Data structures and algorithms for Algebraic Topology in Proof Assistants

Jesús Aransay, César Domínguez
Universidad de La Rioja
Departamento de Matemáticas y Computación

MAP 2009
Monastir, December 14-18, 2009
(1) Introduction
(2) First layer of data structures and algorithms

- Implementation in Isabelle/HOL
- Implementation in Coq
- Comparison of both approaches
(3) Second layer of data structures and algorithms
- Implementation in Isabelle/HOL
- Implementation in Coq
- Comparison of both approaches
(4) Merging both data layers
(5) Conclusions and further work

(1) Introduction

(2) First layer of data structures and algorithms

- Implementation in Isabelle/HOL
- Implementation in Coq
- Comparison of both approaches
(3) Second layer of data structures and algorithms
- Implementation in Isabelle/HOL
- Implementation in Coq
- Comparison of both approaches

4 Merging both data layers
(5) Conclusions and further work

Introduction

- Symbolic Computation system in Algebraic Topology: Kenzo

Introduction

- Symbolic Computation system in Algebraic Topology: Kenzo
- Results not obtained by another method (neither theoretic, nor automatic)

Introduction

- Symbolic Computation system in Algebraic Topology: Kenzo
- Results not obtained by another method (neither theoretic, nor automatic)
- With these results in mind, an interest emerged in a formal analysis of the systems which helps us to reason about the internal processes

Introduction

- Symbolic Computation system in Algebraic Topology: Kenzo
- Results not obtained by another method (neither theoretic, nor automatic)
- With these results in mind, an interest emerged in a formal analysis of the systems which helps us to reason about the internal processes
- Formal methods
- Algebraic specification

Introduction

- Symbolic Computation system in Algebraic Topology: Kenzo
- Results not obtained by another method (neither theoretic, nor automatic)
- With these results in mind, an interest emerged in a formal analysis of the systems which helps us to reason about the internal processes
- Formal methods
- Algebraic specification
- Mechanized reasoning: $\left\{\begin{array}{l}\text { lsabelle } / H O L \\ \text { Coq } \\ A C L 2 \\ \ldots\end{array}\right.$

Kenzo characteristics

- Two layers of data structures exist:
- Usual data structures as (sorted) lists or trees of symbols
- Algebraic structures as (graded) groups, chain complexes or simplicial sets

Kenzo characteristics

- Two layers of data structures exist:
- Usual data structures as (sorted) lists or trees of symbols
- Algebraic structures as (graded) groups, chain complexes or simplicial sets
- Algorithms in both layers are involved:
- Combination addition lemma: it is possible two append two sorted lists...
- Basic Perturbation Lemma: given two chain complexes and several morphisms between them, then...

Kenzo characteristics

- Two layers of data structures exist:
- Usual data structures as (sorted) lists or trees of symbols
- Algebraic structures as (graded) groups, chain complexes or simplicial sets
- Algorithms in both layers are involved:
- Combination addition lemma: it is possible two append two sorted lists...
- Basic Perturbation Lemma: given two chain complexes and several morphisms between them, then...
- From a programming point of view:
- Implemented in CLOS
- Symbolic manipulation of data structures (first data layer)
- Higher-order functional programming (second data layer)
- Algorithms are exponential: efficiency matters were crucial

Different theorem provers or proof assistants

- ACL2

Different theorem provers or proof assistants

- ACL2
- extension of a sub-language of Common Lisp and an environment to produce proofs

Different theorem provers or proof assistants

- ACL2
- extension of a sub-language of Common Lisp and an environment to produce proofs
- first-order logic

Different theorem provers or proof assistants

- ACL2
- extension of a sub-language of Common Lisp and an environment to produce proofs
- first-order logic
- very well suited to work with data structures and algorithms in the first layer

Different theorem provers or proof assistants

- ACL2
- extension of a sub-language of Common Lisp and an environment to produce proofs
- first-order logic
- very well suited to work with data structures and algorithms in the first layer
- Isabelle/HOL or Coq

Different theorem provers or proof assistants

- ACL2
- extension of a sub-language of Common Lisp and an environment to produce proofs
- first-order logic
- very well suited to work with data structures and algorithms in the first layer
- Isabelle/HOL or Coq
- higher-order logic

Different theorem provers or proof assistants

- ACL2
- extension of a sub-language of Common Lisp and an environment to produce proofs
- first-order logic
- very well suited to work with data structures and algorithms in the first layer
- Isabelle/HOL or Coq
- higher-order logic
- without direct relation with Common Lisp

Different theorem provers or proof assistants

- ACL2
- extension of a sub-language of Common Lisp and an environment to produce proofs
- first-order logic
- very well suited to work with data structures and algorithms in the first layer
- Isabelle/HOL or Coq
- higher-order logic
- without direct relation with Common Lisp
- useful to model and verify the Kenzo data structures and algorithms in both layers

Some preliminary results

- Formal proof in ACL2 of data structures and algorithms in the first data layer as the Combination addition lemma

Some preliminary results

- Formal proof in ACL2 of data structures and algorithms in the first data layer as the Combination addition lemma
- Representation of non-graded algebraic structures in Isabelle/HOL and Coq

Some preliminary results

- Formal proof in ACL2 of data structures and algorithms in the first data layer as the Combination addition lemma
- Representation of non-graded algebraic structures in Isabelle/HOL and Coq
- Formal proof of a Kenzo's crucial lemma (the Basic Perturbation Lemma, or BPL) in Isabelle/HOL (for non-graded structures)

Some preliminary results

- Formal proof in ACL2 of data structures and algorithms in the first data layer as the Combination addition lemma
- Representation of non-graded algebraic structures in Isabelle/HOL and Coq
- Formal proof of a Kenzo's crucial lemma (the Basic Perturbation Lemma, or BPL) in Isabelle/HOL (for non-graded structures)

