
Data structures and algorithms for Algebraic Topology
in Proof Assistants

Jesús Aransay, César Doḿınguez

Universidad de La Rioja
Departamento de Matemáticas y Computación

MAP 2009

Monastir, December 14-18, 2009

J. Aransay, C. Doḿınguez (Univ. La Rioja) MAP 2009 1 / 41



1 Introduction

2 First layer of data structures and algorithms
Implementation in Isabelle/HOL
Implementation in Coq
Comparison of both approaches

3 Second layer of data structures and algorithms
Implementation in Isabelle/HOL
Implementation in Coq
Comparison of both approaches

4 Merging both data layers

5 Conclusions and further work

J. Aransay, C. Doḿınguez (Univ. La Rioja) MAP 2009 2 / 41



1 Introduction

2 First layer of data structures and algorithms
Implementation in Isabelle/HOL
Implementation in Coq
Comparison of both approaches

3 Second layer of data structures and algorithms
Implementation in Isabelle/HOL
Implementation in Coq
Comparison of both approaches

4 Merging both data layers

5 Conclusions and further work

J. Aransay, C. Doḿınguez (Univ. La Rioja) MAP 2009 3 / 41



Introduction

Symbolic Computation system in Algebraic Topology: Kenzo

Results not obtained by another method (neither theoretic, nor
automatic)

With these results in mind, an interest emerged in a formal analysis of
the systems which helps us to reason about the internal processes

Formal methods

I Algebraic specification

I Mechanized reasoning:


Isabelle/HOL
Coq
ACL2
. . .

J. Aransay, C. Doḿınguez (Univ. La Rioja) MAP 2009 4 / 41



Introduction

Symbolic Computation system in Algebraic Topology: Kenzo

Results not obtained by another method (neither theoretic, nor
automatic)

With these results in mind, an interest emerged in a formal analysis of
the systems which helps us to reason about the internal processes

Formal methods

I Algebraic specification

I Mechanized reasoning:


Isabelle/HOL
Coq
ACL2
. . .

J. Aransay, C. Doḿınguez (Univ. La Rioja) MAP 2009 4 / 41



Introduction

Symbolic Computation system in Algebraic Topology: Kenzo

Results not obtained by another method (neither theoretic, nor
automatic)

With these results in mind, an interest emerged in a formal analysis of
the systems which helps us to reason about the internal processes

Formal methods

I Algebraic specification

I Mechanized reasoning:


Isabelle/HOL
Coq
ACL2
. . .

J. Aransay, C. Doḿınguez (Univ. La Rioja) MAP 2009 4 / 41



Introduction

Symbolic Computation system in Algebraic Topology: Kenzo

Results not obtained by another method (neither theoretic, nor
automatic)

With these results in mind, an interest emerged in a formal analysis of
the systems which helps us to reason about the internal processes

Formal methods

I Algebraic specification

I Mechanized reasoning:


Isabelle/HOL
Coq
ACL2
. . .

J. Aransay, C. Doḿınguez (Univ. La Rioja) MAP 2009 4 / 41



Introduction

Symbolic Computation system in Algebraic Topology: Kenzo

Results not obtained by another method (neither theoretic, nor
automatic)

With these results in mind, an interest emerged in a formal analysis of
the systems which helps us to reason about the internal processes

Formal methods

I Algebraic specification

I Mechanized reasoning:


Isabelle/HOL
Coq
ACL2
. . .

J. Aransay, C. Doḿınguez (Univ. La Rioja) MAP 2009 4 / 41



Kenzo characteristics

Two layers of data structures exist:

I Usual data structures as (sorted) lists or trees of symbols
I Algebraic structures as (graded) groups, chain complexes or simplicial

sets

Algorithms in both layers are involved:

I Combination addition lemma: it is possible two append two sorted
lists...

I Basic Perturbation Lemma: given two chain complexes and several
morphisms between them, then...

From a programming point of view:

I Implemented in CLOS
I Symbolic manipulation of data structures (first data layer)
I Higher-order functional programming (second data layer)
I Algorithms are exponential: efficiency matters were crucial

J. Aransay, C. Doḿınguez (Univ. La Rioja) MAP 2009 5 / 41



Kenzo characteristics

Two layers of data structures exist:

I Usual data structures as (sorted) lists or trees of symbols
I Algebraic structures as (graded) groups, chain complexes or simplicial

sets

Algorithms in both layers are involved:

I Combination addition lemma: it is possible two append two sorted
lists...

I Basic Perturbation Lemma: given two chain complexes and several
morphisms between them, then...

From a programming point of view:

I Implemented in CLOS
I Symbolic manipulation of data structures (first data layer)
I Higher-order functional programming (second data layer)
I Algorithms are exponential: efficiency matters were crucial

J. Aransay, C. Doḿınguez (Univ. La Rioja) MAP 2009 5 / 41



Kenzo characteristics

Two layers of data structures exist:

I Usual data structures as (sorted) lists or trees of symbols
I Algebraic structures as (graded) groups, chain complexes or simplicial

sets

Algorithms in both layers are involved:

I Combination addition lemma: it is possible two append two sorted
lists...

I Basic Perturbation Lemma: given two chain complexes and several
morphisms between them, then...

From a programming point of view:

I Implemented in CLOS
I Symbolic manipulation of data structures (first data layer)
I Higher-order functional programming (second data layer)
I Algorithms are exponential: efficiency matters were crucial

J. Aransay, C. Doḿınguez (Univ. La Rioja) MAP 2009 5 / 41



Different theorem provers or proof assistants

ACL2

I extension of a sub-language of Common Lisp and an environment to
produce proofs

I first-order logic

I very well suited to work with data structures and algorithms in the first
layer

Isabelle/HOL or Coq

I higher-order logic

I without direct relation with Common Lisp

I useful to model and verify the Kenzo data structures and algorithms in
both layers

J. Aransay, C. Doḿınguez (Univ. La Rioja) MAP 2009 6 / 41



Different theorem provers or proof assistants

ACL2

I extension of a sub-language of Common Lisp and an environment to
produce proofs

I first-order logic

I very well suited to work with data structures and algorithms in the first
layer

Isabelle/HOL or Coq

I higher-order logic

I without direct relation with Common Lisp

I useful to model and verify the Kenzo data structures and algorithms in
both layers

