Program Extraction in Constructive Analysis

Helmut Schwichtenberg

Mathematisches Institut, Universität München

Motivation

Bishop: "mathematics as a numerical language".

Extract programs from proofs, for exact real numbers.

Special emphasis on low type level witnesses (making use of separability).

Here: approximate solutions of ODEs.

Ordinary differential equations

Let $f: D \to \mathbb{R}$ be continuous, $D \subseteq \mathbb{R}^2$. A solution of

$$y' = f(x, y), \tag{1}$$

on an interval I is a continuous function $\varphi \colon I \to \mathbb{R}$ with a continuous derivative φ' such that $(x, \varphi(x)) \in D$ and

$$\varphi'(x) = f(x, \varphi(x)) \qquad (x \in I)$$

Uniqueness

Theorem. Let $f: D \to \mathbb{R}$ be continuous. Assume that f satisfies a Lipschitz condition w.r.t. its 2nd argument:

$$|f(x,y_1) - f(x,y_2)| \le L|y_1 - y_2|$$

with L > 0. Let $\varphi, \psi \colon I \to \mathbb{R}$ be two solutions of (1). If $\varphi(a) = \psi(a)$ for some $a \in I$, then $\varphi(x) = \psi(x)$ for all $x \in I$.

The example $y'=y^{1/3}$ with y(0)=0 shows that the Lipschitz condition is necessary for uniqueness: we have two solutions $\varphi(x)=0$ und $\varphi(x)=(\frac{2}{3}x)^{3/2}$.

Peano's existence theorem for ODEs

... does not require a Lipschitz condition.

But: Peano's existence theorem entails that for every real x we can decide whether $x \ge 0$ or $x \le 0$ (Aberth 1970).

Hence: cannot expect to be able to prove it constructively.

Picard's existence theorem for ODEs

Theorem. On $R: |x - a_0| \le h, |y - b_0| \le Mh$, let f be continuous and bounded by M. Assume that f satisfies a Lipschitz condition w.r.t. its 2nd arg. Let $\varphi_0(x) := b_0$,

$$\varphi_{n+1}(x) := b_0 + \int_{a_0}^x f(t, \varphi_n(t)) dt, \quad |x - a_0| \le h.$$

Then $(\varphi_n)_{n\in\mathbb{N}}$ converges uniformly and absolutely to a solution of (1).

Algorithmic problem: For $\varphi_{n+1}(x)$ one needs φ_n on $[a_0, x]$.

The Cauchy-Euler method

Simple idea: polygons (\Rightarrow possibly adaptive). What is an "approximate solution"? (a) It satisfies (1) up to ε . (b) It differs from the exact solution by at most ε . We aim for (b), but initially only get (a):

Theorem. On $R: |x - a_0| \le h, |y - b_0| \le Mh$, let f be continuous and bounded by M. We can construct an approximate solution (a polygon) $\varphi_n: [a_0 - h, a_0 + h] \to \mathbb{R}$ of (1) up to the error 2^{-n} such that $\varphi_n(a_0) = b_0$.

The fundamental inequality

Let $f:D\to\mathbb{R}$ be continuous, and satisfy a Lipschitz condition w.r.t. its second argument. Let

$$\varphi, \psi \colon [a, b] \to \mathbb{R}$$

be solutions up to $2^{-k}, 2^{-l}$ of (1). Assume $\varphi \leq \psi$ on [a, b], or else that φ and ψ are rational polygons. Then

$$|\psi(x) - \varphi(x)| \le e^{L(x-a)} |\psi(a) - \varphi(a)| + \frac{2^{-k} + 2^{-l}}{L} (e^{L(x-a)} - 1)$$

for all $x \in [a, b]$.

The Cauchy-Euler existence theorem for ODEs

Theorem. On $R: |x - a_0| \le h, |y - b_0| \le Mh$, let f be continuous and bounded by M. Assume that f satisfies a Lipschitz condition w.r.t. its 2nd arg. Let φ_n be the rational polygon, which is an approximate solution of (1) up to the error 2^{-n} :

$$|\varphi'_n(x) - f(x, \varphi_n(x))| \le 2^{-n}$$
 for $x \in I$ with $\varphi'_n(x)$ defined.

 (φ_n) converges uniformly and absolutely to a soln of (1).

