cmbs1 (0,0,0) 5 11 3→ 11→ 15

cmbs2 (0,0,0) 4 8 3→ 13→ 15

mth191 (0,1,0) 3 4 4→ 9→ 15

LVZ (0,0,−1) 7 18 5→ 10→ 14

KSS (1,1,1,1,1,1) 5 16 5→ 11→ 14

Caprasse(2,−i
√

3,2, i
√

3) 3 4 4→ 12→ 15

DZ1 (0,0,0,0) 11 131 5→ 14

DZ2 (0,0,−1) 8 16 4→ 7→ 14

D2 (0,0,0) 5 5 5→ 10→ 15

Ojika1 (1,2) 3 3 3→ 6→ 18

Ojika2 (0,1,0) 2 2 5→ 10→ 14

Examples cited fromhttp://www.math.uic.edu/~jan/,

[Dayton, Zeng ’05, Dayton ’07].
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Thank you!

Grazie mille!
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