Goals

(1) To represent first data layer structures and prove some algorithms with them in Isabelle/HOL and Coq

Some preliminary results

- Formal proof in ACL2 of data structures and algorithms in the first data layer as the Combination addition lemma
- Representation of non-graded algebraic structures in Isabelle/HOL and Coq
- Formal proof of a Kenzo's crucial lemma (the Basic Perturbation Lemma, or BPL) in Isabelle/HOL (for non-graded structures)

Goals

(1) To represent first data layer structures and prove some algorithms with them in Isabelle/HOL and Coq
(2) To provide a suitable implementation of graded structures

Some preliminary results

- Formal proof in ACL2 of data structures and algorithms in the first data layer as the Combination addition lemma
- Representation of non-graded algebraic structures in Isabelle/HOL and Coq
- Formal proof of a Kenzo's crucial lemma (the Basic Perturbation Lemma, or BPL) in Isabelle/HOL (for non-graded structures)

Goals

(1) To represent first data layer structures and prove some algorithms with them in Isabelle/HOL and Coq
(2) To provide a suitable implementation of graded structures
(3) To implement instances of these structures and to prove some significant results with them

Some preliminary results

- Formal proof in ACL2 of data structures and algorithms in the first data layer as the Combination addition lemma
- Representation of non-graded algebraic structures in Isabelle/HOL and Coq
- Formal proof of a Kenzo's crucial lemma (the Basic Perturbation Lemma, or BPL) in Isabelle/HOL (for non-graded structures)

Goals

(1) To represent first data layer structures and prove some algorithms with them in Isabelle/HOL and Coq
(2) To provide a suitable implementation of graded structures
(3) To implement instances of these structures and to prove some significant results with them
(9) To compare the capabilities and styles of the systems
(2) First layer of data structures and algorithms

- Implementation in Isabelle/HOL
- Implementation in Coq
- Comparison of both approaches
(3) Second layer of data structures and algorithms
- Implementation in Isabelle/HOL
- Implementation in Coq
- Comparison of both approaches

4 Merging both data layers
(5) Conclusions and further work

Basic algebraic structure

Definition

A free abelian group $(M,+)$ is an abelian group in which each element in M can be written as a finite linear combination of elements of a set G called the generators

Basic algebraic structure

Definition

A free abelian group $(M,+)$ is an abelian group in which each element in M can be written as a finite linear combination of elements of a set G called the generators

Second layer implementation:

Definition

A free abelian group as a CLOS class with functional elements as slots.

Basic algebraic structure

Definition

A free abelian group $(M,+)$ is an abelian group in which each element in M can be written as a finite linear combination of elements of a set G called the generators

Second layer implementation:

Definition

A free abelian group as a CLOS class with functional elements as slots.

First layer implementation:

Definition

A combination as a list of pairs (integer, generator) called terms. Besides, the list of pairs is sorted in order to speed up the execution.

Algorithm in the first layer

- Two different methods can be proposed to add (sorted) combinations
- To append and then sort
- To add each term in the first combination in the corresponding position of the second combination

Algorithm in the first layer

- Two different methods can be proposed to add (sorted) combinations
- To append and then sort
- To add each term in the first combination in the corresponding position of the second combination

Combination addition lemma

Both methods are equivalent

Implementation in Isabelle/HOL

Isabelle/HOL is an implementation of Higher-Order logic.

Implementation in Isabelle/HOL

Isabelle/HOL is an implementation of Higher-Order logic.
The type system is rather simple and contains:
(1) Type variables (α, β, \ldots)
(2) Arrow types or functions $(\alpha \Rightarrow \beta)$
(3) Pairs $(\alpha \times \beta)$ (and thus labelled products, or records)

These constructors will be the ones used to represent both first and second layer structures as list or chain complexes and their morphisms.

First layer data structures implementation in Isabelle/HOL

A type class containing types with a strict total order is defined.
Type class declaration
class order =
fixes order_rel:: "’a \Rightarrow 'a \Rightarrow bool" (infixl "《" 60)
assumes total: "a = b V a < b V b < a"
and transitive: "a $<b \wedge b \ll c \Longrightarrow a \ll c "$
and irreflexive: "ᄀ $a \ll a "$

First layer data structures implementation in Isabelle/HOL
A type class containing types with a strict total order is defined.
Type class declaration
class order =
fixes order_rel:: "’a \Rightarrow 'a \Rightarrow bool" (infixl "《" 60)
assumes total: "a = b Va<b V b $<a "$
and transitive: $\mathrm{a} \ll b \wedge b \ll c \Longrightarrow a \ll c "$
and irreflexive: "ᄀ a < a"
Type declaration for terms, list of terms, and combinations
types 'a pair = "(int \times 'a)"
types 'a lot = "('a pair) list"
fun cmbn :: "’a::order lot \Rightarrow bool" where
"cmbn [] = True" |
"cmbn $[x]=($ fst $x \neq(0::$ int $)) " \mid$
"cmbn (x\#y\#z) = (fst $x \neq 0 \wedge$ snd $x \ll$ snd $y \wedge c m b n(y \# z)) "$

First layer algorithms in Isabelle/HOL

Algorithms by recursion on the structures.

Sorting lists of terms

fun c_f : :
"('a::order) lot \Rightarrow 'a lot"
where

$$
\begin{aligned}
& \text { "c_f }[]=[] " \text { l } \\
& \text { "c_f }(x \# y)= \\
& \left(i f(f s t x=0) \text { then } c_{-} f y\right. \\
& \text { else x } \left.[+]\left(c_{-} f y\right)\right) "
\end{aligned}
$$

Addition of lists of terms fun a2c: :

$$
\text { "'a lot } \Rightarrow \text { 'a lot } \Rightarrow \text { 'a lot" }
$$

where

$$
\begin{aligned}
& " a 2 c[] 12=12 " \\
& " a 2 c(x \# 1) 12=x[+](\text { a2c } 112) "
\end{aligned}
$$

with $[+]$ recursive function adding a term to a sorted list.

