Induction over real numbers

Assia Mahboubi

Join work with Gilles Dowek

Real Analysis

An elementary lemma:

P closed subset of \mathbb{R}

$$P(c)$$
 Initialization $\forall x \in \mathbb{R}, P(x) \Rightarrow [\exists \varepsilon > 0 \ P([x, x + \varepsilon[)]]$ Heredity $\forall x \in [c, +\infty[\ P(x)]]$ \hookrightarrow Universality

Principle of «closed» induction

A useful tool

Differential equations (kinematics, oscillators...):

- Existence of a unique maximal solution in Cauchy-Lipschitz theorem
- Qualitative study of the solutions of a differential equation

. . . .

A «dual» property

$$A$$
 open set of $[0,1]$

$$\forall x \in [0,1], \ [\forall y < x, y \in A] \Rightarrow x \in A$$
 Heredity $\forall x \in [0,1], x \in A$

Principle of open induction

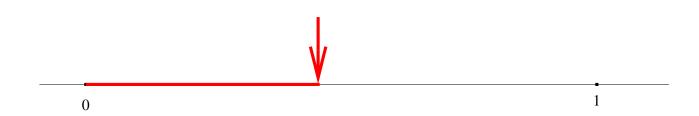
Links with completeness?

Closed Induction ⇒ Upper Bound Property

Closed Induction ⇔ Open Induction

Computational content of these principles? Focus on the open induction principle





Intuitionism

Th. Coquand's proof | W. Veldman's proof Open sets of $\{0,1\}^{\omega}$ Bar induction

Working with $\{0,1\}^{\omega}$ | Working with constructive reals | Enumerative open sets Almost fan theorem

No intuitionistic proof without an extra axiom?

Two kind of difficulties

- To choose the extra axiom:
 - Intuitionistic axiom(!)
 - Goal = realization of the OI principle

Bar Induction

- To choose the open sets :
 - Non equivalence in intuitionistic logic
 - Definition fitted to the proof
 - Definition fitted to realization

