Data structures and algorithms for Algebraic Topology in Proof Assistants

Jesús Aransay, César Domínguez

Universidad de La Rioja Departamento de Matemáticas y Computación

MAP 2009

Monastir, December 14-18, 2009

(B)

2 First layer of data structures and algorithms

- Implementation in Isabelle/HOL
- Implementation in Coq
- Comparison of both approaches

3 Second layer of data structures and algorithms

- Implementation in Isabelle/HOL
- Implementation in Coq
- Comparison of both approaches
- 4 Merging both data layers
- 5 Conclusions and further work

2 First layer of data structures and algorithms

- Implementation in Isabelle/HOL
- Implementation in Coq
- Comparison of both approaches

3 Second layer of data structures and algorithms

- Implementation in Isabelle/HOL
- Implementation in Coq
- Comparison of both approaches
- 4 Merging both data layers
- Conclusions and further work

< 3 > < 3 >

• Symbolic Computation system in Algebraic Topology: Kenzo

- 4 週 ト - 4 三 ト - 4 三 ト

- Symbolic Computation system in Algebraic Topology: Kenzo
- Results not obtained by another method (neither theoretic, nor automatic)

過 ト イヨ ト イヨト

- Symbolic Computation system in Algebraic Topology: Kenzo
- Results not obtained by another method (neither theoretic, nor automatic)
- With these results in mind, an interest emerged in a formal analysis of the systems which helps us to reason about the internal processes

- Symbolic Computation system in Algebraic Topology: Kenzo
- Results not obtained by another method (neither theoretic, nor automatic)
- With these results in mind, an interest emerged in a formal analysis of the systems which helps us to reason about the internal processes
- Formal methods
 - Algebraic specification

- Symbolic Computation system in Algebraic Topology: Kenzo
- Results not obtained by another method (neither theoretic, nor automatic)
- With these results in mind, an interest emerged in a formal analysis of the systems which helps us to reason about the internal processes
- Formal methods
 - Algebraic specification

Mechanized reasoning:
 Isabelle/HOL Coq ACL2

|||▶ ★ 臣 ▶ ★ 臣 ▶ || 臣

Kenzo characteristics

- Two *layers* of data structures exist:
 - Usual data structures as (sorted) lists or trees of symbols
 - Algebraic structures as (graded) groups, chain complexes or simplicial sets

Kenzo characteristics

- Two *layers* of data structures exist:
 - Usual data structures as (sorted) lists or trees of symbols
 - Algebraic structures as (graded) groups, chain complexes or simplicial sets
- Algorithms in both layers are involved:
 - Combination addition lemma: it is possible two append two sorted lists...
 - Basic Perturbation Lemma: given two chain complexes and several morphisms between them, then...

A B F A B F

Kenzo characteristics

- Two *layers* of data structures exist:
 - Usual data structures as (sorted) lists or trees of symbols
 - Algebraic structures as (graded) groups, chain complexes or simplicial sets
- Algorithms in both layers are involved:
 - Combination addition lemma: it is possible two append two sorted lists...
 - Basic Perturbation Lemma: given two chain complexes and several morphisms between them, then...
- From a programming point of view:
 - Implemented in CLOS
 - Symbolic manipulation of data structures (first data layer)
 - Higher-order functional programming (second data layer)
 - Algorithms are exponential: efficiency matters were crucial

(日) (同) (三) (三) (三)

• ACL2

3

• • = • • = •

• ACL2

 extension of a sub-language of Common Lisp and an environment to produce proofs

A B M A B M

• ACL2

- extension of a sub-language of Common Lisp and an environment to produce proofs
- first-order logic

A B < A B <</p>

• ACL2

- extension of a sub-language of Common Lisp and an environment to produce proofs
- first-order logic
- very well suited to work with data structures and algorithms in the first layer

A B F A B F

• ACL2

- extension of a sub-language of Common Lisp and an environment to produce proofs
- first-order logic
- very well suited to work with data structures and algorithms in the first layer
- Isabelle/HOL or Coq

A B < A B <</p>

• ACL2

- extension of a sub-language of Common Lisp and an environment to produce proofs
- first-order logic
- very well suited to work with data structures and algorithms in the first layer
- Isabelle/HOL or Coq
 - higher-order logic

(B)

• ACL2

- extension of a sub-language of Common Lisp and an environment to produce proofs
- first-order logic
- very well suited to work with data structures and algorithms in the first layer
- Isabelle/HOL or Coq
 - higher-order logic
 - without direct relation with Common Lisp

A B < A B <</p>

• ACL2

- extension of a sub-language of Common Lisp and an environment to produce proofs
- first-order logic
- very well suited to work with data structures and algorithms in the first layer
- Isabelle/HOL or Coq
 - higher-order logic
 - without direct relation with Common Lisp
 - useful to model and verify the Kenzo data structures and algorithms in both layers

• • = • • = •

• Formal proof in ACL2 of data structures and algorithms in the first data layer as the *Combination addition lemma*

副下 《唐下 《唐下

- Formal proof in ACL2 of data structures and algorithms in the first data layer as the *Combination addition lemma*
- Representation of non-graded algebraic structures in Isabelle/HOL and Coq