First layer algorithms in Isabelle/HOL

Algorithms by recursion on the structures.

Sorting lists of terms

fun $c_{-} f:$:
"('a::order) lot \Rightarrow 'a lot"
where

$$
\begin{aligned}
& \text { "c_f }[]=[] " \text { l } \\
& \text { "c_f }(x \text { \# } y)= \\
& \left(\text { if }(f s t x=0) \text { then } c_{-} f y\right. \\
& \left.\quad \text { else } x[+]\left(c_{-} f y\right)\right) "
\end{aligned}
$$

Addition of lists of terms

 fun a2c: :$$
\text { "'a lot } \Rightarrow \text { 'a lot } \Rightarrow \text { 'a lot" }
$$ where

$$
\begin{aligned}
& " a 2 c[] 12=12 " \\
& " a 2 c(x \# 1) \quad 12=x[+](\text { a2c } 112) "
\end{aligned}
$$

with $[+]$ recursive function adding a term to a sorted list.
Combination addition lemma
theorem assumes cmbn 11 and cmbn 12
shows a2c 1112 = c_f (l1@12)

First layer algorithms in Isabelle/HOL
Algorithms by recursion on the structures.

Sorting lists of terms

fun c_f : :
"('a::order) lot \Rightarrow 'a lot"
where

$$
\begin{aligned}
& \text { "c_f }[]=[] " \text { l } \\
& \text { "c_f }(x \text { \# } y)= \\
& \left(\text { if }(f s t x=0) \text { then } c_{-} f y\right. \\
& \left.\quad \text { else } x[+]\left(c_{-} f y\right)\right) "
\end{aligned}
$$

Addition of lists of terms fun a2c : :

$$
\text { "'a lot } \Rightarrow \text { 'a lot } \Rightarrow \text { 'a lot" }
$$ where

$$
\begin{aligned}
& " a 2 c[] 12=12 " \\
& " a 2 c(x \# 1) \quad 12=x[+](\text { a2c } 112) "
\end{aligned}
$$

with $[+]$ recursive function adding a term to a sorted list.
Combination addition lemma
theorem assumes cmbn 11 and cmbn 12 shows a2c $1112=c _f(11 @ 12)$

Proof.

By induction on the 11 structure.

Implementation in Coq

Coq is based on a variation of typed λ-calculus called Calculus of Inductive Constructions

Implementation in Coq

Coq is based on a variation of typed λ-calculus called Calculus of Inductive Constructions

The type system is richer than the one in Isabelle/HOL
For instance, dependent types can be defined

First layer data structures implementation in Coq

First layer structures are defined using inductive types.

A type with a strict total order can be declared

Record strict_total_order: Type:= \{A:> Set;

```
Alt: A -> A -> Prop;
Alt_irreflexive: forall x:A, not(Alt x x);
Alt_transitive: forall x y z:A, Alt x y >> Alt y z -> Alt x z;
Alt_total: forall x y:A, {Alt x y }+{Alt y x}+{x = y}}.
```

First layer data structures implementation in Coq
First layer structures are defined using inductive types.
A type with a strict total order can be declared
Record strict_total_order: Type:= \{A:> Set;
Alt: A \rightarrow A \rightarrow Prop;
Alt_irreflexive: forall x:A, not(Alt x x);
Alt_transitive: forall x y z:A, Alt x y \rightarrow Alt y z \rightarrow Alt x z;
Alt_total: forall $x y: A,\{A l t x y\}+\{A l t y x\}+\{x=y\}\}$.

Inductive types for terms, list of terms, and combinations

Inductive term: Set:= term_cons: forall $x: Z, x<>0->A->t e r m$.
Definition lot:= list(term).
Inductive cmbn: lot->Prop:=
| null_cmbn: cmbn(nil)
| cons_cmbn1: forall t:term, cmbn(t::nil)
| cons_cmbn2: forall (t1 t2 :term) (l:list(term)),
(let $(\mathrm{a}, \mathrm{p} 1, \mathrm{~b}):=\mathrm{t} 1$ in let $(\mathrm{c}, \mathrm{p} 2, \mathrm{~d}):=\mathrm{t} 2$ in
(Alt d b)) $->\mathrm{cmbn}((\mathrm{t} 1:: 1))->\mathrm{cmbn}((\mathrm{t} 2::(\mathrm{t} 1:: 1)))$.

First layer algorithms in Coq

Algorithms by recursion on the structures.

```
Sorting list of terms
Fixpoint c_f(l:lot):lot:=
match l with
|null => null
|t::l' => (add t (c_f l'))
end.
```

```
Addition of lists of terms
```

Addition of lists of terms
Fixpoint a2c(l1 12:lot)\{struct 11\}:
Fixpoint a2c(l1 12:lot)\{struct 11\}:
lot:=
lot:=
match 11 with
match 11 with
|null $=>12$
|null $=>12$
$\mid \mathrm{t}:: 1=>$ (add t (a2c l 12))
$\mid \mathrm{t}:: 1=>$ (add t (a2c l 12))
end.

```
end.
```

with add recursive function adding a term to a ordered list.