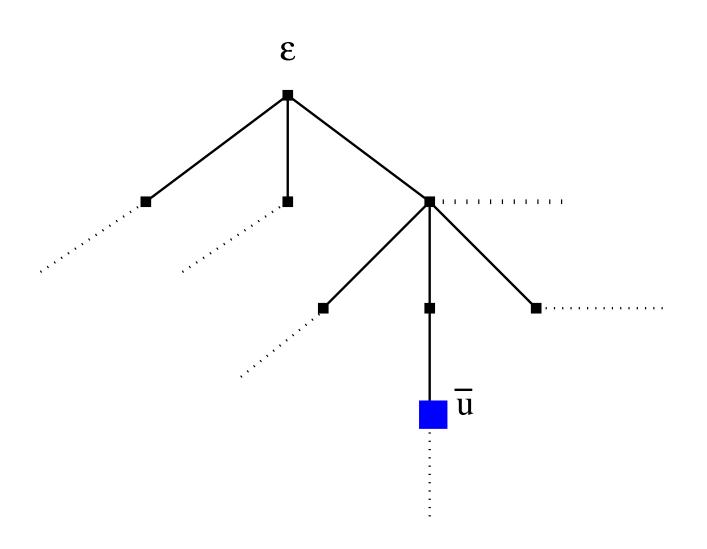
Enumerative open sets

Bars

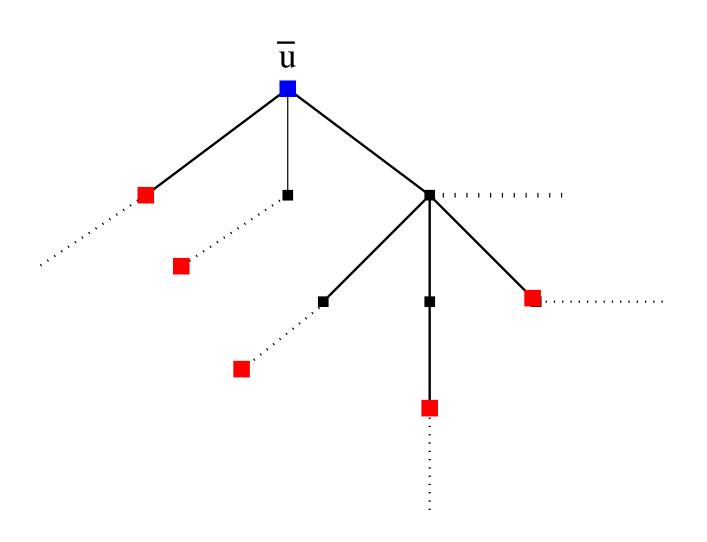
- Tree structure with countable branching : N*
- $\underline{u} = u_1 \dots u_l \in \mathbb{N}^*$
- X predicate over \mathbb{N}^*
- ullet $X|\overline{u}$:

$$\forall \ \overline{u}n_1 \dots n_k \dots \in \mathbb{N}^{\omega} \ \exists k_0 \ \mathsf{st.} \ X(\overline{u}n_1 \dots n_{k_0})$$

Picture of a bar



Picture of a bar



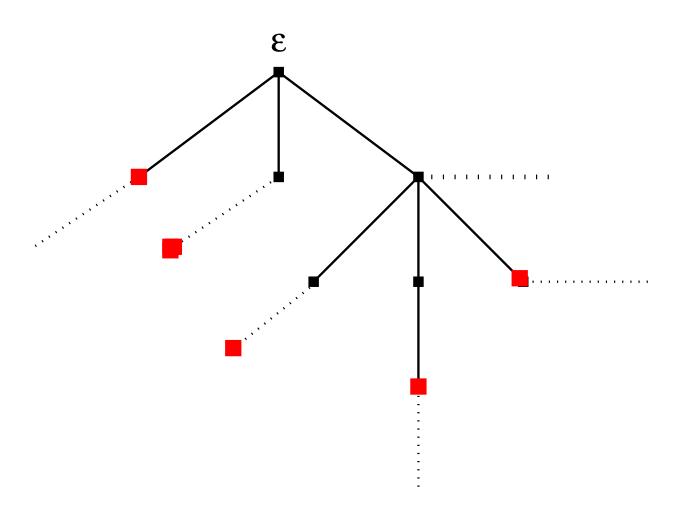
Bar induction axiom

X and Y predicates over \mathbb{N}^*

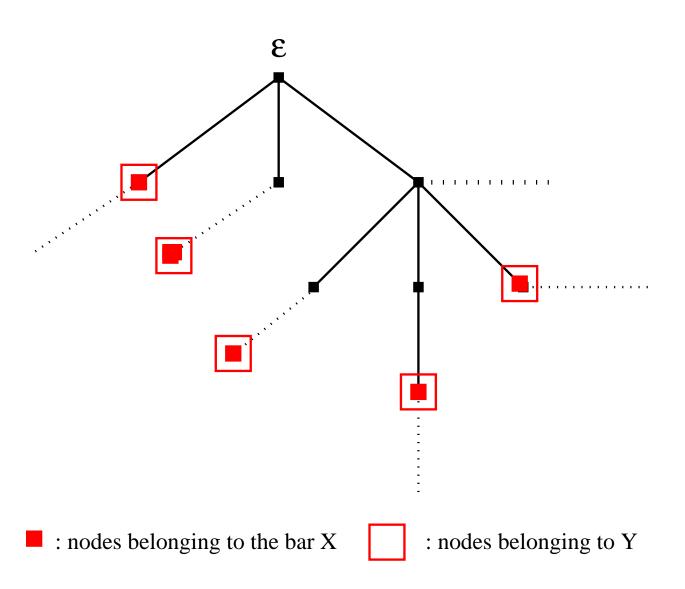
$$\forall \overline{u} \in \mathbb{N}^* \ [X(\overline{u}) \Rightarrow Y(\overline{u})]$$
$$[\forall \overline{u} \in \mathbb{N}^* \ \forall a \in \mathbb{N} \ [X(\overline{u}) \Rightarrow X(\overline{u} \bullet a)]$$
$$\forall \overline{u} \in \mathbb{N}^* \ [\forall a \in \mathbb{N} \ Y(\overline{u} \bullet a)] \Rightarrow Y(\overline{u})$$
$$X|\overline{u}$$