J. Aransay, C. Doḿınguez (Univ. La Rioja) MAP 2009 6 / 41



Different theorem provers or proof assistants

ACL2

I extension of a sub-language of Common Lisp and an environment to
produce proofs

I first-order logic

I very well suited to work with data structures and algorithms in the first
layer

Isabelle/HOL or Coq

I higher-order logic

I without direct relation with Common Lisp

I useful to model and verify the Kenzo data structures and algorithms in
both layers

J. Aransay, C. Doḿınguez (Univ. La Rioja) MAP 2009 6 / 41



Different theorem provers or proof assistants

ACL2

I extension of a sub-language of Common Lisp and an environment to
produce proofs

I first-order logic

I very well suited to work with data structures and algorithms in the first
layer

Isabelle/HOL or Coq

I higher-order logic

I without direct relation with Common Lisp

I useful to model and verify the Kenzo data structures and algorithms in
both layers

J. Aransay, C. Doḿınguez (Univ. La Rioja) MAP 2009 6 / 41



Different theorem provers or proof assistants

ACL2

I extension of a sub-language of Common Lisp and an environment to
produce proofs

I first-order logic

I very well suited to work with data structures and algorithms in the first
layer

Isabelle/HOL or Coq

I higher-order logic

I without direct relation with Common Lisp

I useful to model and verify the Kenzo data structures and algorithms in
both layers

J. Aransay, C. Doḿınguez (Univ. La Rioja) MAP 2009 6 / 41



Different theorem provers or proof assistants

ACL2

I extension of a sub-language of Common Lisp and an environment to
produce proofs

I first-order logic

I very well suited to work with data structures and algorithms in the first
layer

Isabelle/HOL or Coq

I higher-order logic

I without direct relation with Common Lisp

I useful to model and verify the Kenzo data structures and algorithms in
both layers

J. Aransay, C. Doḿınguez (Univ. La Rioja) MAP 2009 6 / 41



Different theorem provers or proof assistants

ACL2

I extension of a sub-language of Common Lisp and an environment to
produce proofs

I first-order logic

I very well suited to work with data structures and algorithms in the first
layer

Isabelle/HOL or Coq

I higher-order logic

I without direct relation with Common Lisp

I useful to model and verify the Kenzo data structures and algorithms in
both layers

J. Aransay, C. Doḿınguez (Univ. La Rioja) MAP 2009 6 / 41



Different theorem provers or proof assistants

ACL2

I extension of a sub-language of Common Lisp and an environment to
produce proofs

I first-order logic

I very well suited to work with data structures and algorithms in the first
layer

Isabelle/HOL or Coq

I higher-order logic

I without direct relation with Common Lisp

I useful to model and verify the Kenzo data structures and algorithms in
both layers

J. Aransay, C. Doḿınguez (Univ. La Rioja) MAP 2009 6 / 41



Some preliminary results

Formal proof in ACL2 of data structures and algorithms in the first
data layer as the Combination addition lemma

Representation of non-graded algebraic structures in Isabelle/HOL
and Coq

Formal proof of a Kenzo’s crucial lemma (the Basic Perturbation
Lemma, or BPL) in Isabelle/HOL (for non-graded structures)

Goals

1 To represent first data layer structures and prove some algorithms
with them in Isabelle/HOL and Coq

2 To provide a suitable implementation of graded structures

3 To implement instances of these structures and to prove some
significant results with them

4 To compare the capabilities and styles of the systems

J. Aransay, C. Doḿınguez (Univ. La Rioja) MAP 2009 7 / 41



Some preliminary results

Formal proof in ACL2 of data structures and algorithms in the first
data layer as the Combination addition lemma

Representation of non-graded algebraic structures in Isabelle/HOL
and Coq

Formal proof of a Kenzo’s crucial lemma (the Basic Perturbation
Lemma, or BPL) in Isabelle/HOL (for non-graded structures)

Goals

1 To represent first data layer structures and prove some algorithms
with them in Isabelle/HOL and Coq

2 To provide a suitable implementation of graded structures

3 To implement instances of these structures and to prove some
significant results with them

4 To compare the capabilities and styles of the systems

J. Aransay, C. Doḿınguez (Univ. La Rioja) MAP 2009 7 / 41



Some preliminary results

Formal proof in ACL2 of data structures and algorithms in the first
data layer as the Combination addition lemma

Representation of non-graded algebraic structures in Isabelle/HOL
and Coq

Formal proof of a Kenzo’s crucial lemma (the Basic Perturbation
Lemma, or BPL) in Isabelle/HOL (for non-graded structures)

Goals

1 To represent first data layer structures and prove some algorithms
with them in Isabelle/HOL and Coq

2 To provide a suitable implementation of graded structures

3 To implement instances of these structures and to prove some
significant results with them

4 To compare the capabilities and styles of the systems

J. Aransay, C. Doḿınguez (Univ. La Rioja) MAP 2009 7 / 41



Some preliminary results

Formal proof in ACL2 of data structures and algorithms in the first
data layer as the Combination addition lemma

Representation of non-graded algebraic structures in Isabelle/HOL
and Coq

Formal proof of a Kenzo’s crucial lemma (the Basic Perturbation
Lemma, or BPL) in Isabelle/HOL (for non-graded structures)

Goals
1 To represent first data layer structures and prove some algorithms

with them in Isabelle/HOL and Coq

2 To provide a suitable implementation of graded structures

3 To implement instances of these structures and to prove some
significant results with them

4 To compare the capabilities and styles of the systems

J. Aransay, C. Doḿınguez (Univ. La Rioja) MAP 2009 7 / 41



Some preliminary results

Formal proof in ACL2 of data structures and algorithms in the first
data layer as the Combination addition lemma

Representation of non-graded algebraic structures in Isabelle/HOL
and Coq

Formal proof of a Kenzo’s crucial lemma (the Basic Perturbation
Lemma, or BPL) in Isabelle/HOL (for non-graded structures)

Goals
1 To represent first data layer structures and prove some algorithms

with them in Isabelle/HOL and Coq

2 To provide a suitable implementation of graded structures

3 To implement instances of these structures and to prove some
significant results with them

4 To compare the capabilities and styles of the systems

J. Aransay, C. Doḿınguez (Univ. La Rioja) MAP 2009 7 / 41



Some preliminary results

Formal proof in ACL2 of data structures and algorithms in the first
data layer as the Combination addition lemma