First layer algorithms in Coq

Algorithms by recursion on the structures.

```
Sorting list of terms
Fixpoint c_f(l:lot):lot:=
match l with
|null => null
|t::l' => (add t (c_f l'))
end.
```

```
Addition of lists of terms
Fixpoint a2c(l1 12:lot)\{struct l1\}:
lot:=
match 11 with
|null => 12
\(\mid \mathrm{t}:: 1=>\) (add t (a2c l 12))
end.
```

with add recursive function adding a term to a ordered list.
Combination addition lemma
Lemma a2c_equivalence: forall (l1 12:lot), cmbn(l1)->cmbn(12)-> (a2c l1 12) $=\left(c_{-f}(\operatorname{app} 1112)\right.$).

First layer algorithms in Coq

Algorithms by recursion on the structures.

```
Sorting list of terms
Fixpoint c_f(l:lot):lot:=
match l with
|null => null
|t::l' => (add t (c_f l'))
end.
```

```
Addition of lists of terms
Fixpoint a2c(l1 12:lot)\{struct l1\}:
lot:=
match 11 with
|null \(=>12\)
\(\mid \mathrm{t}:: 1=>\) (add t (a2c l 12))
end.
```

with add recursive function adding a term to a ordered list.
Combination addition lemma
Lemma a2c_equivalence: forall (l1 12:lot), cmbn(l1)->cmbn(12)-> (a2c l1 12) $=\left(c_{-f}(\operatorname{app} 1112)\right.$).

Proof.

By induction on the cmbn(11) structure.

Comparison of both approaches

Representation of first data layer

- Both systems provide suitable frameworks to implement first data layer structures and algorithms.

Comparison of both approaches

Representation of first data layer

- Both systems provide suitable frameworks to implement first data layer structures and algorithms.
- They include explicit libraries, and induction and recursion mechanisms to obtain direct implementations.

Comparison of both approaches

Representation of first data layer

- Both systems provide suitable frameworks to implement first data layer structures and algorithms.
- They include explicit libraries, and induction and recursion mechanisms to obtain direct implementations.
- Differences in their underlying logic appear. For instance, to represent generators and strict total order:

Isabelle: type classes with type variables ('a), predicates (bool), and classes (class)
Coq: sorts Set and Prop and dependent types

Comparison of both approaches

Representation of first data layer

- Both systems provide suitable frameworks to implement first data layer structures and algorithms.
- They include explicit libraries, and induction and recursion mechanisms to obtain direct implementations.
- Differences in their underlying logic appear. For instance, to represent generators and strict total order:

Isabelle: type classes with type variables ('a), predicates (bool), and classes (class)
Coq: sorts Set and Prop and dependent types

Algorithms in the first data layer
Proof by induction in both systems in an interactive way using the already built-in tactics.
(2) First layer of data structures and algorithms

- Implementation in Isabelle/HOL
- Implementation in Coq
- Comparison of both approaches
(3) Second layer of data structures and algorithms
- Implementation in Isabelle/HOL
- Implementation in Coq
- Comparison of both approaches
(4) Merging both data layers
(5) Conclusions and further work

Algebraic structures

Non graded structures:

Definition

A left R-module over the ring R consists of an abelian group ($M,+$) and an operation $\cdot: R \times M \rightarrow M$ such that for all $r, s \in R, x, y \in M$, we have
(1) $r \cdot(x+y)=r \cdot x+r \cdot y$
(2) $\left(r+_{R} s\right) \cdot x=r \cdot x+s \cdot x$
(3) $\left(r \cdot R_{R} s\right) \cdot x=r \cdot(s \cdot x)$
(3) $1_{R} \cdot x=x$

Algebraic structures

Non graded structures:

Definition

A left R-module over the ring R consists of an abelian group $(M,+)$ and an operation $\cdot: R \times M \rightarrow M$ such that for all $r, s \in R, x, y \in M$, we have
(1) $r \cdot(x+y)=r \cdot x+r \cdot y$
(2) $\left(r+_{R} s\right) \cdot x=r \cdot x+s \cdot x$
(3) $\left(r \cdot{ }_{R} s\right) \cdot x=r \cdot(s \cdot x)$
(3) $1_{R} \cdot x=x$

Graded structures:

Definition

A graded left R-module over the ring R consists of a family of abelian groups $\left(M_{n},+_{n}\right)_{n \in \mathbb{Z}}$ and operations ${ }_{n}: R \times M_{n} \rightarrow M_{n}$ such that for all $n \in \mathbb{Z}, M_{n}$ is a left R-module

Differential algebraic structures

Non graded structures:
Definition
A differential d over a left R-module M is an endomorphism of M such that it verifies the nilpotency condition, i.e., $d \circ d=0$

Differential algebraic structures

Non graded structures:

Definition

A differential d over a left R-module M is an endomorphism of M such that it verifies the nilpotency condition, i.e., $d \circ d=0$

Graded structures:

Definition

A differential $\left\{d_{n}\right\}_{n \in \mathbb{Z}}$ of degree -1 over a graded left R-module is a family of R -module morphisms $d_{n}: M_{n} \rightarrow M_{n-1}$ such that, for all $n \in \mathbb{Z}$, $d_{(n-1)} \circ d_{n}=0_{\text {Hom } M_{n} M_{n-2}}$

Differential algebraic structures

Non graded structures:

Definition

A differential left R-module (M, d) is a left R-module M together with a differential d of M

Differential algebraic structures

Non graded structures:

Definition

A differential left R-module (M, d) is a left R-module M together with a differential d of M

Graded structures:

Definition

A chain complex $\left\{M_{n}, d_{n}\right\}_{n \in \mathbb{Z}}$ is a pair of a graded left R-module $\left\{M_{n}\right\}_{n \in \mathbb{Z}}$ together with a graded differential $\left\{d_{n}\right\}_{n \in \mathbb{Z}}$ of degree -1

Morphisms of differential algebraic structures

Non graded structures:

Definition

A morphism between two differential left R-modules (M, d) and $\left(M^{\prime}, d^{\prime}\right)$ is a morphism of the modules such that $f \circ d=d^{\prime} \circ f$

Morphisms of differential algebraic structures

Non graded structures:

Definition

A morphism between two differential left R-modules (M, d) and $\left(M^{\prime}, d^{\prime}\right)$ is a morphism of the modules such that $f \circ d=d^{\prime} \circ f$

Graded structures:

Definition

A chain complex morphism of degree +1 between two chain complexes $\left\{\left(M_{n}, d_{n}\right)\right\}_{n \in \mathbb{Z}}$ and $\left\{\left(M_{n}^{\prime}, d_{n}^{\prime}\right)\right\}_{n \in \mathbb{Z}}$ is a family of morphisms $\left\{f_{n}\right\}_{n \in \mathbb{Z}}$, such that, for all $n \in \mathbb{Z}, f_{n}: M_{n} \rightarrow M_{(n+1)}^{\prime}$ is a morphism and
$f_{n-1} \circ d_{n}=d_{n+1}^{\prime} \circ f_{n}$

Algorithm in the second layer

Trivial Perturbation Lemma

Let $\rho=(D, C, f, g, h)$ be a reduction (i.e., D, C chain complexes and f, g, h chain complexes morphisms verifying some known properties), and δ a perturbation of d_{C} (i.e., a chain complex morphism defined over C of degree -1 such that $\left.\left(d_{c}+\delta\right) \circ\left(d_{c}+\delta\right)=0\right)$. Then a new reduction $\rho^{\prime}=\left(D^{\prime}, C^{\prime}, f^{\prime}, g^{\prime}, h^{\prime}\right)$ is defined where:

- D^{\prime} is the chain complex obtained from D where $d_{D^{\prime}}=d_{D}+g \delta f$
- C^{\prime} is the chain complex obtained from C where $d_{C^{\prime}}=d_{C}+\delta$
- $f^{\prime}=f, g^{\prime}=g$ and $h^{\prime}=h$

Implementation in Isabelle/HOL

First we provide a type definition and specification for non graded structures (for instance, a module):

Type definition

$$
\begin{aligned}
& \text { record }(\alpha, \beta) \text { module }=\alpha \text { ring }+ \\
& \text { smult }:: \alpha \Rightarrow \beta \Rightarrow \beta \quad \text { (infixl ._ 70) }
\end{aligned}
$$

Implementation in Isabelle/HOL

First we provide a type definition and specification for non graded structures (for instance, a module):

Type definition

```
record ( }\alpha,\beta\mathrm{ ) module = 人 ring +
smult :: \alpha=>\beta=>\beta (infixl ._ 70)
```


Specification

module $R M=$ cring $R+$ abelian_group M
($\forall a . \forall m . a \cdot m m \in \operatorname{carrier} M)+$
$(\forall a b . \forall x \cdot(a+b) \cdot m x=a \cdot m x+b \cdot m x)+$
$(\forall a \cdot \forall x y \cdot a \cdot m(x+m y)=a \cdot M x+M a \cdot m y)+$
$(\forall a b . \forall x \cdot(a \times b) \cdot m x=a \cdot m(b \cdot m x))+$
$(\forall x \cdot 1 \cdot m x=x)$

Implementation in Isabelle/HOL

Now, in order to implement a graded module over a ring R, we can use the following type definition:

Graded module
definition graded_module $:: \alpha$ ring \Rightarrow (int $\Rightarrow(\alpha, \beta)$ module $) \Rightarrow$ bool

Implementation in Isabelle/HOL

Now, in order to implement a graded module over a ring R, we can use the following type definition:

```
Graded module
definition graded_module :: \alpha ring => (int }=>(\alpha,\beta)\mathrm{ module) }=>\mathrm{ bool where graded_module \(R f \equiv \forall n\). module \(R\) ( \(f\) n )
```

We use a function that, given a ring R, maps every integer to a R-module

Implementation in Isabelle/HOL

Now, in order to implement a graded module over a ring R, we can use the following type definition:

```
Graded module
definition graded_module :: \alpha ring }=>\mathrm{ (int }=>(\alpha,\beta)\mathrm{ module) }=>\mathrm{ bool
where graded_module R f}\equiv\foralln\mathrm{ . module R (f n)
```

We use a function that, given a ring R, maps every integer to a R-module We can also provide a definition for graded module morphisms

Graded module morphism (degree -1) definition graded_module_hom ::
α ring \Rightarrow (int $\Rightarrow(\alpha, \beta)$ module $) \Rightarrow($ int $\Rightarrow(\alpha, \delta)$ module $) \Rightarrow$ (int $\Rightarrow(\beta \Rightarrow \delta)) \Rightarrow$ bool

Implementation in Isabelle/HOL

Now, in order to implement a graded module over a ring R, we can use the following type definition:

```
Graded module
definition graded_module :: \alpha ring }=>\mathrm{ (int }=>(\alpha,\beta)\mathrm{ module) }=>\mathrm{ bool
where graded_module R f}\equiv\foralln\mathrm{ . module R (f n)
```

We use a function that, given a ring R, maps every integer to a R-module We can also provide a definition for graded module morphisms

Graded module morphism (degree -1) definition graded_module_hom ::
α ring $\Rightarrow($ int $\Rightarrow(\alpha, \beta)$ module $) \Rightarrow($ int $\Rightarrow(\alpha, \delta)$ module $) \Rightarrow$ (int $\Rightarrow(\beta \Rightarrow \delta)) \Rightarrow$ bool
where graded_module_hom $R M M^{\prime} h$
$\equiv \forall n .(h n) \in$ hom_module $R(M n)\left(M^{\prime}(n-1)\right)$