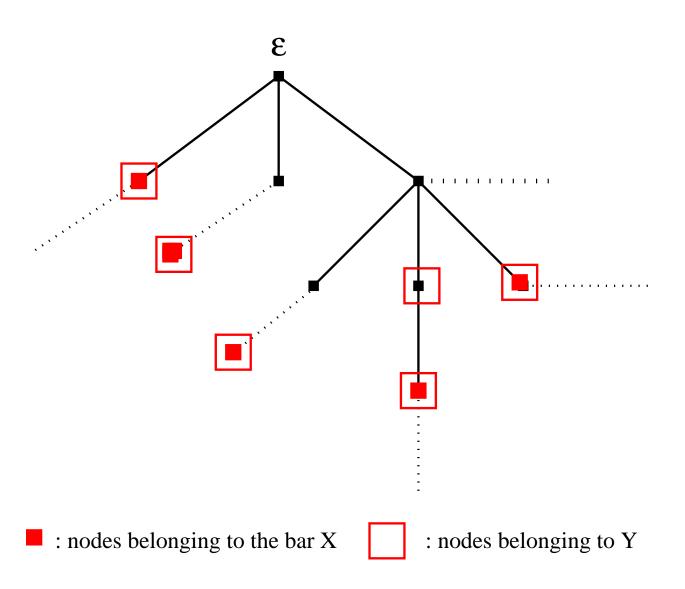
X included in Y X is monotonous] Y is hereditary X bars \overline{u}

