Constructive Homological Algebra

jww Henri Lombardi and Claude Quitté

Monastir, December 16, 2009

Linear algebra = solving linear system of equations

AX = 0 homogeneous case

Over a field the situation is well understood

We want to generate all solutions: find L such that AL = 0 and such that AX = 0 iff X can be written LY

The ring is *coherent* if we can solve, in this sense, such homogenenous systems

```
Important examples of coherent rings
```

polynomial rings $k[X_1, \ldots, X_n]$ via Gröbner bases

Valuation domain: we have x|y or y|x

Prüfer domain: has a simple first order description (Ducos, Lombardi, Quitté, Salou) non Noetherian version of Dedekind domain

AX = B general case

If we can also decide this: strongly discrete ring

It is enough to decide membership to finitely generated ideal $\langle a_1, \ldots, a_n \rangle$

Important examples of strongly discrete coherent rings

polynomial rings $k[X_1, \ldots, X_n]$ via Gröbner bases (other proof: Hilbert, Seidenberg)

Valuation/Prüfer domain with a decidable divisibility relation

Resolutions

Let R be *coherent*

Let $I = \langle a_1, \ldots, a_p \rangle$ be a finitely generated ideal

We have a surjective map $R^p
ightarrow I
ightarrow 0$

The kernel of this map is finitely generated: this is precisely what coherent means, so we can describe the relations between the generators

 $R^q \to R^p \to I \to 0$

Resolutions

In the same way, the relations between the relations can be finitely generated

 $R^l \to R^q \to R^p \to I \to 0$

In general we can in this way define a stream of free modules F_0 , F_1 , F_2 , ... and an exact sequence

 $0 \leftarrow I \leftarrow F_0 \leftarrow F_1 \leftarrow F_2 \leftarrow \dots$

Resolutions

More generally we work with *finitely presented module*

 $R^n \xrightarrow{u} R^l \to M \to 0$

Concretely it given by a $n \times l$ matrix representing the map u

We can in the same way compute the free resolutions of this module

 $0 \leftarrow M \leftarrow F_0 \leftarrow F_1 \leftarrow F_2 \leftarrow \dots$

Thus we can work with only concrete objects: sequence of matrices

Finite Free Resolutions

 $0 \leftarrow I \leftarrow F_0 \leftarrow F_1 \leftarrow F_2 \leftarrow \cdots \leftarrow F_m \leftarrow 0$

In the case m = 0: we have $F_0 = R$ or $F_0 = 0 = I$ (otherwise 1 = 0 in R)

The ideal I is principal.

For m = 1? For m = 2?

Hilbert Syzygies Theorem: for $R = k[X_1, \ldots, X_n]$ for any ideal we have a sequence that stops at a stage $\leq n$

Finite Free Resolutions

The maps $F_{i-1} \leftarrow F_i$ are concrete objects: matrices with values in the ring R

We write $F_i = R^{p_i}$ and the map is a $p_i \times p_{i-1}$ matrix

To give a finite free resolution: logically simple statements

 $A_i A_{i-1} = 0$

 $A_i X = 0$ iff there exists Y such that $X = A_{i-1} Y$

If the ring is coherent strongly exact the second condition is also decidable

Finite Free Resolutions

Northcott Finite free resolutions, Cambridge University Press, 1976

Eagon and Northcott *On the Buchsbaum-Eisenbud theory of finite free resolutions*, J. Reine Angew. Math. 262/263 (1973), 205-219

Concrete and nicely presented ("beautifully self-contained treatment"): explicit manipulation of matrices over a ring

Use several notations with indexes over finite sets

Not completely elementary: some arguments use localisation at arbitrary prime ideals, or at arbitrary minimal prime ideals

Regular elements and ideals

a is *regular*: if ax = 0 then x = 0

 a_1, \ldots, a_n define a regular ideal: if $a_1x = \cdots = a_nx = 0$ then x = 0

property 1: if $\langle a, a_1, \ldots, a_n \rangle$ and $\langle b, a_1, \ldots, a_n \rangle$ are regular then so is $\langle ab, a_1, \ldots, a_n \rangle$