A B F A B F

- Formal proof in ACL2 of data structures and algorithms in the first data layer as the *Combination addition lemma*
- Representation of non-graded algebraic structures in Isabelle/HOL and Coq
- Formal proof of a Kenzo's crucial lemma (the *Basic Perturbation Lemma*, or BPL) in Isabelle/HOL (for non-graded structures)

A B M A B M

- Formal proof in ACL2 of data structures and algorithms in the first data layer as the *Combination addition lemma*
- Representation of non-graded algebraic structures in Isabelle/HOL and Coq
- Formal proof of a Kenzo's crucial lemma (the *Basic Perturbation Lemma*, or BPL) in Isabelle/HOL (for non-graded structures)

Goals

 To represent first data layer structures and prove some algorithms with them in Isabelle/HOL and Coq

(日) (周) (三) (三)

- Formal proof in ACL2 of data structures and algorithms in the first data layer as the *Combination addition lemma*
- Representation of non-graded algebraic structures in Isabelle/HOL and Coq
- Formal proof of a Kenzo's crucial lemma (the *Basic Perturbation Lemma*, or BPL) in Isabelle/HOL (for non-graded structures)

Goals

- To represent first data layer structures and prove some algorithms with them in Isabelle/HOL and Coq
- **②** To provide a suitable implementation of graded structures

(日) (周) (三) (三)

- Formal proof in ACL2 of data structures and algorithms in the first data layer as the *Combination addition lemma*
- Representation of non-graded algebraic structures in Isabelle/HOL and Coq
- Formal proof of a Kenzo's crucial lemma (the *Basic Perturbation Lemma*, or BPL) in Isabelle/HOL (for non-graded structures)

Goals

- To represent first data layer structures and prove some algorithms with them in Isabelle/HOL and Coq
- **2** To provide a suitable implementation of graded structures
- To implement instances of these structures and to prove some significant results with them

(日) (同) (日) (日) (日)

- Formal proof in ACL2 of data structures and algorithms in the first data layer as the *Combination addition lemma*
- Representation of non-graded algebraic structures in Isabelle/HOL and Coq
- Formal proof of a Kenzo's crucial lemma (the *Basic Perturbation Lemma*, or BPL) in Isabelle/HOL (for non-graded structures)

Goals

- To represent first data layer structures and prove some algorithms with them in Isabelle/HOL and Coq
- **②** To provide a suitable implementation of graded structures
- To implement instances of these structures and to prove some significant results with them
- O To compare the capabilities and styles of the systems

(日) (周) (三) (三)

2 First layer of data structures and algorithms

- Implementation in Isabelle/HOL
- Implementation in Coq
- Comparison of both approaches

3 Second layer of data structures and algorithms

- Implementation in Isabelle/HOL
- Implementation in Coq
- Comparison of both approaches
- 4 Merging both data layers
- Conclusions and further work

< 注入 < 注入

Basic algebraic structure

Definition

A free abelian group (M, +) is an abelian group in which each element in M can be written as a finite linear combination of elements of a set G called the generators

Basic algebraic structure

Definition

A free abelian group (M, +) is an abelian group in which each element in M can be written as a finite linear combination of elements of a set G called the generators

Second layer implementation:

Definition

A free abelian group as a CLOS class with functional elements as slots.

Basic algebraic structure

Definition

A free abelian group (M, +) is an abelian group in which each element in M can be written as a finite linear combination of elements of a set G called the generators

Second layer implementation:

First layer implementation:

Definition

A free abelian group as a CLOS class with functional elements as slots.

Definition

A combination as a list of pairs (integer, generator) called terms. Besides, the list of pairs is sorted in order to speed up the execution.

A B F A B F

Algorithm in the first layer

- Two different methods can be proposed to add (sorted) combinations
 - To append and then sort
 - To add each term in the first combination in the corresponding position of the second combination

A B F A B F

Algorithm in the first layer

• Two different methods can be proposed to add (sorted) combinations

- To append and then sort
- To add each term in the first combination in the corresponding position of the second combination

Combination addition lemma

Both methods are equivalent

Implementation in Isabelle/HOL

Isabelle/HOL is an implementation of Higher-Order logic.

- 4 目 ト - 4 日 ト - 4 日 ト

Implementation in Isabelle/HOL

Isabelle/HOL is an implementation of Higher-Order logic.

The type system is rather simple and contains:

- Type variables (α, β, \dots)
- **2** Arrow types or functions $(\alpha \Rightarrow \beta)$
- Solution Pairs $(\alpha \times \beta)$ (and thus labelled products, or records)

These constructors will be the ones used to represent both first and second layer structures as list or chain complexes and their morphisms.

▲圖▶ ▲園▶ ▲園▶

First layer data structures implementation in Isabelle/HOL

A type class containing types with a strict total order is defined.

Type class declaration

class order = fixes order_rel:: "'a \Rightarrow 'a \Rightarrow bool" (infixl "«" 60) assumes total: "a = b \lor a « b \lor b « a" and transitive: "a « b \land b « c \Longrightarrow a « c" and irreflexive: " \neg a « a"

First layer data structures implementation in Isabelle/HOL

A type class containing types with a strict total order is defined.