Representation of non-graded algebraic structures in Isabelle/HOL
and Coq

Formal proof of a Kenzo’s crucial lemma (the Basic Perturbation
Lemma, or BPL) in Isabelle/HOL (for non-graded structures)

Goals
1 To represent first data layer structures and prove some algorithms

with them in Isabelle/HOL and Coq

2 To provide a suitable implementation of graded structures

3 To implement instances of these structures and to prove some
significant results with them

4 To compare the capabilities and styles of the systems

J. Aransay, C. Doḿınguez (Univ. La Rioja) MAP 2009 7 / 41



Some preliminary results

Formal proof in ACL2 of data structures and algorithms in the first
data layer as the Combination addition lemma

Representation of non-graded algebraic structures in Isabelle/HOL
and Coq

Formal proof of a Kenzo’s crucial lemma (the Basic Perturbation
Lemma, or BPL) in Isabelle/HOL (for non-graded structures)

Goals
1 To represent first data layer structures and prove some algorithms

with them in Isabelle/HOL and Coq

2 To provide a suitable implementation of graded structures

3 To implement instances of these structures and to prove some
significant results with them

4 To compare the capabilities and styles of the systems

J. Aransay, C. Doḿınguez (Univ. La Rioja) MAP 2009 7 / 41



1 Introduction

2 First layer of data structures and algorithms
Implementation in Isabelle/HOL
Implementation in Coq
Comparison of both approaches

3 Second layer of data structures and algorithms
Implementation in Isabelle/HOL
Implementation in Coq
Comparison of both approaches

4 Merging both data layers

5 Conclusions and further work

J. Aransay, C. Doḿınguez (Univ. La Rioja) MAP 2009 8 / 41



Basic algebraic structure

Definition

A free abelian group (M,+) is an abelian group in which each element in
M can be written as a finite linear combination of elements of a set G
called the generators

Second layer implementation:

Definition

A free abelian group as a CLOS
class with functional elements as
slots.

First layer implementation:

Definition

A combination as a list of pairs
(integer, generator) called terms.
Besides, the list of pairs is sorted in
order to speed up the execution.

J. Aransay, C. Doḿınguez (Univ. La Rioja) MAP 2009 9 / 41



Basic algebraic structure

Definition

A free abelian group (M,+) is an abelian group in which each element in
M can be written as a finite linear combination of elements of a set G
called the generators

Second layer implementation:

Definition

A free abelian group as a CLOS
class with functional elements as
slots.

First layer implementation:

Definition

A combination as a list of pairs
(integer, generator) called terms.
Besides, the list of pairs is sorted in
order to speed up the execution.

J. Aransay, C. Doḿınguez (Univ. La Rioja) MAP 2009 9 / 41



Basic algebraic structure

Definition

A free abelian group (M,+) is an abelian group in which each element in
M can be written as a finite linear combination of elements of a set G
called the generators

Second layer implementation:

Definition

A free abelian group as a CLOS
class with functional elements as
slots.

First layer implementation:

Definition

A combination as a list of pairs
(integer, generator) called terms.
Besides, the list of pairs is sorted in
order to speed up the execution.

J. Aransay, C. Doḿınguez (Univ. La Rioja) MAP 2009 9 / 41



Algorithm in the first layer

Two different methods can be proposed to add (sorted) combinations

I To append and then sort

I To add each term in the first combination in the corresponding position
of the second combination

Combination addition lemma

Both methods are equivalent

J. Aransay, C. Doḿınguez (Univ. La Rioja) MAP 2009 10 / 41



Algorithm in the first layer

Two different methods can be proposed to add (sorted) combinations

I To append and then sort

I To add each term in the first combination in the corresponding position
of the second combination

Combination addition lemma

Both methods are equivalent

J. Aransay, C. Doḿınguez (Univ. La Rioja) MAP 2009 10 / 41



Implementation in Isabelle/HOL

Isabelle/HOL is an implementation of Higher-Order logic.

The type system is rather simple and contains:

1 Type variables (α, β, . . . )

2 Arrow types or functions (α⇒ β)

3 Pairs (α× β) (and thus labelled products, or records)

These constructors will be the ones used to represent both first and second
layer structures as list or chain complexes and their morphisms.

J. Aransay, C. Doḿınguez (Univ. La Rioja) MAP 2009 11 / 41



Implementation in Isabelle/HOL

Isabelle/HOL is an implementation of Higher-Order logic.

The type system is rather simple and contains:

1 Type variables (α, β, . . . )

2 Arrow types or functions (α⇒ β)

3 Pairs (α× β) (and thus labelled products, or records)

These constructors will be the ones used to represent both first and second
layer structures as list or chain complexes and their morphisms.

J. Aransay, C. Doḿınguez (Univ. La Rioja) MAP 2009 11 / 41



First layer data structures implementation in Isabelle/HOL

A type class containing types with a strict total order is defined.

Type class declaration

class order =

fixes order_rel:: "’a ⇒ ’a ⇒ bool" (infixl "�" 60)

assumes total: "a = b ∨ a � b ∨ b � a"

and transitive: "a � b ∧ b � c =⇒ a � c"

and irreflexive: "¬ a � a"

Type declaration for terms, list of terms, and combinations

types ’a pair = "(int × ’a)"

types ’a lot = "(’a pair) list"

fun cmbn :: "’a::order lot ⇒ bool" where
"cmbn [] = True" |

"cmbn [x] = (fst x 6= (0::int))" |

"cmbn (x#y#z) = (fst x 6= 0 ∧ snd x � snd y ∧ cmbn (y # z))"

J. Aransay, C. Doḿınguez (Univ. La Rioja) MAP 2009 12 / 41



First layer data structures implementation in Isabelle/HOL

A type class containing types with a strict total order is defined.

Type class declaration

class order =

fixes order_rel:: "’a ⇒ ’a ⇒ bool" (infixl "�" 60)

assumes total: "a = b ∨ a � b ∨ b � a"

and transitive: "a � b ∧ b � c =⇒ a � c"

and irreflexive: "¬ a � a"

Type declaration for terms, list of terms, and combinations

types ’a pair = "(int × ’a)"

types ’a lot = "(’a pair) list"

fun cmbn :: "’a::order lot ⇒ bool" where
"cmbn [] = True" |

"cmbn [x] = (fst x 6= (0::int))" |

"cmbn (x#y#z) = (fst x 6= 0 ∧ snd x � snd y ∧ cmbn (y # z))"

J. Aransay, C. Doḿınguez (Univ. La Rioja) MAP 2009 12 / 41



First layer algorithms in Isabelle/HOL
Algorithms by recursion on the structures.