Implementation in Isabelle/HOL

Chain complexes can be implemented using similar structures:

Chain complex

definition chain_complex ::
α ring $\Rightarrow($ int $\Rightarrow(\alpha, \beta)$ module $) \Rightarrow($ int $\Rightarrow(\beta \Rightarrow \beta)) \Rightarrow$ bool where chain_complex $R \mathrm{M}$ diff \equiv graded_module $R \mathrm{M}$
\wedge graded_module_hom R M M diff
$\wedge \forall n .(\operatorname{diff}(n-1) \circ($ diff $n))=\lambda x . z e r o M(n-2)$

Implementation in Coq

First we provide a type definition for non graded structures (for instance, a module):

Type definition
Variable R : ring.
Record module : Type := \{ crr :> abgroup;

Implementation in Coq

First we provide a type definition for non graded structures (for instance, a module):

Type definition

Variable R : ring.
Record module : Type :=
\{ crr :> abgroup;
mult : setoid_bin_op R crr crr;

Implementation in Coq

First we provide a type definition for non graded structures (for instance, a module):

Type definition

Variable R : ring.
Record module : Type :=
\{ crr :> abgroup;
mult : setoid_bin_op R crr crr; dist_mult: $\forall(a: R)(x y: c r r),($ mult a $(x[+] y))[=](($ mult a $x)[+]($ mult a $y))$; dist_plus: \forall (a b:R)(x:crr), (mult (a[+]b) x)[=]((mult a $x)[+]($ mult $b \times))$; assoc_mult: \forall (a b:R)(x:crr), (mult (a[*]b) x)[=](mult a (mult bx)); unit_mult: $\forall \mathrm{x}$:crr, (mult One x$)[=] \mathrm{x}\}$.

Implementation in Coq

Now, in order to implement a graded module over a ring R, we can use the following type definition:

Graded module graded_module $:=\mathrm{Z} \rightarrow$ module R

We use a function that maps every integer to a R-module

Implementation in Coq

Now, in order to implement a graded module over a ring R, we can use the following type definition:

```
Graded module
graded_module := Z }->\mathrm{ module R
```

We use a function that maps every integer to a R-module We can also provide a definition for graded module morphisms

Graded module morphism (degree -1)
Variables gm gm': graded_module graded_module_hom $:=\forall i \in Z$, module_hom (gm i)(gm' $(i-1))$

Implementation in Coq

Chain complexes can be implemented using similar structures:

```
Chain complex
Record chain_complex : Type :=
{ gm:> graded_module R ;
    diff: graded_module_hom gm gm;
nilp: }\forall\textrm{i}:Z,\forall\mp@code{a:(gm i), ((diff(i-1)[oh]diff i) a)[=]
(mod_hom_zero (gm i) (gm ((i-1)-1)) a) }.
```


Comparison of both approaches

Representation of graded structures

- Isabelle: explicit domains as sets (or predicates) over a same given type β
- Coq: structures as records with dependent types; different domains as different types

Comparison of both approaches

Representation of graded structures

- Isabelle: explicit domains as sets (or predicates) over a same given type β
- Coq: structures as records with dependent types; different domains as different types

Example

$x_{n} \in M(n), y_{n+1} \in M(n+1),\left\{x_{n}+M_{n} y_{n+1}\right\}$ produces:

- A well-typed expression in our Isabelle representation
- A type error in Coq

Comparison of both approaches

This can be sometimes a bit annoying in Coq:

$$
\operatorname{diff}_{(n+1)}\left(f_{n} x_{n}\right): M_{((n+1)-1)} \text { but not } M_{(n)}
$$

Explicit type conversions are required in order to obtain the expected type

Comparison of both approaches

This can be sometimes a bit annoying in Coq:

$$
\operatorname{diff}_{(n+1)}\left(f_{n} x_{n}\right): M_{((n+1)-1)} \text { but not } M_{(n)}
$$

Explicit type conversions are required in order to obtain the expected type

Conclusion

(1) The richer Coq type theory allows to build precise specifications of graded structures, but some type transformations have to be included.

Comparison of both approaches

This can be sometimes a bit annoying in Coq:

$$
\operatorname{diff}_{(n+1)}\left(f_{n} x_{n}\right): M_{((n+1)-1)} \text { but not } M_{(n)}
$$

Explicit type conversions are required in order to obtain the expected type

Conclusion

(1) The richer Coq type theory allows to build precise specifications of graded structures, but some type transformations have to be included.
(2) Isabelle version is more flexible, but demands from the user to ensure the correctness of the expressions provided to the system.

Soundness of the representation

Both in Isabelle and Coq we have been capable of providing (and proving) the existence of structures according to our representation

Soundness of the representation

Both in Isabelle and Coq we have been capable of providing (and proving) the existence of structures according to our representation

Example

The graded module where $\forall n \in \mathbb{Z}, M_{n}=\mathbb{Z}$ and the differentials $d_{n \in \mathbb{Z}}=0$ form a chain complex

Usefulness of the representation

Both in Isabelle and Coq we have formally proved the Trivial Perturbation Lemma, a simplified modification of the Basic Perturbation Lemma

Usefulness of the representation

Both in Isabelle and Coq we have formally proved the Trivial Perturbation Lemma, a simplified modification of the Basic Perturbation Lemma

Proof.