Corollary: if $\langle a_1, \ldots, a_n \rangle$ is regular then so is $\langle a_1^l, \ldots, a_n^l \rangle$

Regular elements and ideals

property 2: if $\langle a_1, \ldots, a_n \rangle$ is regular and we have x = y in each $R[1/a_1], \ldots, R[1/a_n]$ then x = y in R

Corollary: if $\langle a_1, \ldots, a_n \rangle$ is regular and J is regular in each $R[1/a_1], \ldots, R[1/a_n]$ then J is regular in R

"New" kind of glueing property (usually one assumes $1 = \langle a_1, \ldots, a_n \rangle$)

Matrices and regular ideals

If we have a $p \times q$ matrices A, and $I \subseteq I_p$, $J \subseteq I_q$ with |I| = |J| = n we write $A^{(n)}(I, J)$ for the determinant of the corresponding extracted $n \times n$ matrix

The determinantal ideal $\Delta_n(A)$ of order n is the ideal generated by all $A^{(n)}(I,J)$

In particular $\Delta_0(A) = R$ and $A(\emptyset, \emptyset) = 1$

Matrices and regular ideals

Lemma: (McCoy) Let $\mathbb{R}^p \xrightarrow{u} \mathbb{R}^q$ be represented by a $p \times q$ matrix A then u is injective iff the ideal $\Delta_p(A)$ is regular

Proof: we show that if xA(I,J) = 0 whenever |I| = |J| = l + 1 then xA(I,J) = 0 whenever |I| = |J| = l

We have xA(I, J) = 0 whenever |I| = |J| = p + 1

We apply this until we have $x = xA(\emptyset, \emptyset) = 0$.

Formal proof? (I think the argument does not assume $p \leq q$)

Regular sequences

```
u_1, \ldots, u_m is a regular sequence iff
```

 u_1 is regular

 u_2 is regular mod. u_1

 u_3 is regular mod. u_1, u_2

• • •

 u_m is regular mod. u_1, \ldots, u_{m-1}

Grade

 $Gr(a_1,\ldots,a_n)\geqslant 2$ iff the ideal $\langle a_1,\ldots,a_n\rangle$ contains a regular sequence u_1,u_2 , in the Noetherian case

In general iff

 a_1, \ldots, a_n is regular and

 a_1, \ldots, a_n is regular modulo $a_1X_1 + \cdots + a_nX_n$

This implies

 $\forall i \ j.a_i b_j = a_j b_i$ $\leftrightarrow \quad \exists x. \ x \ (a_1, \dots, a_n) = (b_1, \dots, b_n)$

Original Goal

To understand the results of Auslander, Buchsbaum, Serre on *regular rings*

Local rings at a non singular point: Noetherian and the maximal ideal is generated by a regular sequence

These rings have a nice structure: *integral domain* and *unique factorization domain*

Homological characterization: Noetherian and *finite global dimension* which means that we have n such that any (finitely generated ideal) have a finite free resolution of length $\leq n$

Constructive version of these results? Corresponding algorithms?

Constructive Homological Algebra

Euler characteristic

If *I* has a finite free resolution

$$0 \leftarrow I \leftarrow F_0 \leftarrow F_1 \leftarrow \cdots \leftarrow F_n \leftarrow 0$$

where F_i is R^{p_i} we define the Euler characteristic to be

 $p_0 - p_1 + p_2 - \dots$

The constructive core consists in two results that have elementary statements and proofs, and have nothing to do with Noetherianity

Theorem 1: If *I* has a finite free resolution

$$0 \leftarrow I \leftarrow F_0 \leftarrow F_1 \leftarrow \cdots \leftarrow F_n \leftarrow 0$$

and

(1) if the Euler characteristic is $\neq 1$ then I = 0

(2) if the Euler characteristic is 1 then I is regular

The part (2) is called Vasconcellos Theorem in Northcott's book(1) is proved via localisation at arbitrary prime(2) is proved via localisation at arbitrary minimal prime