Sorting lists of terms

fun c_f ::

"(’a::order) lot ⇒ ’a lot"

where
"c_f [] = []" |

"c_f (x # y) =

(if (fst x = 0) then c_f y

else x [+] (c_f y))"

Addition of lists of terms
fun a2c ::

"’a lot ⇒ ’a lot ⇒ ’a lot"

where
"a2c [] l2 = l2" |

"a2c (x#l) l2 = x[+](a2c l l2)"

with [+] recursive function adding a term to a sorted list.

Combination addition lemma
theorem assumes cmbn l1 and cmbn l2

shows a2c l1 l2 = c_f (l1@l2)

Proof.

By induction on the l1 structure.

J. Aransay, C. Doḿınguez (Univ. La Rioja) MAP 2009 13 / 41



First layer algorithms in Isabelle/HOL
Algorithms by recursion on the structures.

Sorting lists of terms

fun c_f ::

"(’a::order) lot ⇒ ’a lot"

where
"c_f [] = []" |

"c_f (x # y) =

(if (fst x = 0) then c_f y

else x [+] (c_f y))"

Addition of lists of terms
fun a2c ::

"’a lot ⇒ ’a lot ⇒ ’a lot"

where
"a2c [] l2 = l2" |

"a2c (x#l) l2 = x[+](a2c l l2)"

with [+] recursive function adding a term to a sorted list.

Combination addition lemma
theorem assumes cmbn l1 and cmbn l2

shows a2c l1 l2 = c_f (l1@l2)

Proof.

By induction on the l1 structure.

J. Aransay, C. Doḿınguez (Univ. La Rioja) MAP 2009 13 / 41



First layer algorithms in Isabelle/HOL
Algorithms by recursion on the structures.

Sorting lists of terms

fun c_f ::

"(’a::order) lot ⇒ ’a lot"

where
"c_f [] = []" |

"c_f (x # y) =

(if (fst x = 0) then c_f y

else x [+] (c_f y))"

Addition of lists of terms
fun a2c ::

"’a lot ⇒ ’a lot ⇒ ’a lot"

where
"a2c [] l2 = l2" |

"a2c (x#l) l2 = x[+](a2c l l2)"

with [+] recursive function adding a term to a sorted list.

Combination addition lemma
theorem assumes cmbn l1 and cmbn l2

shows a2c l1 l2 = c_f (l1@l2)

Proof.

By induction on the l1 structure.
J. Aransay, C. Doḿınguez (Univ. La Rioja) MAP 2009 13 / 41



Implementation in Coq

Coq is based on a variation of typed λ-calculus called Calculus of Inductive
Constructions

The type system is richer than the one in Isabelle/HOL

For instance, dependent types can be defined

J. Aransay, C. Doḿınguez (Univ. La Rioja) MAP 2009 14 / 41



Implementation in Coq

Coq is based on a variation of typed λ-calculus called Calculus of Inductive
Constructions

The type system is richer than the one in Isabelle/HOL

For instance, dependent types can be defined

J. Aransay, C. Doḿınguez (Univ. La Rioja) MAP 2009 14 / 41



First layer data structures implementation in Coq
First layer structures are defined using inductive types.

A type with a strict total order can be declared
Record strict total order: Type:=

{A:> Set;

Alt: A -> A -> Prop;

Alt irreflexive: forall x:A, not(Alt x x);

Alt transitive: forall x y z:A, Alt x y -> Alt y z -> Alt x z;

Alt total: forall x y:A, {Alt x y}+{Alt y x}+{x = y}}.

Inductive types for terms, list of terms, and combinations
Inductive term: Set:= term cons: forall x:Z, x<>0->A->term.

Definition lot:= list(term).

Inductive cmbn: lot->Prop:=

| null cmbn: cmbn(nil)

| cons cmbn1: forall t:term, cmbn(t::nil)

| cons cmbn2: forall (t1 t2 :term) (l:list(term)),

(let (a,p1,b):= t1 in let (c,p2,d):= t2 in

(Alt d b))->cmbn((t1::l))->cmbn((t2::(t1::l))).

J. Aransay, C. Doḿınguez (Univ. La Rioja) MAP 2009 15 / 41



First layer data structures implementation in Coq
First layer structures are defined using inductive types.

A type with a strict total order can be declared
Record strict total order: Type:=

{A:> Set;

Alt: A -> A -> Prop;

Alt irreflexive: forall x:A, not(Alt x x);

Alt transitive: forall x y z:A, Alt x y -> Alt y z -> Alt x z;

Alt total: forall x y:A, {Alt x y}+{Alt y x}+{x = y}}.

Inductive types for terms, list of terms, and combinations
Inductive term: Set:= term cons: forall x:Z, x<>0->A->term.

Definition lot:= list(term).

Inductive cmbn: lot->Prop:=

| null cmbn: cmbn(nil)

| cons cmbn1: forall t:term, cmbn(t::nil)

| cons cmbn2: forall (t1 t2 :term) (l:list(term)),

(let (a,p1,b):= t1 in let (c,p2,d):= t2 in

(Alt d b))->cmbn((t1::l))->cmbn((t2::(t1::l))).

J. Aransay, C. Doḿınguez (Univ. La Rioja) MAP 2009 15 / 41



First layer algorithms in Coq
Algorithms by recursion on the structures.

Sorting list of terms

Fixpoint c f(l:lot):lot:=
match l with
|null => null
|t::l’ => (add t (c f l’))

end.

Addition of lists of terms

Fixpoint a2c(l1 l2:lot){struct l1}:
lot:=
match l1 with
|null => l2
|t::l => (add t (a2c l l2))

end.

with add recursive function adding a term to a ordered list.

Combination addition lemma
Lemma a2c equivalence: forall (l1 l2:lot), cmbn(l1)->cmbn(l2)->

(a2c l1 l2) = (c f (app l1 l2)).

Proof.
By induction on the cmbn(l1) structure.

J. Aransay, C. Doḿınguez (Univ. La Rioja) MAP 2009 16 / 41



First layer algorithms in Coq
Algorithms by recursion on the structures.