Type class declaration

class order = fixes order_rel:: "'a \Rightarrow 'a \Rightarrow bool" (infixl "«" 60) assumes total: "a = b \lor a « b \lor b « a" and transitive: "a « b \land b « c \Longrightarrow a « c" and irreflexive: " \neg a « a"

Type declaration for terms, list of terms, and combinations

```
types 'a pair = "(int × 'a)"
types 'a lot = "('a pair) list"
fun cmbn :: "'a::order lot \Rightarrow bool" where
    "cmbn [] = True" |
    "cmbn [x] = (fst x \neq (0::int))" |
    "cmbn (x#y#z) = (fst x \neq 0 \land snd x \ll snd y \land cmbn (y # z))"
```

▲□▶ ▲圖▶ ▲圖▶ ▲圖▶ ― 圖 … の々で

First layer algorithms in Isabelle/HOL

Algorithms by recursion on the structures.

Sorting lists of terms

```
fun c_f ::

"('a::order) lot \Rightarrow 'a lot"

where

"c_f [] = []" |

"c_f (x # y) =

(if (fst x = 0) then c_f y

else x [+] (c_f y))"
```

Addition of lists of terms

fun a2c :: "'a lot \Rightarrow 'a lot \Rightarrow 'a lot" where "a2c [] 12 = 12" | "a2c (x#1) 12 = x[+](a2c 1 12)"

with [+] recursive function adding a term to a sorted list.

First layer algorithms in Isabelle/HOL

Algorithms by recursion on the structures.

Sorting lists of terms

```
fun c_f ::

"('a::order) lot \Rightarrow 'a lot"

where

"c_f [] = []" |

"c_f (x # y) =

(if (fst x = 0) then c_f y

else x [+] (c_f y))"
```

Addition of lists of terms

fun a2c :: "'a lot \Rightarrow 'a lot \Rightarrow 'a lot" where "a2c [] 12 = 12" | "a2c (x#1) 12 = x[+](a2c 1 12)"

with [+] recursive function adding a term to a sorted list.

Combination addition lemma

theorem assumes cmbn 11 and cmbn 12
shows a2c 11 12 = c_f (11012)

First layer algorithms in Isabelle/HOL

Algorithms by recursion on the structures.

Sorting lists of terms

```
fun c_f ::

"('a::order) lot \Rightarrow 'a lot"

where

"c_f [] = []" |

"c_f (x # y) =

(if (fst x = 0) then c_f y

else x [+] (c_f y))"
```

Addition of lists of terms

fun a2c :: "'a lot \Rightarrow 'a lot \Rightarrow 'a lot" where "a2c [] 12 = 12" | "a2c (x#1) 12 = x[+] (a2c 1 12)"

with [+] recursive function adding a term to a sorted list.

Combination addition lemma

theorem assumes cmbn 11 and cmbn 12
 shows a2c 11 12 = c_f (11012)

Proof.

By induction on the l1 structure.

J. Aransay, C. Domínguez (Univ. La Rioja)

Coq is based on a variation of typed $\lambda\text{-calculus}$ called Calculus of Inductive Constructions

< 回 ト < 三 ト < 三 ト

- Coq is based on a variation of typed $\lambda\text{-calculus}$ called Calculus of Inductive Constructions
- The type system is richer than the one in Isabelle/HOL
- For instance, dependent types can be defined

• • = • • = •

First layer data structures implementation in Coq

First layer structures are defined using inductive types.

A type with a strict total order can be declared

```
Record strict_total_order: Type:=
{A:> Set;
Alt: A -> A -> Prop;
Alt_irreflexive: forall x:A, not(Alt x x);
Alt_transitive: forall x y z:A, Alt x y -> Alt y z -> Alt x z;
Alt_total: forall x y:A, {Alt x y}+{Alt y x}+{x = y}}.
```

First layer data structures implementation in Coq

First layer structures are defined using inductive types.

A type with a strict total order can be declared

```
Record strict_total_order: Type:=
{A:> Set;
Alt: A -> A -> Prop;
Alt_irreflexive: forall x:A, not(Alt x x);
Alt_transitive: forall x y z:A, Alt x y -> Alt y z -> Alt x z;
Alt_total: forall x y:A, {Alt x y}+{Alt y x}+{x = y}}.
```

Inductive types for terms, list of terms, and combinations

```
Inductive term: Set:= term_cons: forall x:Z, x<>0->A->term.
Definition lot:= list(term).
Inductive cmbn: lot->Prop:=
| null_cmbn: cmbn(nil)
| cons_cmbn1: forall t:term, cmbn(t::nil)
| cons_cmbn2: forall (t1 t2 :term) (l:list(term)),
  (let (a,p1,b):= t1 in let (c,p2,d):= t2 in
  (Alt d b))->cmbn((t1::l))->cmbn((t2::(t1::l))).
```

First layer algorithms in Coq

Algorithms by recursion on the structures.

Sorting list of terms

```
Fixpoint c_f(l:lot):lot:=
match l with
|null => null
|t::l' => (add t (c_f l'))
end.
```

```
Addition of lists of terms

Fixpoint a2c(l1 l2:lot){struct l1}:

lot:=

match l1 with

|null => 12

|t::l => (add t (a2c l l2))

end.
```

with add recursive function adding a term to a ordered list.

First layer algorithms in Coq

Algorithms by recursion on the structures.