Based on rewriting on graded structures and reduction properties
(2) First layer of data structures and algorithms

- Implementation in Isabelle/HOL
- Implementation in Coq
- Comparison of both approaches
(3) Second layer of data structures and algorithms
- Implementation in Isabelle/HOL
- Implementation in Coq
- Comparison of both approaches
(4) Merging both data layers
(5) Conclusions and further work

Simplicial sets

A simplicial set K consists of a graded set $\left\{K^{q}\right\}_{q \in \mathbb{N}}$, together with face and degeneracy maps, $\partial_{i}^{q}: K^{q} \rightarrow K^{q-1}, q>0, i \leq q$ and $\eta_{i}^{q}: K^{q} \rightarrow K^{q+1}, q \geq 0, i \leq q$ such that:
(1) $\partial_{i}^{q-1} \partial_{j}^{q}=\partial_{j-1}^{q-1} \partial_{i}^{q}$ if $i<j$
(2) $\eta_{i}^{q+1} \eta_{j}^{q}=\eta_{j+1}^{q+1} \eta_{i}^{q}$ if $i \leq j$
(3) $\partial_{i}^{q+1} \eta_{j}^{q}=\eta_{j-1}^{q-1} \partial_{i}^{q}$ if $i<j$
(9) $\partial_{i}^{q+1} \eta_{j}^{q}=i d$ if $i=j$ or $i=j+1$
(大) $\partial_{i}^{q+1} \eta_{j}^{q}=\eta_{j}^{q-1} \partial_{i-1}^{q}$ if $i>j+1$

Simplicial sets

A simplicial set K consists of a graded set $\left\{K^{q}\right\}_{q \in \mathbb{N}}$, together with face and degeneracy maps, $\partial_{i}^{q}: K^{q} \rightarrow K^{q-1}, q>0, i \leq q$ and $\eta_{i}^{q}: K^{q} \rightarrow K^{q+1}, q \geq 0, i \leq q$ such that:
(1) $\partial_{i}^{q-1} \partial_{j}^{q}=\partial_{j-1}^{q-1} \partial_{i}^{q}$ if $i<j$
(2) $\eta_{i}^{q+1} \eta_{j}^{q}=\eta_{j+1}^{q+1} \eta_{i}^{q}$ if $i \leq j$
(3) $\partial_{i}^{q+1} \eta_{j}^{q}=\eta_{j-1}^{q-1} \partial_{i}^{q}$ if $i<j$
(9) $\partial_{i}^{q+1} \eta_{j}^{q}=i d$ if $i=j$ or $i=j+1$
(6) $\partial_{i}^{q+1} \eta_{j}^{q}=\eta_{j}^{q-1} \partial_{i-1}^{q}$ if $i>j+1$

The elements of K^{q} are called q-simplices. A q-simplex x is degenerated if $x=\eta_{i} y$ with $y \in K^{q-1}, 0 \leq i<q$; otherwise x is called non-degenerated.

Important example: universal simplicial set Δ

- Contains the minimal number of identifications from the equalities

Important example: universal simplicial set Δ

- Contains the minimal number of identifications from the equalities
- Any theorem proved on Δ, by using only these identities, will be also true for any other simplicial set.

Important example: universal simplicial set Δ

- Contains the minimal number of identifications from the equalities
- Any theorem proved on Δ, by using only these identities, will be also true for any other simplicial set.
- Can be represented by:
- A q-simplex is a list of elements of length $q+1$.
- The face operator ∂_{i} deletes the i-th element of the list
- The degeneracy operator η_{i} repeats the i-th element of the list.

Important example: universal simplicial set Δ

- Contains the minimal number of identifications from the equalities
- Any theorem proved on Δ, by using only these identities, will be also true for any other simplicial set.
- Can be represented by:
- A q-simplex is a list of elements of length $q+1$.
- The face operator ∂_{i} deletes the i-th element of the list
- The degeneracy operator η_{i} repeats the i-th element of the list.

Lemma. Second layer

The universal simplicial set Δ is a simplicial set.

Important example: universal simplicial set Δ

- Contains the minimal number of identifications from the equalities
- Any theorem proved on Δ, by using only these identities, will be also true for any other simplicial set.
- Can be represented by:
- A q-simplex is a list of elements of length $q+1$.
- The face operator ∂_{i} deletes the i-th element of the list
- The degeneracy operator η_{i} repeats the i-th element of the list.

Lemma. Second layer

The universal simplicial set Δ is a simplicial set.

Canonical representation lemma. First layer

Any simplex I in Δ admits a unique representation as a pair of lists $\left(d I, l^{\prime}\right)$ where $d l$ a strictly increasing degeneracy list and I^{\prime} is a list without two equal consecutive elements.

Example: $((3,5,6),(k, t, r, t, l, m))$ represents $(k, t, r, r, t, t, t, I, m)$.

Simplicial set implementation in Isabelle and Coq

Isabelle

```
definition simplicial_set :: "(nat => 'a set) => 
where "simplicial_set K \delta \mu. ==
```

Coq
Record SimplicialSet: Type:=
\{K:> nat -> Type;
Face: forall (q:nat) (i:nat), q>0 \rightarrow i<=q $\rightarrow \mathrm{K} q \rightarrow \mathrm{~K}$ ($\mathrm{q}-1$);Deg: forall (q:nat) (i:nat), i<=q $\rightarrow \mathrm{K} q->K$ (S q);
eq1: forall(q i $j: n a t)(a: G S q)(p: i<j)(q: j<=q)(k:(q-1)>0)$,
Face (q:=q-1) (i:=i) k (le_tra' p q) (Face (q:=q) (i:=j) (cS q k) q a)=
Face (q:=q-1) (i:=j-1) k (le_traS q) (Face (q:=q) (i:=i) (cS q k) (le_tra p q)a)
$\ldots\}$.