Sorting list of terms

Fixpoint c f(l:lot):lot:=
match l with
|null => null
|t::l’ => (add t (c f l’))

end.

Addition of lists of terms

Fixpoint a2c(l1 l2:lot){struct l1}:
lot:=
match l1 with
|null => l2
|t::l => (add t (a2c l l2))

end.

with add recursive function adding a term to a ordered list.

Combination addition lemma
Lemma a2c equivalence: forall (l1 l2:lot), cmbn(l1)->cmbn(l2)->

(a2c l1 l2) = (c f (app l1 l2)).

Proof.
By induction on the cmbn(l1) structure.

J. Aransay, C. Doḿınguez (Univ. La Rioja) MAP 2009 16 / 41



First layer algorithms in Coq
Algorithms by recursion on the structures.

Sorting list of terms

Fixpoint c f(l:lot):lot:=
match l with
|null => null
|t::l’ => (add t (c f l’))

end.

Addition of lists of terms

Fixpoint a2c(l1 l2:lot){struct l1}:
lot:=
match l1 with
|null => l2
|t::l => (add t (a2c l l2))

end.

with add recursive function adding a term to a ordered list.

Combination addition lemma
Lemma a2c equivalence: forall (l1 l2:lot), cmbn(l1)->cmbn(l2)->

(a2c l1 l2) = (c f (app l1 l2)).

Proof.
By induction on the cmbn(l1) structure.

J. Aransay, C. Doḿınguez (Univ. La Rioja) MAP 2009 16 / 41



Comparison of both approaches

Representation of first data layer

Both systems provide suitable frameworks to implement first data
layer structures and algorithms.

They include explicit libraries, and induction and recursion
mechanisms to obtain direct implementations.

Differences in their underlying logic appear. For instance, to represent
generators and strict total order:

I Isabelle: type classes with type variables (’a), predicates (bool), and
classes (class)

I Coq: sorts Set and Prop and dependent types

Algorithms in the first data layer

Proof by induction in both systems in an interactive way using the already
built-in tactics.

J. Aransay, C. Doḿınguez (Univ. La Rioja) MAP 2009 17 / 41



Comparison of both approaches

Representation of first data layer

Both systems provide suitable frameworks to implement first data
layer structures and algorithms.

They include explicit libraries, and induction and recursion
mechanisms to obtain direct implementations.

Differences in their underlying logic appear. For instance, to represent
generators and strict total order:

I Isabelle: type classes with type variables (’a), predicates (bool), and
classes (class)

I Coq: sorts Set and Prop and dependent types

Algorithms in the first data layer

Proof by induction in both systems in an interactive way using the already
built-in tactics.

J. Aransay, C. Doḿınguez (Univ. La Rioja) MAP 2009 17 / 41



Comparison of both approaches

Representation of first data layer

Both systems provide suitable frameworks to implement first data
layer structures and algorithms.

They include explicit libraries, and induction and recursion
mechanisms to obtain direct implementations.

Differences in their underlying logic appear. For instance, to represent
generators and strict total order:

I Isabelle: type classes with type variables (’a), predicates (bool), and
classes (class)

I Coq: sorts Set and Prop and dependent types

Algorithms in the first data layer

Proof by induction in both systems in an interactive way using the already
built-in tactics.

J. Aransay, C. Doḿınguez (Univ. La Rioja) MAP 2009 17 / 41



Comparison of both approaches

Representation of first data layer

Both systems provide suitable frameworks to implement first data
layer structures and algorithms.

They include explicit libraries, and induction and recursion
mechanisms to obtain direct implementations.

Differences in their underlying logic appear. For instance, to represent
generators and strict total order:

I Isabelle: type classes with type variables (’a), predicates (bool), and
classes (class)

I Coq: sorts Set and Prop and dependent types

Algorithms in the first data layer

Proof by induction in both systems in an interactive way using the already
built-in tactics.

J. Aransay, C. Doḿınguez (Univ. La Rioja) MAP 2009 17 / 41



1 Introduction

2 First layer of data structures and algorithms
Implementation in Isabelle/HOL
Implementation in Coq
Comparison of both approaches

3 Second layer of data structures and algorithms
Implementation in Isabelle/HOL
Implementation in Coq
Comparison of both approaches

4 Merging both data layers

5 Conclusions and further work

J. Aransay, C. Doḿınguez (Univ. La Rioja) MAP 2009 18 / 41



Algebraic structures

Non graded structures:

Definition

A left R-module over the ring R
consists of an abelian group (M,+)
and an operation · : R ×M → M
such that for all r , s ∈ R, x , y ∈ M,
we have

1 r · (x + y) = r · x + r · y
2 (r +R s) · x = r · x + s · x
3 (r ·R s) · x = r · (s · x)

4 1R · x = x

Graded structures:

Definition

A graded left R-module over the
ring R consists of a family of
abelian groups (Mn,+n)n∈Z and
operations ·n : R ×Mn → Mn

such that for all n ∈ Z, Mn is a
left R-module

J. Aransay, C. Doḿınguez (Univ. La Rioja) MAP 2009 19 / 41



Algebraic structures

Non graded structures:

Definition

A left R-module over the ring R
consists of an abelian group (M,+)
and an operation · : R ×M → M
such that for all r , s ∈ R, x , y ∈ M,
we have

1 r · (x + y) = r · x + r · y
2 (r +R s) · x = r · x + s · x
3 (r ·R s) · x = r · (s · x)

4 1R · x = x

Graded structures:

Definition

A graded left R-module over the
ring R consists of a family of
abelian groups (Mn,+n)n∈Z and
operations ·n : R ×Mn → Mn

such that for all n ∈ Z, Mn is a
left R-module

J. Aransay, C. Doḿınguez (Univ. La Rioja) MAP 2009 19 / 41



Differential algebraic structures

Non graded structures:

Definition

A differential d over a left R-module
M is an endomorphism of M such
that it verifies the nilpotency
condition, i.e., d ◦ d = 0

Graded structures:

Definition

A differential {dn}n∈Z of degree
−1 over a graded left R-module
is a family of R-module
morphisms dn : Mn → Mn−1 such
that, for all n ∈ Z,
d(n−1) ◦ dn = 0Hom Mn Mn−2

J. Aransay, C. Doḿınguez (Univ. La Rioja) MAP 2009 20 / 41



Differential algebraic structures

Non graded structures:

Definition

A differential d over a left R-module
M is an endomorphism of M such
that it verifies the nilpotency
condition, i.e., d ◦ d = 0

Graded structures:

Definition

A differential {dn}n∈Z of degree
−1 over a graded left R-module
is a family of R-module
morphisms dn : Mn → Mn−1 such
that, for all n ∈ Z,
d(n−1) ◦ dn = 0Hom Mn Mn−2

J. Aransay, C. Doḿınguez (Univ. La Rioja) MAP 2009 20 / 41



Differential algebraic structures

Non graded structures:

Definition

A differential left R-module
(M, d) is a left R-module M
together with a differential d of
M

Graded structures:

Definition

A chain complex {Mn, dn}n∈Z is a
pair of a graded left R-module
{Mn}n∈Z together with a graded
differential {dn}n∈Z of degree −1

J. Aransay, C. Doḿınguez (Univ. La Rioja) MAP 2009 21 / 41



Differential algebraic structures

Non graded structures:

Definition

A differential left R-module
(M, d) is a left R-module M
together with a differential d of
M

Graded structures:

Definition

A chain complex {Mn, dn}n∈Z is a
pair of a graded left R-module
{Mn}n∈Z together with a graded
differential {dn}n∈Z of degree −1

J. Aransay, C. Doḿınguez (Univ. La Rioja) MAP 2009 21 / 41



Morphisms of differential algebraic structures

Non graded structures:

Definition

A morphism between two
differential left R-modules (M, d)
and (M ′, d ′) is a morphism of the
modules such that f ◦ d = d ′ ◦ f

Graded structures:

Definition

A chain complex morphism of degree
+1 between two chain complexes
{(Mn, dn)}n∈Z and {(M ′n, d

′
n)}n∈Z is

a family of morphisms {fn}n∈Z, such
that, for all n ∈ Z, fn : Mn → M ′(n+1)
is a morphism and
fn−1 ◦ dn = d ′n+1 ◦ fn

J. Aransay, C. Doḿınguez (Univ. La Rioja) MAP 2009 22 / 41



Morphisms of differential algebraic structures

Non graded structures:

Definition

A morphism between two
differential left R-modules (M, d)
and (M ′, d ′) is a morphism of the
modules such that f ◦ d = d ′ ◦ f

Graded structures:

Definition

A chain complex morphism of degree
+1 between two chain complexes
{(Mn, dn)}n∈Z and {(M ′n, d

′
n)}n∈Z is

a family of morphisms {fn}n∈Z, such
that, for all n ∈ Z, fn : Mn → M ′(n+1)
is a morphism and
fn−1 ◦ dn = d ′n+1 ◦ fn

J. Aransay, C. Doḿınguez (Univ. La Rioja) MAP 2009 22 / 41



Algorithm in the second layer

Trivial Perturbation Lemma

Let ρ = (D,C , f , g , h) be a reduction (i.e., D, C chain complexes and f ,
g , h chain complexes morphisms verifying some known properties), and δ
a perturbation of dC (i.e., a chain complex morphism defined over C of
degree −1 such that (dC + δ) ◦ (dC + δ) = 0). Then a new reduction
ρ′ = (D ′,C ′, f ′, g ′, h′) is defined where:

D ′ is the chain complex obtained from D where dD′ = dD + gδf

C ′ is the chain complex obtained from C where dC ′ = dC + δ

f ′ = f , g ′ = g and h′ = h

J. Aransay, C. Doḿınguez (Univ. La Rioja) MAP 2009 23 / 41



Implementation in Isabelle/HOL

First we provide a type definition and specification for non graded
structures (for instance, a module):

Type definition

record (α, β) module = α ring +
smult :: α⇒ β ⇒ β (infixl · 70)

Specification

module R M = cring R + abelian group M
(∀a.∀m. a ·M m ∈ carrier M) +
(∀a b.∀x . (a + b) ·M x = a ·M x + b ·M x) +
(∀a.∀x y . a ·M (x +M y) = a ·M x +M a ·M y) +
(∀a b.∀x . (a× b) ·M x = a ·M (b ·M x)) +
(∀x . 1 ·M x = x)

J. Aransay, C. Doḿınguez (Univ. La Rioja) MAP 2009 24 / 41



Implementation in Isabelle/HOL

First we provide a type definition and specification for non graded
structures (for instance, a module):

Type definition

record (α, β) module = α ring +
smult :: α⇒ β ⇒ β (infixl · 70)

Specification

module R M = cring R + abelian group M
(∀a.∀m. a ·M m ∈ carrier M) +
(∀a b.∀x . (a + b) ·M x = a ·M x + b ·M x) +
(∀a.∀x y . a ·M (x +M y) = a ·M x +M a ·M y) +
(∀a b.∀x . (a× b) ·M x = a ·M (b ·M x)) +
(∀x . 1 ·M x = x)

J. Aransay, C. Doḿınguez (Univ. La Rioja) MAP 2009 24 / 41



Implementation in Isabelle/HOL

Now, in order to implement a graded module over a ring R, we can use
the following type definition:

Graded module

definition graded module :: α ring ⇒ (int ⇒ (α, β) module) ⇒ bool

where graded module R f ≡ ∀n. module R (f n)

We use a function that, given a ring R, maps every integer to a R-module

We can also provide a definition for graded module morphisms

Graded module morphism (degree -1)

definition graded module hom ::
α ring ⇒ (int ⇒ (α, β) module) ⇒ (int ⇒ (α, δ) module) ⇒
(int ⇒ (β ⇒ δ)) ⇒ bool

where graded module hom R M M’ h
≡ ∀n. (h n) ∈ hom module R (M n) (M’ (n - 1))

J. Aransay, C. Doḿınguez (Univ. La Rioja) MAP 2009 25 / 41



Implementation in Isabelle/HOL

Now, in order to implement a graded module over a ring R, we can use
the following type definition:

Graded module

definition graded module :: α ring ⇒ (int ⇒ (α, β) module) ⇒ bool
where graded module R f ≡ ∀n. module R (f n)

We use a function that, given a ring R, maps every integer to a R-module

We can also provide a definition for graded module morphisms

Graded module morphism (degree -1)

definition graded module hom ::
α ring ⇒ (int ⇒ (α, β) module) ⇒ (int ⇒ (α, δ) module) ⇒
(int ⇒ (β ⇒ δ)) ⇒ bool

where graded module hom R M M’ h
≡ ∀n. (h n) ∈ hom module R (M n) (M’ (n - 1))