Sorting list of terms

```
Fixpoint c_f(l:lot):lot:=
match l with
|null => null
|t::l' => (add t (c_f l'))
end.
```

```
Addition of lists of terms

Fixpoint a2c(l1 l2:lot){struct l1}:

lot:=

match l1 with

|null => 12

|t::l => (add t (a2c l l2))

end.
```

with add recursive function adding a term to a ordered list.

Combination addition lemma

Lemma a2c_equivalence: forall (l1 l2:lot), cmbn(l1)->cmbn(l2)-> (a2c l1 l2) = (c_f (app l1 l2)).

• • = • • = •

First layer algorithms in Coq

Algorithms by recursion on the structures.

Sorting list of terms

```
Fixpoint c_f(l:lot):lot:=
match l with
|null => null
|t::l' => (add t (c_f l'))
end.
```

```
Addition of lists of terms

Fixpoint a2c(l1 l2:lot){struct l1}:

lot:=

match l1 with

|null => 12

|t::l => (add t (a2c l l2))

end.
```

with add recursive function adding a term to a ordered list.

Combination addition lemma

```
Lemma a2c_equivalence: forall (11 12:1ot), cmbn(11)->cmbn(12)-> (a2c 11 12) = (c_f (app 11 12)).
```

Proof.

```
By induction on the cmbn(11) structure.
```

Representation of first data layer

• Both systems provide suitable frameworks to implement first data layer structures and algorithms.

Representation of first data layer

- Both systems provide suitable frameworks to implement first data layer structures and algorithms.
- They include explicit libraries, and induction and recursion mechanisms to obtain direct implementations.

Representation of first data layer

- Both systems provide suitable frameworks to implement first data layer structures and algorithms.
- They include explicit libraries, and induction and recursion mechanisms to obtain direct implementations.
- Differences in their underlying logic appear. For instance, to represent generators and strict total order:
 - Isabelle: type classes with type variables ('a), predicates (bool), and classes (class)

Coq: sorts Set and Prop and dependent types

< 3 > < 3 >

Representation of first data layer

- Both systems provide suitable frameworks to implement first data layer structures and algorithms.
- They include explicit libraries, and induction and recursion mechanisms to obtain direct implementations.
- Differences in their underlying logic appear. For instance, to represent generators and strict total order:
 - Isabelle: type classes with type variables ('a), predicates (bool), and classes (class)

Coq: sorts Set and Prop and dependent types

Algorithms in the first data layer

Proof by induction in both systems in an interactive way using the already built-in tactics.

(日) (同) (三) (三)

Introduction

2 First layer of data structures and algorithms

- Implementation in Isabelle/HOL
- Implementation in Coq
- Comparison of both approaches

3 Second layer of data structures and algorithms

- Implementation in Isabelle/HOL
- Implementation in Coq
- Comparison of both approaches

4 Merging both data layers

Conclusions and further work

Algebraic structures

Non graded structures:

Definition

A left R-module over the ring R consists of an abelian group (M, +)and an operation $\cdot : R \times M \to M$ such that for all $r, s \in R, x, y \in M$, we have

Algebraic structures

Non graded structures:

Definition

A left R-module over the ring R consists of an abelian group (M, +)and an operation $\cdot : R \times M \to M$ such that for all $r, s \in R, x, y \in M$, we have

•
$$r \cdot (x + y) = r \cdot x + r \cdot y$$

• $(r +_R s) \cdot x = r \cdot x + s \cdot x$
• $(r \cdot_R s) \cdot x = r \cdot (s \cdot x)$
• $1_R \cdot x = x$

Graded structures:

Definition

A graded left *R*-module over the ring *R* consists of a family of abelian groups $(M_n, +_n)_{n \in \mathbb{Z}}$ and operations $\cdot_n \colon R \times M_n \to M_n$ such that for all $n \in \mathbb{Z}$, M_n is a left *R*-module

Non graded structures:

Definition

A differential d over a left R-module M is an endomorphism of M such that it verifies the nilpotency condition, *i.e.*, $d \circ d = 0$

Non graded structures:

Definition

A differential d over a left R-module M is an endomorphism of M such that it verifies the nilpotency condition, *i.e.*, $d \circ d = 0$

Graded structures:

Definition

A differential $\{d_n\}_{n \in \mathbb{Z}}$ of degree -1 over a graded left R-module is a family of R-module morphisms $d_n \colon M_n \to M_{n-1}$ such that, for all $n \in \mathbb{Z}$, $d_{(n-1)} \circ d_n = 0_{\text{Hom } M_n M_{n-2}}$

Non graded structures:

Definition

A differential left R-module (M, d) is a left R-module M together with a differential d of M

< 3 > < 3 >

Non graded structures:

Definition

A differential left R-module (M, d) is a left R-module M together with a differential d of M

Graded structures:

Definition

A chain complex $\{M_n, d_n\}_{n \in \mathbb{Z}}$ is a pair of a graded left R-module $\{M_n\}_{n \in \mathbb{Z}}$ together with a graded differential $\{d_n\}_{n \in \mathbb{Z}}$ of degree -1

Morphisms of differential algebraic structures

Non graded structures:

Definition

A morphism between two differential left R-modules (M, d)and (M', d') is a morphism of the modules such that $f \circ d = d' \circ f$

Morphisms of differential algebraic structures

Non graded structures:

Definition

A morphism between two differential left R-modules (M, d)and (M', d') is a morphism of the modules such that $f \circ d = d' \circ f$ Graded structures:

Definition

A chain complex morphism of degree +1 between two chain complexes $\{(M_n, d_n)\}_{n \in \mathbb{Z}}$ and $\{(M'_n, d'_n)\}_{n \in \mathbb{Z}}$ is a family of morphisms $\{f_n\}_{n \in \mathbb{Z}}$, such that, for all $n \in \mathbb{Z}$, $f_n \colon M_n \to M'_{(n+1)}$ is a morphism and $f_{n-1} \circ d_n = d'_{n+1} \circ f_n$

Algorithm in the second layer

Trivial Perturbation Lemma

Let $\rho = (D, C, f, g, h)$ be a reduction (*i.e.*, *D*, *C* chain complexes and *f*, *g*, *h* chain complexes morphisms verifying some known properties), and δ a perturbation of d_C (*i.e.*, a chain complex morphism defined over *C* of degree -1 such that $(d_C + \delta) \circ (d_C + \delta) = 0$). Then a new reduction $\rho' = (D', C', f', g', h')$ is defined where:

• D' is the chain complex obtained from D where $d_{D'} = d_D + g \delta f$

• C' is the chain complex obtained from C where $d_{C'} = d_C + \delta$

•
$$f' = f$$
, $g' = g$ and $h' = h$

A = A = A

First we provide a type definition and specification for non graded structures (for instance, a module):

Type definition

record (α, β) module = α ring + smult :: $\alpha \Rightarrow \beta \Rightarrow \beta$ (infixl - 70)

· · · · · · · · ·

First we provide a type definition and specification for non graded structures (for instance, a module):

Type definition

record (α, β) module = α ring + smult :: $\alpha \Rightarrow \beta \Rightarrow \beta$ (infixl - 70)

Specification

module
$$R M = cring R + abelian_group M$$

 $(\forall a.\forall m. a \cdot_M m \in carrier M) +$
 $(\forall a b.\forall x. (a + b) \cdot_M x = a \cdot_M x + b \cdot_M x) +$
 $(\forall a.\forall x y. a \cdot_M (x +_M y) = a \cdot_M x +_M a \cdot_M y) +$
 $(\forall a b.\forall x. (a \times b) \cdot_M x = a \cdot_M (b \cdot_M x)) +$
 $(\forall x. 1 \cdot_M x = x)$

A B F A B F

Now, in order to implement a graded module over a ring R, we can use the following type definition:

Graded module

definition graded_module :: α ring \Rightarrow (int \Rightarrow (α , β) module) \Rightarrow bool

Now, in order to implement a graded module over a ring R, we can use the following type definition:

Graded module

definition graded_module :: α ring \Rightarrow (int \Rightarrow (α , β) module) \Rightarrow bool where graded_module R f $\equiv \forall n$. module R (f n)

We use a function that, given a ring R, maps every integer to a R-module

Now, in order to implement a graded module over a ring R, we can use the following type definition:

Graded module

definition graded_module :: α ring \Rightarrow (int \Rightarrow (α , β) module) \Rightarrow bool where graded_module R f $\equiv \forall n$. module R (f n)

We use a function that, given a ring R, maps every integer to a R-module We can also provide a definition for graded module morphisms

Graded module morphism (degree -1) definition graded_module_hom :: $\alpha \text{ ring} \Rightarrow (\text{int} \Rightarrow (\alpha, \beta) \text{ module}) \Rightarrow (\text{int} \Rightarrow (\alpha, \delta) \text{ module}) \Rightarrow$ $(\text{int} \Rightarrow (\beta \Rightarrow \delta)) \Rightarrow \text{bool}$

3

<ロ> (日) (日) (日) (日) (日)

Now, in order to implement a graded module over a ring R, we can use the following type definition:

Graded module

definition graded_module :: α ring \Rightarrow (int \Rightarrow (α , β) module) \Rightarrow bool where graded_module R f $\equiv \forall n$. module R (f n)

We use a function that, given a ring R, maps every integer to a R-module

We can also provide a definition for graded module morphisms

Graded module morphism (degree -1) definition graded_module_hom :: $\alpha \text{ ring} \Rightarrow (\text{int} \Rightarrow (\alpha, \beta) \text{ module}) \Rightarrow (\text{int} \Rightarrow (\alpha, \delta) \text{ module}) \Rightarrow$ $(\text{int} \Rightarrow (\beta \Rightarrow \delta)) \Rightarrow \text{bool}$ where graded_module_hom R M M' h $\equiv \forall n. (h n) \in \text{hom_module } R (M n) (M' (n - 1))$

3

<ロ> (日) (日) (日) (日) (日)

Chain complexes can be implemented using similar structures:

Chain complex

definition chain_complex :: α ring \Rightarrow (int \Rightarrow (α , β) module) \Rightarrow (int \Rightarrow ($\beta \Rightarrow \beta$)) \Rightarrow bool where chain_complex R M diff \equiv graded_module R M \land graded_module_hom R M M diff $\land \forall n.$ (diff (n - 1) \circ (diff n)) = $\lambda x.zeroM(n - 2)$

• • = • • = •

First we provide a type definition for non graded structures (for instance, a module):

```
Type definition
Variable R : ring.
Record module : Type :=
\{ crr :> abgroup; \}
```