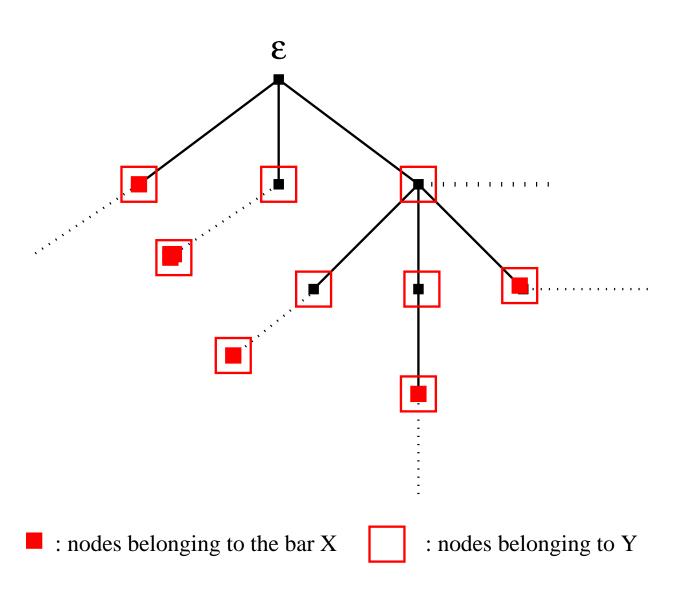
 $Y(\overline{u})$

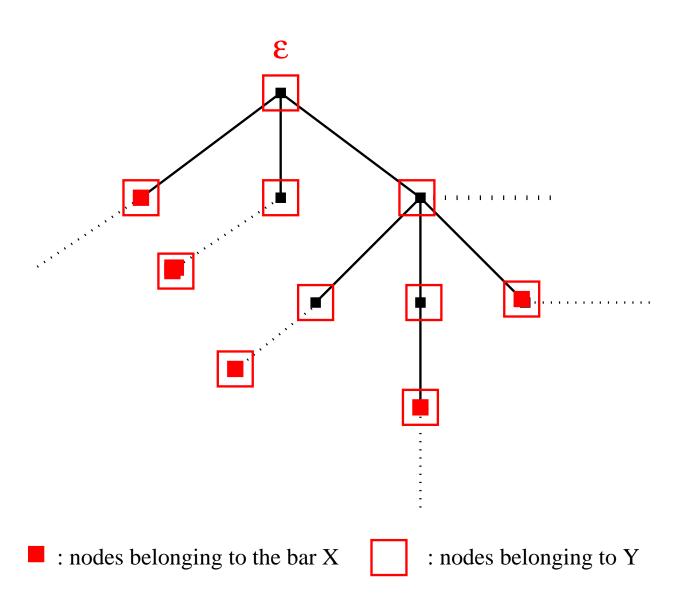


: nodes belonging to the bar X









Constructive open sets

Three ways of considering real open sets:

- Inverse image by the canonical surjection $\{0,1\}^{\omega} \to \mathbb{R}$
- Neighbourhood : ∀ x ∈ A , provide ε so that]x - ε, x + ε[⊆ A
- Give an enumeration of open intervals :

$$A = \bigcup_{i \in \mathbb{N}}]\alpha_i, \beta_i[, \quad \forall i \in \mathbb{N}, \alpha_i, \beta_i \in \mathbb{Q}]$$

«Enumerative» definition

Complete statement of the OI

• A is an «enumerative» open set of [0,1]:

$$g: i \in \mathbb{N} \mapsto]\alpha_i, \beta_i[$$

A is «inductive»:

$$\forall x \in [0,1], [\forall y < x, y \in A] \Rightarrow x \in A \quad (*)$$

Then
$$A = [0, 1]$$

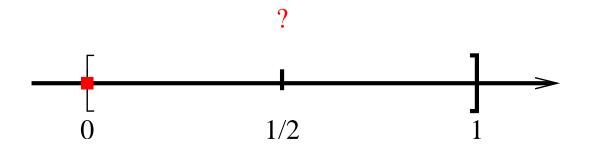
Tree encoding

- acceptable : predicate over \mathbb{N}^*
 - ε is acceptable
 - $\sigma \bullet 0$ is acceptable iff σ is acceptable
 - $\sigma \bullet (n+1)$ is acceptable iff $f(\sigma)_g \subseteq \bigcup_{i < n+1}]\alpha_i, \beta_i[$

- $f: n \in \mathbb{N} \mapsto [d_1, d_2]$ with dyadic bounds
 - $f(\varepsilon) := [0,1]$
 - $f(\sigma \bullet 0) := f(\sigma)_g$
 - $f(\sigma \bullet (n+1)) := \left\{ \begin{array}{l} f(\sigma)_d \text{ if } \sigma \bullet (n+1) \text{ is acceptable} \\ f(\sigma)_g \text{ otherwise} \end{array} \right.$

Current state of the proof

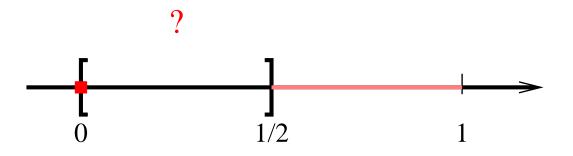
Known part of A



$$g(0)=] \alpha 0, \beta 0 [$$

Current state of the proof

Known part of A

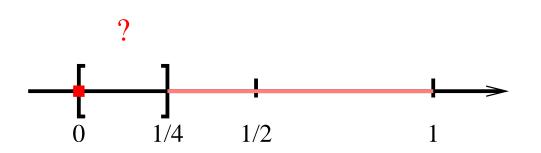


g(0) U g(1)

 $]\alpha 0, \beta 0 [U] \alpha 1, \beta 1[$

Current state of the proof

Known part of A

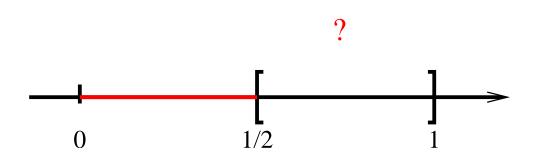


g(0) U g(1) U g(2)