J. Aransay, C. Doḿınguez (Univ. La Rioja) MAP 2009 25 / 41



Implementation in Isabelle/HOL

Now, in order to implement a graded module over a ring R, we can use
the following type definition:

Graded module

definition graded module :: α ring ⇒ (int ⇒ (α, β) module) ⇒ bool
where graded module R f ≡ ∀n. module R (f n)

We use a function that, given a ring R, maps every integer to a R-module

We can also provide a definition for graded module morphisms

Graded module morphism (degree -1)

definition graded module hom ::
α ring ⇒ (int ⇒ (α, β) module) ⇒ (int ⇒ (α, δ) module) ⇒
(int ⇒ (β ⇒ δ)) ⇒ bool

where graded module hom R M M’ h
≡ ∀n. (h n) ∈ hom module R (M n) (M’ (n - 1))

J. Aransay, C. Doḿınguez (Univ. La Rioja) MAP 2009 25 / 41



Implementation in Isabelle/HOL

Now, in order to implement a graded module over a ring R, we can use
the following type definition:

Graded module

definition graded module :: α ring ⇒ (int ⇒ (α, β) module) ⇒ bool
where graded module R f ≡ ∀n. module R (f n)

We use a function that, given a ring R, maps every integer to a R-module

We can also provide a definition for graded module morphisms

Graded module morphism (degree -1)

definition graded module hom ::
α ring ⇒ (int ⇒ (α, β) module) ⇒ (int ⇒ (α, δ) module) ⇒
(int ⇒ (β ⇒ δ)) ⇒ bool

where graded module hom R M M’ h
≡ ∀n. (h n) ∈ hom module R (M n) (M’ (n - 1))

J. Aransay, C. Doḿınguez (Univ. La Rioja) MAP 2009 25 / 41



Implementation in Isabelle/HOL

Chain complexes can be implemented using similar structures:

Chain complex

definition chain complex ::
α ring ⇒ (int ⇒ (α, β) module) ⇒ (int ⇒ (β ⇒ β)) ⇒ bool

where chain complex R M diff ≡ graded module R M
∧ graded module hom R M M diff
∧ ∀n. (diff (n - 1) ◦ (diff n)) = λx .zeroM(n − 2)

J. Aransay, C. Doḿınguez (Univ. La Rioja) MAP 2009 26 / 41



Implementation in Coq

First we provide a type definition for non graded structures (for instance, a
module):

Type definition

Variable R : ring.

Record module : Type :=
{ crr :> abgroup;

mult : setoid bin op R crr crr;
dist mult:∀(a:R)(x y: crr),(mult a (x[+]y))[=] ((mult a x)[+](mult a y));
dist plus:∀ (a b:R)(x:crr), (mult (a[+]b) x)[=]((mult a x)[+](mult b x));
assoc mult:∀ (a b:R)(x:crr), (mult (a[∗]b) x)[=](mult a (mult b x));
unit mult:∀ x:crr, (mult One x)[=]x }.

J. Aransay, C. Doḿınguez (Univ. La Rioja) MAP 2009 27 / 41



Implementation in Coq

First we provide a type definition for non graded structures (for instance, a
module):

Type definition

Variable R : ring.

Record module : Type :=
{ crr :> abgroup;
mult : setoid bin op R crr crr;

dist mult:∀(a:R)(x y: crr),(mult a (x[+]y))[=] ((mult a x)[+](mult a y));
dist plus:∀ (a b:R)(x:crr), (mult (a[+]b) x)[=]((mult a x)[+](mult b x));
assoc mult:∀ (a b:R)(x:crr), (mult (a[∗]b) x)[=](mult a (mult b x));
unit mult:∀ x:crr, (mult One x)[=]x }.

J. Aransay, C. Doḿınguez (Univ. La Rioja) MAP 2009 27 / 41



Implementation in Coq

First we provide a type definition for non graded structures (for instance, a
module):

Type definition

Variable R : ring.

Record module : Type :=
{ crr :> abgroup;
mult : setoid bin op R crr crr;
dist mult:∀(a:R)(x y: crr),(mult a (x[+]y))[=] ((mult a x)[+](mult a y));
dist plus:∀ (a b:R)(x:crr), (mult (a[+]b) x)[=]((mult a x)[+](mult b x));
assoc mult:∀ (a b:R)(x:crr), (mult (a[∗]b) x)[=](mult a (mult b x));
unit mult:∀ x:crr, (mult One x)[=]x }.

J. Aransay, C. Doḿınguez (Univ. La Rioja) MAP 2009 27 / 41



Implementation in Coq

Now, in order to implement a graded module over a ring R, we can use
the following type definition:

Graded module

graded module := Z → module R

We use a function that maps every integer to a R-module

We can also provide a definition for graded module morphisms

Graded module morphism (degree −1)

Variables gm gm’: graded module

graded module hom := ∀i ∈ Z, module hom (gm i)(gm’ (i − 1))

J. Aransay, C. Doḿınguez (Univ. La Rioja) MAP 2009 28 / 41



Implementation in Coq

Now, in order to implement a graded module over a ring R, we can use
the following type definition:

Graded module

graded module := Z → module R

We use a function that maps every integer to a R-module

We can also provide a definition for graded module morphisms

Graded module morphism (degree −1)

Variables gm gm’: graded module

graded module hom := ∀i ∈ Z, module hom (gm i)(gm’ (i − 1))

J. Aransay, C. Doḿınguez (Univ. La Rioja) MAP 2009 28 / 41



Implementation in Coq

Chain complexes can be implemented using similar structures:

Chain complex

Record chain complex : Type :=
{ gm:> graded module R ;
diff: graded module hom gm gm;
nilp: ∀ i:Z, ∀ a:(gm i), ((diff(i-1)[oh]diff i) a)[=]

(mod hom zero (gm i) (gm ((i-1)-1)) a) }.