< 3 > < 3 >

First we provide a type definition for non graded structures (for instance, a module):

```
Type definition
Variable R : ring.
Record module : Type :=
{ crr :> abgroup;
mult : setoid_bin_op R crr crr;
```

First we provide a type definition for non graded structures (for instance, a module):

```
Type definition

Variable R : ring.

Record module : Type :=

{ crr :> abgroup;

mult : setoid_bin_op R crr crr;

dist_mult:\forall(a:R)(x \ y: crr),(mult a (x[+]y))[=] ((mult a x)[+](mult a y));

dist_plus:\forall (a b:R)(x:crr), (mult (a[+]b) x)[=]((mult a x)[+](mult b x));

assoc_mult:\forall (a b:R)(x:crr), (mult (a[*]b) x)[=](mult a (mult b x));

unit_mult:\forall x:crr, (mult One x)[=]x }.
```

- 4 週 ト - 4 ヨ ト - 4 ヨ ト - -

Now, in order to implement a graded module over a ring R, we can use the following type definition:

 $\begin{array}{l} \mbox{Graded module} \\ \mbox{graded_module} := Z \rightarrow \mbox{module R} \end{array}$

We use a function that maps every integer to a *R*-module

Now, in order to implement a graded module over a ring R, we can use the following type definition:

 $\begin{array}{l} \mbox{Graded module} \\ \mbox{graded_module} := \mbox{Z} \rightarrow \mbox{module R} \end{array}$

We use a function that maps every integer to a *R*-module

We can also provide a definition for graded module morphisms

```
Graded module morphism (degree -1)
```

Variables gm gm': graded_module

```
graded_module_hom := \forall i \in \mathsf{Z}, module_hom (gm i)(gm' (i - 1))
```

イロト イヨト イヨト

Implementation in Coq

Chain complexes can be implemented using similar structures:

```
Chain complex

Record chain_complex : Type :=

{ gm:> graded_module R ;

diff: graded_module_hom gm gm;

nilp: ∀ i:Z, ∀ a:(gm i), ((diff(i-1)[oh]diff i) a)[=]

(mod_hom_zero (gm i) (gm ((i-1)-1)) a) }.
```

Representation of graded structures

- \bullet Isabelle: explicit domains as sets (or predicates) over a same given type β
- Coq: structures as records with dependent types; different domains as different types

Representation of graded structures

- \bullet Isabelle: explicit domains as sets (or predicates) over a same given type β
- Coq: structures as records with dependent types; different domains as different types

Example

$$x_n \in M(n), y_{n+1} \in M(n+1), \{x_n +_{Mn} y_{n+1}\}$$
 produces:

- A well-typed expression in our Isabelle representation
- A type error in Coq

< 3 > < 3 >

This can be sometimes a bit annoying in Coq:

$$diff_{(n+1)}(f_n x_n) : M_{((n+1)-1)}$$
 but not $M_{(n)}$

Explicit type conversions are required in order to obtain the expected type

This can be sometimes a bit annoying in Coq:

$$diff_{(n+1)}(f_n x_n) : M_{((n+1)-1)}$$
 but not $M_{(n)}$

Explicit type conversions are required in order to obtain the expected type

Conclusion

The richer Coq type theory allows to build precise specifications of graded structures, but some type transformations have to be included.

This can be sometimes a bit annoying in Coq:

 $diff_{(n+1)}(f_n \times_n) : M_{((n+1)-1)}$ but not $M_{(n)}$

Explicit type conversions are required in order to obtain the expected type

Conclusion

- The richer Coq type theory allows to build precise specifications of graded structures, but some type transformations have to be included.
- Isabelle version is more flexible, but demands from the user to ensure the correctness of the expressions provided to the system.

過 ト イヨ ト イヨト

Soundness of the representation

Both in Isabelle and Coq we have been capable of providing (and proving) the existence of structures according to our representation

Soundness of the representation

Both in Isabelle and Coq we have been capable of providing (and proving) the existence of structures according to our representation

Example

The graded module where $\forall n \in \mathbb{Z}, M_n = \mathbb{Z}$ and the differentials $d_{n \in \mathbb{Z}} = 0$ form a chain complex

Usefulness of the representation

Both in Isabelle and Coq we have formally proved the *Trivial Perturbation Lemma*, a simplified modification of the *Basic Perturbation Lemma*

- 4 3 6 4 3 6

Usefulness of the representation

Both in Isabelle and Coq we have formally proved the *Trivial Perturbation Lemma*, a simplified modification of the *Basic Perturbation Lemma*

Proof.