Algorithmic note: φ_n is **not** defined recursively.

Approximate and exact solutions

Theorem. Assume the hypotheses of the Cauchy-Euler Theorem. Let $\varphi \colon [a_0 - h, a_0 + h] \to \mathbb{R}$ be an exact solution of (1) such that $\varphi(a_0) = b_0$, φ_n be an approximate solution up to the error 2^{-n} such that $\varphi_n(a_0) = b_0$, and $\varphi \le \varphi_n$ or $\varphi_n \le \varphi$. Then there is a constant c independent of n such that $|\varphi(x) - \varphi_n(x)| \le 2^{-n}c$ for $|x - a_0| \le h$.

Proof. By the Fundamental Inequality

$$|\varphi(x) - \varphi_n(x)| \le 2^{-n} \cdot \underbrace{\frac{1}{L}(e^{Lh} - 1)}_{c}$$

Tools

... for algorithmically reasonable proofs: Small variants of Bishop/Bridges' development of constructive analysis.

Idea: use separability to avoid high type levels. Where?

- "Order located" instead of "totally bounded".
- Continuity in \mathbb{R} , and \mathbb{R}^2 .
- Uniformly convergent sequences of functions.

Reals

A real number x is a pair $((a_n)_{n\in\mathbb{N}}, \alpha)$ with $a_n \in \mathbb{Q}$ and $\alpha \colon \mathbb{N} \to \mathbb{N}$ such that $(a_n)_n$ is a Cauchy sequence with modulus α , that is

$$\forall k, n, m. \ \alpha(k) \leq n, m \rightarrow |a_n - a_m| \leq 2^{-k},$$

and α is weakly increasing.

Two reals $x := ((a_n)_n, \alpha)$, $y := ((b_n)_n, \beta)$ are equivalent (written x = y), if

$$\forall k(|a_{\alpha(k+1)} - b_{\beta(k+1)}| \le 2^{-k}).$$

Nonnegative and positive reals

A real $x := ((a_n)_n, \alpha)$ is nonnegative (written $x \in \mathbb{R}^{0+}$) if

$$\forall k(-2^{-k} \le a_{\alpha(k)}).$$

It is k-positive (written $x \in_k \mathbb{R}^+$) if

$$2^{-k} \le a_{\alpha(k+1)}.$$

 $x \in \mathbb{R}^{0+}$ and $x \in_k \mathbb{R}^+$ are compatible with equivalence.

Can define $x \mapsto k_x$ such that $a_n \leq 2^{k_x}$ for all n.

However, $x \mapsto k_x$ is **not** compatible with equivalence.

Arithmetical Functions

Given $x := ((a_n)_n, \alpha)$ and $y := ((b_n)_n, \beta)$, define

z	$ c_n $	$\gamma(k)$
x + y	$a_n + b_n$	$\max(\alpha(k+1),\beta(k+1))$
-x	$-a_n$	$\alpha(k)$
x	$ a_n $	$\alpha(k)$
$x \cdot y$	$a_n \cdot b_n$	$\max(\alpha(k+1+k_{ y }),$ $\beta(k+1+k_{ x }))$
		$\beta(k+1+k_{ x }))$
$\frac{1}{x}$ for $ x \in_l \mathbb{R}^+$	$\begin{cases} \frac{1}{a_n} & \text{if } a_n \neq 0 \\ 0 & \text{if } a_n = 0 \end{cases}$	$\alpha(2(l+1)+k)$

Cleaning up a real

After some computations involving reals, rationals in the Cauchy sequences may become complex. Hence: clean up a real, as follows.

Lemma. For every real $x=((a_n)_n,\alpha)$ we can construct an equivalent real $y=((b_n)_n,\beta)$ where the rationals b_n are of the form $c_n/2^n$ with integers c_n , and with modulus $\beta(k)=k+2$.

Proof.
$$c_n := \lfloor a_{\alpha(n)} \cdot 2^n \rfloor$$
.

Redundant dyadic representation of reals

The existence of the usual b-adic representation of reals cannot be proved constructively (1.000... vs .999...). Cure: in addition to 0, ..., b-1 also admit -1 as a numeral. For b=2:

Lemma. Every real x can be represented in the form

$$\sum_{n=-k}^{\infty} a_n 2^{-n} \quad \text{with } a_n \in \{-1, 0, 1\}.$$

Notice: uniqueness is lost (this is not a problem).