Universal simplicial set implementation in Isabelle and Coq

```
Isabelle
types 'a deg_pair = "nat list }x\mathrm{ 'a list"
fun u:: "nat }=>>>'a l1st => "a l1st"
    w_0: "ц0 (a # 1) = a # a # 1'
    |
lemma
    u_permut_a_b:
    assumes a I b: "a sb"
    and b_l_l:"m< (length l)"
    shows-"\overline{\mu}a(\mu\textrm{b}1)= L}(\textrm{b}+1)(\mu\textrm{a}1)
    using a_l_b and b_l_l
proof (induct a b arbitrary: l rule: diff_induct)
    case (1 a l)
    Show "\mu a (\mu 0 1) = \mu (0 + 1) ( }\mu\mathrm{ a a l)"
        show "\mu a 
        by (cases l, auto)
next
    case (2 b)
    note Suc_b_g_0 = 2 (1) and Suc_b_l_l = 2 (2)
    show "\mu 0 (\mu (Suc b) l) = н (Suc b + 1) ( 
    proof (cases 1)
        case Nil show ?thesis using Suc_b_l_l unfolding Nil by auto
    next
            case (Cons al 11)
            show "u(0mnat) (u (Suc b) I) = u(Suc b + 1) (u (0:nat) I)"
            unfolding Cons by auto
        qed
next
    case (3 a b l)
    note hypo = "3.hyps" and Suc_1 = 3 (2) and Suc_b_1_1 = 3 (3)
    show "u(Suc a) (u (Suc b) 1)}
    proof (cases 1)
        case Nil
            show ?thesis using Suc_b_l_l unfolding Nil by simp
    next
            case (Cons al 11)
            show "u. (Suc a) (u. (Suc b) 1) = w (Suc b + 1) (u (Suc a) 1)"
                    unfolding Cons
                    unfolding }\mu\mathrm{ Suc
                using hypo [of 11]
                using Suc_l and Suc_b_l_l and Cons by auto
    qed
qed
```


Coq

```
Variable A : Type.
Let ListA :=list A.
Let ListN:= list nat.
Fixpoint deg(i:nat)(l:ListA)
{struct l}: ListA:=
match i, l with
    |_, nil => nil
    |O, x :: l' => x::x::l'
    |S n, x :: l' => x::deg n l'
end.
Lemma deg_permut: forall (a b:nat)(l:ListA),
a<=b -> b<(length 1)
-> deg a (deg b l) = deg (S b) (deg a l).
Proof.
double induction a b.
intro l; case l; simpl; trivial.
intros n H l; case l; case n; simpl; trivial.
intros n bO l H; inversion H.
intros n H nO HO l H1 H2; induction l.
inversion H2.
simpl; rewrite HO; auto with arith.
Qed.
```


Canonical representation lemma in Isabelle and Coq

```
Isabelle
lemma existence:
    "canonical (generate l) ^ degenerate (generate l) = I"
lemma uniqueness:
    assumes can 1: "canonical (d1, 11)"
    and can_2: "canonical (d2, 12)"
    and deg-1-eq 1: "degenerate (dl, 11) = 1"
    and deg_2 eq 1: "degenerate (c12, 12) = = ""
    shows "}(\textrm{d},\textrm{L}, 11)=(d2, 12)"
```

```
Coq
Lemma existence:
forall l:ListA,
(canonical (generate l)) ^
(degenerate (generate l))=1.
Lemma uniqueness: forall (l1 12:ListNxListA)
(l:ListA), canonical l1 -> canonical 12 ->
(degenerate l1)=l -> (degenerate l2)=1 ->
11 = 12
```


Canonical representation lemma in Isabelle and Coq

```
Isabelle
lemma existence:
    "canonical (generate l) A degenerate (generate l) = l"
lemma uniqueness:
    assumes can 1: "canonical (d1, l1)"
    and can_2: "canonical (d2, 12)"
    and deg_1 eq 1: "degenerate (d1, II) = """
    shows "(d1, I1) = (d2, 12)
```

```
Coq
Lemma existence:
forall l:ListA,
(canonical (generate l)) ^
(degenerate (generate l))=1.
Lemma uniqueness: forall (l1 12:ListNxListA)
(l:ListA), canonical l1 -> canonical l2 ->
(degenerate l1)=l -> (degenerate l2)=l ->
11 = 12
```


Proof.

Using induction on the lists structure and rewriting on the equalities

1) Introduction

(2) First layer of data structures and algorithms

- Implementation in Isabelle/HOL
- Implementation in Coq
- Comparison of both approaches
(3) Second layer of data structures and algorithms
- Implementation in Isabelle/HOL
- Implementation in Coq
- Comparison of both approaches
(4) Merging both data layers
(5) Conclusions and further work

Conclusions

- A representation of both Kenzo's data structures layers has been provided in Isabelle/HOL and Coq

Conclusions

- A representation of both Kenzo's data structures layers has been provided in Isabelle/HOL and Coq
- The implementations obtained are sound and useful: we provide instances of the representations and formally prove some results with them

Conclusions

- A representation of both Kenzo's data structures layers has been provided in Isabelle/HOL and Coq
- The implementations obtained are sound and useful: we provide instances of the representations and formally prove some results with them
- The representations illustrate some of the special features of each system

Conclusions

- A representation of both Kenzo's data structures layers has been provided in Isabelle/HOL and Coq
- The implementations obtained are sound and useful: we provide instances of the representations and formally prove some results with them
- The representations illustrate some of the special features of each system

Further work

- Development of more formal proofs (as, for instance, the BPL in the graded case)

Conclusions

- A representation of both Kenzo's data structures layers has been provided in Isabelle/HOL and Coq
- The implementations obtained are sound and useful: we provide instances of the representations and formally prove some results with them
- The representations illustrate some of the special features of each system

Further work

- Development of more formal proofs (as, for instance, the BPL in the graded case)
- Enhancement of the graded structure hierarchy (as, for example, product of graded structures, cone, cone reductions...)