Based on rewriting on graded structures and reduction properties

Introduction

2 First layer of data structures and algorithms

- Implementation in Isabelle/HOL
- Implementation in Coq
- Comparison of both approaches

3 Second layer of data structures and algorithms

- Implementation in Isabelle/HOL
- Implementation in Coq
- Comparison of both approaches

4 Merging both data layers

Conclusions and further work

Simplicial sets

A simplicial set K consists of a graded set $\{K^q\}_{q\in\mathbb{N}}$, together with face and degeneracy maps, $\partial_i^q : K^q \to K^{q-1}, q > 0, i \leq q$ and $\eta_i^q : K^q \to K^{q+1}, q \geq 0, i \leq q$ such that: **1** $\partial_i^{q-1}\partial_j^q = \partial_{j-1}^{q-1}\partial_i^q$ if i < j **2** $\eta_i^{q+1}\eta_j^q = \eta_{j+1}^{q+1}\eta_i^q$ if $i \leq j$ **3** $\partial_i^{q+1}\eta_j^q = \eta_{j-1}^{q-1}\partial_i^q$ if i < j **4** $\partial_i^{q+1}\eta_j^q = id$ if i = j or i = j + 1**5** $\partial_i^{q+1}\eta_j^q = \eta_i^{q-1}\partial_{i-1}^q$ if i > j + 1

• • = • • = •

Simplicial sets

A simplicial set K consists of a graded set $\{K^q\}_{q\in\mathbb{N}}$, together with face and degeneracy maps, $\partial_i^q \colon K^q \to K^{q-1}$, q > 0, $i \leq q$ and $\eta_i^q \colon K^q \to K^{q+1}, q \ge 0, i \le q$ such that: 2 $\eta_i^{q+1} \eta_i^q = \eta_{i+1}^{q+1} \eta_i^q$ if $i \le j$ **3** $\partial_i^{q+1} \eta_i^q = \eta_{i-1}^{q-1} \partial_i^q$ if i < j• $\partial_i^{q+1} \eta_i^q = id$ if i = j or i = j+1

The elements of K^q are called *q*-simplices. A *q*-simplex *x* is degenerated if $x = \eta_i y$ with $y \in K^{q-1}$, $0 \le i < q$; otherwise *x* is called *non-degenerated*.

- 本間下 本臣下 本臣下 三臣

• Contains the minimal number of identifications from the equalities

• • = • • = •

- Contains the minimal number of identifications from the equalities
- Any theorem proved on Δ, by using only these identities, will be also true for any other simplicial set.

- Contains the minimal number of identifications from the equalities
- Any theorem proved on Δ, by using only these identities, will be also true for any other simplicial set.
- Can be represented by:
 - A q-simplex is a list of elements of length q + 1.
 - The face operator ∂_i deletes the *i*-th element of the list
 - The degeneracy operator η_i repeats the *i*-th element of the list.

過 ト イヨ ト イヨト

- Contains the minimal number of identifications from the equalities
- Any theorem proved on Δ, by using only these identities, will be also true for any other simplicial set.
- Can be represented by:
 - A q-simplex is a list of elements of length q + 1.
 - The face operator ∂_i deletes the *i*-th element of the list
 - The degeneracy operator η_i repeats the *i*-th element of the list.

Lemma. Second layer

The *universal* simplicial set Δ is a simplicial set.

- Contains the minimal number of identifications from the equalities
- Any theorem proved on Δ , by using only these identities, will be also true for any other simplicial set.
- Can be represented by:
 - A q-simplex is a list of elements of length q + 1.
 - The face operator ∂_i deletes the *i*-th element of the list
 - The degeneracy operator η_i repeats the *i*-th element of the list.

Lemma. Second layer

The *universal* simplicial set Δ is a simplicial set.

Canonical representation lemma. First layer

Any simplex l in Δ admits a *unique* representation as a pair of lists (dl, l') where dl a strictly increasing degeneracy list and l' is a list without two equal consecutive elements.

Example: ((3,5,6), (k, t, r, t, l, m)) represents $(k, \underline{t}, r, \underline{r}, t, \underline{t}, \underline{t}, l, \underline{m})$.

Simplicial set implementation in Isabelle and Coq

Isabelle

Coq

```
Record SimplicialSet: Type:=
{K:> nat -> Type;
Face: forall (q:nat)(i:nat), q>0 -> i<=q -> K q -> K (q-1);
Deg: forall (q:nat)(i:nat), i<=q -> K q -> K (S q);
eq1: forall(q i j:nat)(a:GS q)(p:i<j)(q:j<=q)(k:(q-1)>0),
Face(q:=q-1)(i:=i) k (le_tra' p q)(Face(q:=q)(i:=j)(cS q k) q a)=
Face(q:=q-1)(i:=j-1) k (le_traS q)(Face(q:=q)(i:=i)(cS q k)(le_tra p q)a)
...}
```