Comparison of reals

Write $x \leq y$ for $y - x \in \mathbb{R}^{0+}$ and x < y for $y - x \in \mathbb{R}^{+}$.

$$x \le y \leftrightarrow \forall k \exists p \forall n. p \le n \rightarrow a_n \le b_n + 2^{-k}$$

$$x < y \leftrightarrow \exists k, q \forall n. \ q \le n \rightarrow a_n + 2^{-k} \le b_n$$

Write $x <_{k,q} y$ (or simply $x <_k y$ if q is not needed) when we want to call these witnesses.

Notice: $x \leq y \leftrightarrow y \not< x$.

Approximate Splitting Principle. Let x,y,z be given and assume x < y. Then we can find k,q such that either $z <_{k,q} y$ or $x <_{k,q} z$.

Proof. Let $x := ((a_n)_n, \alpha)$, $y := ((b_n)_n, \beta)$, $z := ((c_n)_n, \gamma)$. From x < y obtain p, k such that with $\varepsilon := 2^{-k}$

$$\forall n. \ p \leq n \rightarrow a_n + 3\varepsilon \leq b_n - 3\varepsilon.$$

Let
$$q := \max(\alpha(k), \beta(k), \gamma(k), p)$$
. Cases: $c_q \leq b_q - 3\varepsilon$ or $b_q - 3\varepsilon < c_q$.

z < y or x < z depends on the representation of x, y, z.

Suprema

Let S be a set of reals. A real y is an upper bound of S if $x \le y$ for all $x \in S$. A real y is a supremum of S if y is an upper bound of S, and for every rational a < y there is a real $x \in S$ such that $a \le x$.

A set S of reals is order located above if for every a < b, either $x \le b$ for all $x \in S$ or else $a \le x$ for some $x \in S$.

Least-Upper-Bound Principle. Let S be an inhabited set of reals that is bounded above. Then S has a supremum iff it is order located above.

A continuous function $f\colon I\to\mathbb{R}$ on a compact interval I with rational end points is given by

- an approximating map $h_f \colon (I \cap \mathbb{Q}) \times \mathbb{N} \to \mathbb{Q}$ and a (uniform) modulus map $\alpha_f \colon \mathbb{N} \to \mathbb{N}$ such that $(h_f(c,n))_n$ is a real with modulus α_f ;
- $\omega_f \colon \mathbb{N} \to \mathbb{N}$ (uniform) modulus of continuity:

$$|a-b| \le 2^{-\omega_f(k)+1} \to |h_f(a,n) - h_f(b,n)| \le 2^{-k}$$

for $n \ge \alpha_f(k)$. α_f , ω_f required to be weakly increasing.

Notice: h_f , α_f , ω_f are of type level 1 only.

Application f(x) of a continuous f (given by h_f , α_f , ω_f) to a real $x := ((a_n)_n, \alpha)$ is defined to be

$$(h_f(a_n,n))_n$$

with modulus $k \mapsto \max(\alpha_f(k+2), \alpha(\omega_f(k+1)-1))$.

Can show:

$$x = y \to f(x) = f(y),$$

 $|x - y| \le 2^{-\omega_f(k)} \to |f(x) - f(y)| \le 2^{-k}.$

Composition of continuous functions

Let $f\colon I\to\mathbb{R}$ and $g\colon J\to\mathbb{R}$ be continuous. Assume that $h_f[(I\cap\mathbb{Q})\times\mathbb{N}]\subseteq J$. Then $g\circ f\colon I\to\mathbb{R}$ is defined by $h_{g\circ f}(a,n):=h_g(h_f(a,n),n)$ $\alpha_{g\circ f}(k):=\max\bigl(\alpha_g(k+2),\alpha_f(\omega_g(k+1)-1)\bigr)$ $\omega_{g\circ f}(k):=\omega_f(\omega_g(k)-1)+1$

Bound for the range of f

Let $f\colon [a,b]\to \mathbb{R}$ be continuous, given by h_f , α_f and ω_f . Then for all $n\geq n_0:=\alpha_f(0)$ and rationals $c\in I$

$$|h_f(c,n)| \le M := |h_f(a,n_0)| + N + 1,$$

where $(c-a)2^{\omega_f(0)-1} \leq N \in \mathbb{N}$.