 $]\alpha 0$, $\beta 0$ [U] $\alpha 1$, $\beta 1$ [U] $\alpha 2$, $\beta 2$ [

Current state of the proof

Known part of A



g(0) U g(1) U g(2)

 $]\alpha 0$, $\beta 0$ [U] $\alpha 1$, $\beta 1$ [U] $\alpha 2$, $\beta 2$ [

Roles played by f and acceptable

- acceptable builds certificates that we succeeded in including the closed interval piecewise
- f performs the encoding and gives the «current» closed interval

Key lemma of the proof

For each infinite sequence of natural numbers $n_1 n_2 \dots n_l \dots$:

$$\exists k \text{ so that } f(n_1 \dots n_k) \subseteq \cup_{i < k}]\alpha_i, \beta_i[$$

Ingredients of the proof:

- ullet density of ${\mathbb Q}$ in ${\mathbb R}$
- ullet completeness of ${\mathbb R}$
- \blacksquare A is inductive (*)

Predicates over trees

One defines two predicates over \mathbb{N}^* :

• $X(\sigma) := f(\sigma)$ is included in $\bigcup_{i \leq |\sigma|} \alpha_i, \beta_i$

• $Y(\sigma) := [\sigma \text{ acceptable} \Rightarrow f(\sigma) \text{ is included in a finite union of intervals from } f(\mathbb{N})]$

Bar induction at work

One can show that:

- X is monotonous
- X is included in Y
- Y is hereditary

Bar induction principle yields to $Y(\varepsilon)$:

 ε acceptable $\Rightarrow f(\varepsilon)$ is included in a finite union of intervals from $f(\mathbb{N})$

End of the proof

As ε is acceptable,

- $f(\varepsilon) = [0,1]$ is included in a finite union of $]\alpha_i, \beta_i[$
- hence [0,1] is included in A

Computational content of bar induction

$\forall \overline{u} \in \mathbb{N}^* \ [X(\overline{u}) \Rightarrow Y(\overline{u})]$	<i>incl</i> (1)
$\forall \overline{u} \in \mathbb{N}^* \ \forall a \in \mathbb{N} \ [X(\overline{u}) \Rightarrow X(\overline{u} \bullet a)]$	<i>mono</i> (2)
$\forall \overline{u} \in \mathbb{N}^* \ [\forall a \in \mathbb{N} \ Y(\overline{u} \bullet a)] \Rightarrow Y(\overline{u})$	here (3)
$\forall \sigma \in \mathbb{N}^{\omega} \; \exists k \mid X(\sigma_1 \dots \sigma_k)$	<i>stop</i> (4)

 $\forall \overline{u} \ Y(\overline{u})$

Realizing hypothesis

• incl term of type (1): proof of $\overline{u} \in X \to \text{proof of }$

$$\overline{u} \in Y$$

mono term of type (2):

$$\overline{u} \in \mathbb{N}^* \to a \in \mathbb{N} \to \mathsf{proof} \ \mathsf{of} \ X(\overline{u}) \to \mathsf{proof} \ \mathsf{of} \ X(\overline{u} \bullet a)$$

here term of type (3):

$$\overline{u} \in \mathbb{N}^* \to [a \in \mathbb{N} \to \mathsf{proof} \ \mathsf{of} \ Y(\overline{u} \bullet a)] \to Y(\overline{u})$$

stop [no need for the computation]

Realizing the axiom

One can realize the axiom with the following term:

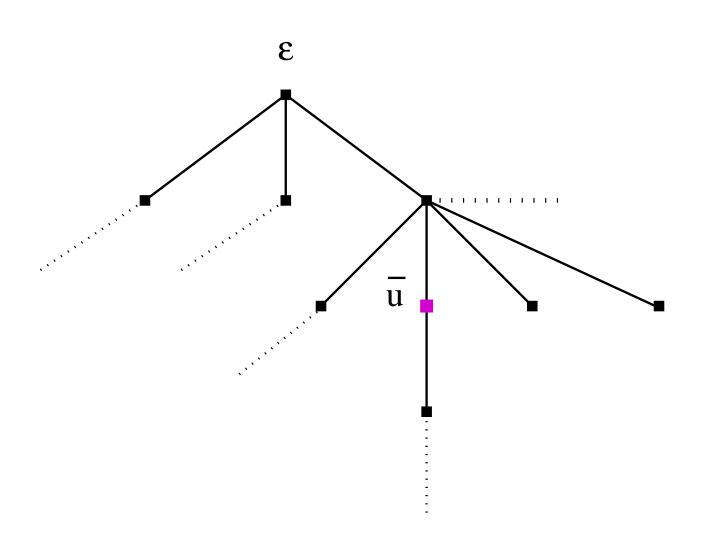
```
\begin{array}{l} BI\_{rec}~X~Y~incl~mono~here~\overline{u}~:=\\ \textbf{Cases}~(X\_{dec}~\overline{u})~\textbf{of}\\ (Inx) => (incl~\overline{u})\\ |(Out~\_) =>\\ [here~\overline{u}~\lambda a.(BI\_{rec}~X~Y~stop~incl~mono~here~(\overline{u}~\bullet~a))]\\ \textbf{End.} \end{array}
```

Can we realize in fact?

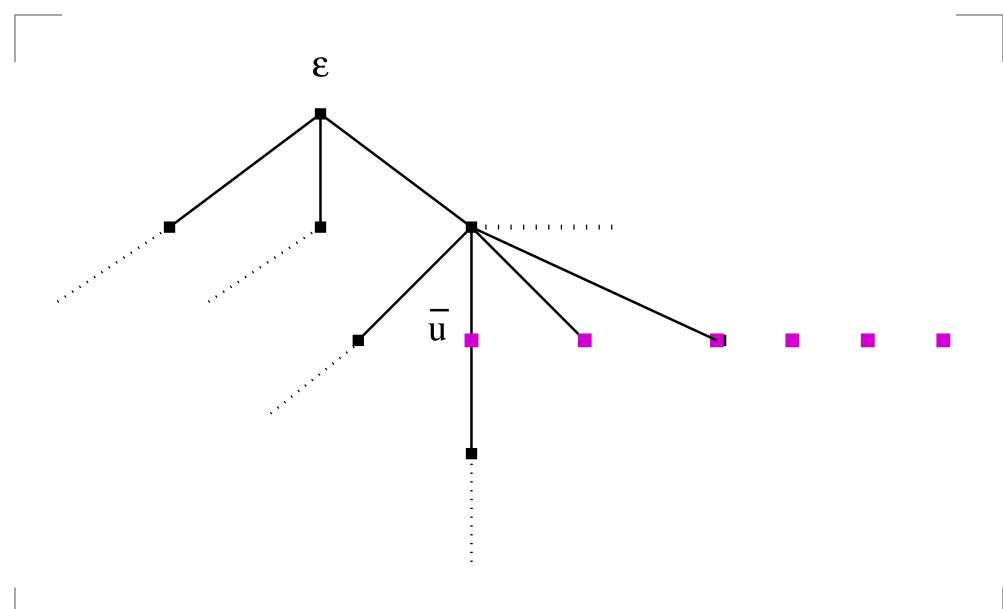
- We get a finite representation of a non terminating term
- Is the proof itself associated with an infinite process?

→ Let's examine the way bar induction is used in the proof

«Almost» finite trees



«Almost» finite trees



Computational content of bar induction

Follow the way in the tree which constructs the proof = Enumerate the intervals $]\alpha_i,\beta_i[$ until [0,1] is covered

→ Proof of termination of this quite trivial algorithm

Main features of the proof

- Works directly with the real numbers
- ullet Does not rely on a particular construction of ${\mathbb R}$

Position of the OI principle?

Two (related) questions:

- Is it the right axiom to take ?
- Position in the axiomatization of \mathbb{R} ?

...remain to be investigated

Hierarchy of statements