Universal simplicial set implementation in Isabelle and Coq

Isabelle

```
types 'a deg pair = "nat list × 'a list"
fun u :: "nat => 'a list => 'a list"
  \mu 0; "\mu 0 (a # 1) = a # a # 1"
  | μ Suc: "μ (Suc n) (a # 1) = a # μ n 1"
lemma
  u permut a b:
  assumes a 1 b: "a \leq b"
and b 1 1: "b < (length 1)"
  shows \[\mu]{\mu}a\](\mu b 1) = \mu\](b + 1)\](\mu a 1)\]
  using a 1 b and b 1 1
proof (induct a b arbitrary: 1 rule: diff induct)
  case (1 a 1)
  show "\mu a (\mu 0 1) = \mu (0 + 1) (\mu a 1)"
    using 1
    by (cases 1, auto)
next
  note Suc_b_g_0 = 2 (1) and Suc_b_1 = 2 (2)
  show "\mu \overline{0} (\mu (Suc b) 1) = \mu (Suc \overline{b} + 1) (\mu \overline{0} 1)"
  proof (cases 1)
    case Nil show ?thesis using Suc b 1 1 unfolding Nil by auto
  next
    case (Cons al 11)
    show "\mu (0:nat) (\mu (Suc b) 1) = \mu (Suc b + 1) (\mu (0:nat) 1)"
       unfolding Cons by auto
  aed
next.
  case (3 a b 1)
  note hypo = "3.hyps" and Suc 1 = 3 (2) and Suc b 1 1 = 3 (3)
  show "\mu (Suc a) (\mu (Suc b) 1) = \mu (Suc b + 1) (\mu (Suc a) 1)"
  proof (cases 1)
    case Nil
    show ?thesis using Suc b 1 1 unfolding Nil by simp
    case (Cons al 11)
    show "\mu (Suc a) (\mu (Suc b) 1) = \mu (Suc b + 1) (\mu (Suc a) 1)"
      unfolding Cons
      unfolding a Suc
      using hypo [of 11]
      using Suc 1 and Suc b 1 1 and Cons by auto
  ged
aed
```

Coq

```
Variable A : Type.
Let ListA :=list A.
Let ListN:= list nat.
Fixpoint deg(i:nat)(1:ListA)
{struct 1}: ListA:=
match i, 1 with
 | ... nil => nil
 |0, x :: 1' \Rightarrow x::x::1'
 |S n, x :: 1' => x::deg n 1'
end.
Lemma deg_permut: forall (a b:nat)(1:ListA),
a \le b \rightarrow b \le (length 1)
\rightarrow deg a (deg b 1) = deg (S b)(deg a 1).
Proof.
double induction a b.
intro 1; case 1; simpl; trivial.
intros n H l; case l; case n; simpl; trivial.
intros n b0 1 H: inversion H.
intros n H nO HO 1 H1 H2; induction 1.
inversion H2.
simpl: rewrite HO: auto with arith.
Qed.
```

イロト イポト イヨト イヨト

3

Canonical representation lemma in Isabelle and Coq

Isabelle

```
lemma existence:
"canonical (generate 1) ^ degenerate (generate 1) = 1"
lemma uniqueness:
    assumes can 1: "canonical (d1, 11)"
    and can 2: "canonical (d2, 12)"
    and deg_1 = g_11: "degenerate (d1, 11) = 1"
    and deg_2 = g_11: "degenerate (d2, 12) = 1"
    shows "(d1, 11) = (d2, 12)"
```

Coq

```
Lemma existence:
forall 1:ListA,
(canonical (generate 1)) ^
(degenerate (generate 1))=1.
Lemma uniqueness: forall (11 12:ListNxListA)
(1:ListA), canonical 11 -> canonical 12 ->
(degenerate 11)=1 -> (degenerate 12)=1 ->
11 = 12
```

イロト イポト イヨト イヨト

Canonical representation lemma in Isabelle and Coq

Isabelle

```
lemma existence:
"canonical (generate 1) * degenerate (generate 1) = 1"
lemma uniqueness:
    assumes can 1: "canonical (d1, 11)"
    and can_1: "canonical (d2, 12)"
    and deg_1: eq.1: "degenerate (d1, 11) = 1"
    and deg_2: eq.1: "degenerate (d2, 12) = 1"
    shows "(d1, 11) = (d2, 12)"
```

Coq

```
Lemma existence:
forall 1:ListA,
(canonical (generate 1)) ^
(degenerate (generate 1))=1.
Lemma uniqueness: forall (l1 12:ListNxListA)
(1:ListA), canonical 11 -> canonical 12 ->
(degenerate 11)=1 -> (degenerate 12)=1 ->
11 = 12
```

イロト イポト イヨト イヨト

Proof.

Using induction on the lists structure and rewriting on the equalities

Introduction

2 First layer of data structures and algorithms

- Implementation in Isabelle/HOL
- Implementation in Coq
- Comparison of both approaches

3 Second layer of data structures and algorithms

- Implementation in Isabelle/HOL
- Implementation in Coq
- Comparison of both approaches

4 Merging both data layers

Conclusions and further work

< 3 > < 3 >

• A representation of both Kenzo's data structures layers has been provided in Isabelle/HOL and Coq

- A representation of both Kenzo's data structures layers has been provided in Isabelle/HOL and Coq
- The implementations obtained are sound and useful: we provide instances of the representations and formally prove some results with them

- A representation of both Kenzo's data structures layers has been provided in Isabelle/HOL and Coq
- The implementations obtained are sound and useful: we provide instances of the representations and formally prove some results with them
- The representations illustrate some of the special features of each system

- A representation of both Kenzo's data structures layers has been provided in Isabelle/HOL and Coq
- The implementations obtained are sound and useful: we provide instances of the representations and formally prove some results with them
- The representations illustrate some of the special features of each system

Further work

• Development of more formal proofs (as, for instance, the BPL in the graded case)

- A representation of both Kenzo's data structures layers has been provided in Isabelle/HOL and Coq
- The implementations obtained are sound and useful: we provide instances of the representations and formally prove some results with them
- The representations illustrate some of the special features of each system

Further work

- Development of more formal proofs (as, for instance, the BPL in the graded case)
- Enhancement of the graded structure hierarchy (as, for example, product of graded structures, cone, cone reductions...)

• • = • • = •