Hence: range of f is bounded above by M.

Supremum $||f||_I$ of $f:I\to\mathbb{R}$

... can be shown to exist constructively. Bishop's proof uses "totally bounded sets", a type level 2 concept:

A k-net for a set S of reals is given by a finite list y_i $(i < n_k)$ of reals in S, and a map $\mathrm{sel}_k \colon S \to \{0, \dots, n_k - 1\}$ (of type level 2): $|y_i - x| \le 2^{-k}$, with $i := \mathrm{sel}_k(x)$.

S is totally bounded if for every k we have a k-net for S.

We prove instead that the range is order located above, which entails that is has a supremum:

Lemma. Let $f: I \to \mathbb{R}$ be continuous. Then the range of f is order located above. $(\Rightarrow ||f||_I)$ exists.

Proof. Given a < b, fix k such that $2^{-k} \le \frac{1}{3}(b-a)$. Take a partition a_0, \ldots, a_l of I of mesh $\le 2^{-\omega_f(k)+2}$. Then for every $c \in I$ there is an i such that $|c-a_i| \le 2^{-\omega_f(k)+1}$. Let $n_k := \alpha_f(k)$ and consider all finitely many

$$h(a_i, n_k)$$
 for $i = 0, ..., l$.

Let $h(a_j, n_k)$ be the maximum of all those. If $h(a_j, n_k) \le a + \frac{1}{3}(b - a)$, then $f(x) \le b$ for all x. If $a + \frac{1}{3}(b - a) < h(a_j, n_k)$, then $a \le f(a_j)$.

Approximate intermediate value theorem

For every continuous $f:[a,b]\to\mathbb{R}$ with $f(a)\leq 0\leq f(b)$, and every k, we can find $c\in[a,b]$ such that $|f(c)|\leq 2^{-k}$.

Problem: need to partition [a, b] into as many pieces as the modulus of the continuous function requires.

Reason: f may be flat.

Cure: use more knowledge on f.

 $f: [a,b] \to \mathbb{R}$ is locally nonconstant whenever if $a \le a' < b' \le b$ and c is arbitrary, then $f(x) \ne c$ for some $x \in [a',b']$.

Intermediate Value Theorem. If $f: [a,b] \to \mathbb{R}$ is continuous with f(a) < 0 < f(b), and locally nonconstant, then we can find $x \in [a,b]$ with f(x) = 0.

Proof. Construct $(c_n)_n$ and $(d_n)_n$ such that for all n

$$a = c_0 \le c_1 \le \dots \le c_n < d_n \le \dots \le d_1 \le d_0 = b,$$

 $f(c_n) < 0 < f(d_n),$
 $d_n - c_n \le \left(\frac{2}{3}\right)^n (b - a).$

Example: $f: [1,2] \to \mathbb{R}$ mapping $x \mapsto x^2 - 2$, given by

- the approximating map $h_f(a, n) := a^2 2$,
- ullet the uniform Cauchy modulus $lpha_f(k) := 0$, and
- the modulus $k\mapsto k+p-1$ of uniform continuity, where p:=2 is such that $|a+b|\leq 2^p$ for $a,b\in[1,2]$, because

$$|a-b| \le 2^{-k-p} \to |a^2-b^2| = |(a-b)(a+b)| \le 2^{-k}$$
.

Clearly f(1) < 0 < f(2), and f is strictly monotic. Hence: proof of $\exists x \in [1,2](f(x)=0)$ contains algorithm for $\sqrt{2}$. (Implemented in Coq with Pierre Letouzey; very fast).

Differentiation

Let $f,g \colon I \to \mathbb{R}$ be continuous. g is called derivative of f with modulus $\delta_f \colon \mathbb{N} \to \mathbb{N}$ if for $x,y \in I$ with x < y,

$$y \le x + 2^{-\delta_f(k)} \to |f(y) - f(x) - g(x)(y - x)| \le 2^{-k}(y - x).$$

A bound on f' serves as a Lipschitz constant for f:

Lemma. Let $f: I \to \mathbb{R}$ be continuous with derivative f'. Let f' be bounded by M. Then for $x, y \in I$ with x < y,

$$|f(y) - f(x)| \le M(y - x).$$

Lemma (Rolle). Let $f: [a,b] \to \mathbb{R}$ be continuous with derivative f', and assume f(a) = f(b). Then for every $k \in \mathbb{N}$ we can find $c \in [a,b]$ such that $|f'(c)| \leq 2^{-k}$.