Using a general technique of eliminations of prime and minimal prime we obtain an elementary and short proof of Theorem 1

In particular in the case $I = \langle a \rangle$, from a given finite free resolution of I we can decide

a=0 or

a is regular

This explains: if the ring is regular then it is an integral domain (Serre)

Theorem 2: If $I = \langle a_1, \ldots, a_p \rangle$ has a finite free resolution

 $0 \leftarrow I \leftarrow F_0 \leftarrow F_1 \leftarrow \cdots \leftarrow F_n \leftarrow 0$

of Euler characteristic 1 then a_1, \ldots, a_p have a gcd

This time, this corresponds to a general algorithm

A particular case

Hilbert-Burch

$$0 \to R^2 \xrightarrow{M} R^3 \xrightarrow{(a_1 \ a_2 \ a_3)} I \to 0$$

where

$$M = \left(\begin{array}{rrr} u_1 & v_1 \\ u_2 & v_2 \\ u_3 & v_3 \end{array}\right)$$

A particular case

 $0 \to R^2 \xrightarrow{M} R^3 \xrightarrow{(a_1 \ a_2 \ a_3)} I \to 0$

In this case we can show (for *any* ring):

the 2 × 2 minors of M: $\Delta_1, \Delta_2, \Delta_3$ form a regular ideal and furthermore whenever we have a family b_1, b_2, b_3 such that $b_i \Delta_j = b_j \Delta_i$ then there exists a (unique) b such that $b_1 = b\Delta_1, b_2 = b\Delta_2, b_3 = b\Delta_3$

This follows from $Gr(\Delta_1, \Delta_2, \Delta_3) \ge 2$

This corresponds to an *algorithm*. The existence of b is using the *exactness* of the sequence, which is expressed in a constructive way

A particular case

 $0 \to R^2 \xrightarrow{M} R^3 \xrightarrow{(a_1 \ a_2 \ a_3)} I \to 0$

We have $a_1u_1 + a_2u_2 + a_3u_3 = a_1v_1 + a_2v_2 + a_3v_3 = 0$ and hence $a_i\Delta_j = a_j\Delta_i$

Hence we have a such that $a_1 = a\Delta_1$, $a_2 = a\Delta_2$, $a_3 = a\Delta_3$ and one can then show that a is the gcd of a_1, a_2, a_3

Future work

General case: multiplicative structure and Cayley determinant

$$0 \to F_n \xrightarrow{u_n} F_{n-1} \xrightarrow{u_{n-1}} \dots \xrightarrow{u_1} F_0 \to I \to 0$$

the map u_i is represented by the $p_i \times p_{i-1}$ matrix A_i

We define

$$q_n = p_n, \ q_{n-1} = p_{n-1} - q_n, \ \dots, \ q_0 = p_0 - q_1$$

Then $\Delta_{q_i}(A_i)$ is regular and $\Delta_{q_i+1}(A_i) = 0$

Future work

If $I \subseteq I_p$ we write I' the complement of I in I_p . We can then consider that the sequence corresponding to I, I' defines a permutation of I_l and we write sgn(I, I') the signature of this permutation.

Theorem: There exists a family $u_l(I)$ of elements of R with $I \subseteq I_{p_l}$ of cardinal q_l such that

$$A_l(I,J) = sgn(I,I')u_{l+1}(I')u_l(J)$$

This is related to the notion of *Cayley determinant* of a complex of Euler characteristic 0 (simplest case $\mathbb{R}^n \to \mathbb{R}^n$)

Future work

non Noetherian theory of regular sequences: for instance if u_0, u_1, \ldots, u_n is regular inside $\langle a_1, \ldots, a_n \rangle$ then 1 = 0 in R

Noetherian case (Lionel Ducos): some results towards constructive equivalence between the usual definition of regular rings and the homological characterization