Mean Value Theorem. Let $f:[a,b]\to\mathbb{R}$ be continuous with derivative f'. Then for every $k\in\mathbb{N}$ we can find $c\in[a,b]$ such that

$$|f(b) - f(a) - f'(c)(b-a)| \le 2^{-k}(b-a).$$

Integration

Assume that $f \colon [a,b] \to \mathbb{R}$ is continuous with modulus ω_f .

$$S(f, a, b, n) := \frac{b - a}{n} \sum_{i=0}^{n-1} h_f(a_i, n)$$
 with $a_i := a + \frac{i}{n}(b - a)$

Then $(S(f,a,b,n))_{n\in\mathbb{N}}$ is a Cauchy sequence of rationals with modulus $\alpha(p)=2^{\omega_f(p+q+1)}(b-a)$, where q is such that $b-a\leq 2^q$; we denote this real by

$$\int_a^b f(x) \, dx.$$

Fundamental theorem of calculus

Given a continuous $f \colon [a,b] \to \mathbb{R}$ and $c \in [a,b]$, we can establish

$$F(x) := \int_{c}^{x} f(t) dt$$

as a continuous function, via

$$h_F(a,n) := S(f,c,a,n),$$

$$\alpha_F(k) := \max(\alpha_f(0), 2^{\omega_f(k+1)}),$$

$$\omega_F(k) := \max(p+k, \omega_f(k+1)),$$

where p is such that $h_f(b_i, n) \leq 2^p$, for $n \geq \alpha_f(0)$.

Fundamental theorem of calculus (ctd.)

Theorem. Let $f:[a,b] \to \mathbb{R}$ be continuous, $c \in [a,b]$ and

$$F(x) := \int_{c}^{x} f(t) dt.$$

Then F has f as derivative, with modulus ω_f . If G is any differentiable function on [a,b] with G'=f, then the difference F-G is a constant function.

Corollary. Let $f: I \to \mathbb{R}$ be continuous and $F: I \to \mathbb{R}$ such that F' = f. Then for all $a, b \in I$

$$\int_a^b f(x) dx = F(b) - F(a).$$

Related work on exact real numbers

- Redundant b-adic notation (Wiedmer '80, Boehm & Cartwright '90, Ciaffaglione & Di Gianantonio '99)
- Continued fractions (Gosper '90, Vuillemin '90)
- Möbius transformation as a unifying approach to real computation (Edalat & Potts '97)
- PCF + real number data type (Di Gianantonio '93, '96, Escardó '96)
- ODEs via domain theory (Edalat & Pattinson '03)

Related work on program extraction

1. Luis Cruz-Filipe: Thesis in Nijmegen 2004 (Geuvers), on C-CoRN.

- 2. Stefan Berghofer: "Proofs, Programs and Executable Specifications in Higher Order Logic", 2003 (Nipkow).
- 3. Monika Seisenberger: "On the Constructive Content of Proofs", 2003.

C-CoRN: Constructive Coq Repository at Nijmegen

Lecture by Herman Geuvers on friday. Grew out of the FTA project. Comments:

- Strong extensionality required: $\forall x, y. f(x) \# f(y) \to x \# y$. Missing witness harmful for program extraction.
- The **Set**, **Prop** distinction in Coq was found to be insufficient. Introduced **CProp** in addition.
- Alternative: use modified realizability interpretation for (internal) program extraction. Soundness proof can be machine generated.

Conclusion

- Constructive analysis with witnesses of low type level.

 Type level 1 representation of continuous functions.
- The Cauchy-Euler construction of approximate solutions to ODEs as a type level 1 process.

Future work

- 1. Case studies for program extraction. (Kneser's proof of the fundamental theorem of algebra, cf. Geuvers et al. in Nijmegen and Letouzey in Paris).
- 2. Resource sensitivity. Gödel's T can be restricted (using ramification and linearity) such that the definable functions are the poly-time ones [BNS '00, Hofmann]. Work with corresponding arithmetical system.