J. Aransay, C. Doḿınguez (Univ. La Rioja) MAP 2009 29 / 41



Comparison of both approaches

Representation of graded structures

Isabelle: explicit domains as sets (or predicates) over a same given
type β

Coq: structures as records with dependent types; different domains as
different types

Example

xn ∈ M(n), yn+1 ∈ M(n + 1), {xn +Mn yn+1} produces:

A well-typed expression in our Isabelle representation

A type error in Coq

J. Aransay, C. Doḿınguez (Univ. La Rioja) MAP 2009 30 / 41



Comparison of both approaches

Representation of graded structures

Isabelle: explicit domains as sets (or predicates) over a same given
type β

Coq: structures as records with dependent types; different domains as
different types

Example

xn ∈ M(n), yn+1 ∈ M(n + 1), {xn +Mn yn+1} produces:

A well-typed expression in our Isabelle representation

A type error in Coq

J. Aransay, C. Doḿınguez (Univ. La Rioja) MAP 2009 30 / 41



Comparison of both approaches

This can be sometimes a bit annoying in Coq:

diff(n+1)(fn xn) : M((n+1)−1) but notM(n)

Explicit type conversions are required in order to obtain the expected type

Conclusion

1 The richer Coq type theory allows to build precise specifications of
graded structures, but some type transformations have to be included.

2 Isabelle version is more flexible, but demands from the user to ensure
the correctness of the expressions provided to the system.

J. Aransay, C. Doḿınguez (Univ. La Rioja) MAP 2009 31 / 41



Comparison of both approaches

This can be sometimes a bit annoying in Coq:

diff(n+1)(fn xn) : M((n+1)−1) but notM(n)

Explicit type conversions are required in order to obtain the expected type

Conclusion
1 The richer Coq type theory allows to build precise specifications of

graded structures, but some type transformations have to be included.

2 Isabelle version is more flexible, but demands from the user to ensure
the correctness of the expressions provided to the system.

J. Aransay, C. Doḿınguez (Univ. La Rioja) MAP 2009 31 / 41



Comparison of both approaches

This can be sometimes a bit annoying in Coq:

diff(n+1)(fn xn) : M((n+1)−1) but notM(n)

Explicit type conversions are required in order to obtain the expected type

Conclusion
1 The richer Coq type theory allows to build precise specifications of

graded structures, but some type transformations have to be included.

2 Isabelle version is more flexible, but demands from the user to ensure
the correctness of the expressions provided to the system.

J. Aransay, C. Doḿınguez (Univ. La Rioja) MAP 2009 31 / 41



Soundness of the representation

Both in Isabelle and Coq we have been capable of providing (and proving)
the existence of structures according to our representation

Example

The graded module where ∀n ∈ Z, Mn = Z and the differentials dn∈Z = 0
form a chain complex

J. Aransay, C. Doḿınguez (Univ. La Rioja) MAP 2009 32 / 41



Soundness of the representation

Both in Isabelle and Coq we have been capable of providing (and proving)
the existence of structures according to our representation

Example

The graded module where ∀n ∈ Z, Mn = Z and the differentials dn∈Z = 0
form a chain complex

J. Aransay, C. Doḿınguez (Univ. La Rioja) MAP 2009 32 / 41



Usefulness of the representation

Both in Isabelle and Coq we have formally proved the Trivial Perturbation
Lemma, a simplified modification of the Basic Perturbation Lemma

Proof.

Based on rewriting on graded structures and reduction properties

J. Aransay, C. Doḿınguez (Univ. La Rioja) MAP 2009 33 / 41



Usefulness of the representation

Both in Isabelle and Coq we have formally proved the Trivial Perturbation
Lemma, a simplified modification of the Basic Perturbation Lemma

Proof.

Based on rewriting on graded structures and reduction properties

J. Aransay, C. Doḿınguez (Univ. La Rioja) MAP 2009 33 / 41



1 Introduction

2 First layer of data structures and algorithms
Implementation in Isabelle/HOL
Implementation in Coq
Comparison of both approaches

3 Second layer of data structures and algorithms
Implementation in Isabelle/HOL
Implementation in Coq
Comparison of both approaches

4 Merging both data layers

5 Conclusions and further work

J. Aransay, C. Doḿınguez (Univ. La Rioja) MAP 2009 34 / 41



Simplicial sets

A simplicial set K consists of a graded set {K q}q∈N, together with face
and degeneracy maps, ∂q

i : K q → K q−1, q > 0, i ≤ q and
ηq

i : K q → K q+1, q ≥ 0, i ≤ q such that:

1 ∂q−1
i ∂q

j = ∂q−1
j−1 ∂

q
i if i < j

2 ηq+1
i ηq

j = ηq+1
j+1 η

q
i if i ≤ j

3 ∂q+1
i ηq

j = ηq−1
j−1 ∂

q
i if i < j

4 ∂q+1
i ηq

j = id if i = j or i = j + 1

5 ∂q+1
i ηq

j = ηq−1
j ∂q

i−1 if i > j + 1

The elements of K q are called q-simplices. A q-simplex x is degenerated if
x = ηi y with y ∈ K q−1, 0 ≤ i < q; otherwise x is called non-degenerated.

J. Aransay, C. Doḿınguez (Univ. La Rioja) MAP 2009 35 / 41



Simplicial sets

A simplicial set K consists of a graded set {K q}q∈N, together with face
and degeneracy maps, ∂q

i : K q → K q−1, q > 0, i ≤ q and
ηq

i : K q → K q+1, q ≥ 0, i ≤ q such that:

1 ∂q−1
i ∂q

j = ∂q−1
j−1 ∂

q
i if i < j

2 ηq+1
i ηq

j = ηq+1
j+1 η

q
i if i ≤ j

3 ∂q+1
i ηq

j = ηq−1
j−1 ∂

q
i if i < j

4 ∂q+1
i ηq

j = id if i = j or i = j + 1

5 ∂q+1
i ηq

j = ηq−1
j ∂q

i−1 if i > j + 1

The elements of K q are called q-simplices. A q-simplex x is degenerated if
x = ηi y with y ∈ K q−1, 0 ≤ i < q; otherwise x is called non-degenerated.

J. Aransay, C. Doḿınguez (Univ. La Rioja) MAP 2009 35 / 41



Important example: universal simplicial set ∆

Contains the minimal number of identifications from the equalities

Any theorem proved on ∆, by using only these identities, will be also
true for any other simplicial set.
Can be represented by:

I A q-simplex is a list of elements of length q + 1.
I The face operator ∂i deletes the i-th element of the list
I The degeneracy operator ηi repeats the i-th element of the list.

Lemma. Second layer

The universal simplicial set ∆ is a simplicial set.

Canonical representation lemma. First layer

Any simplex l in ∆ admits a unique representation as a pair of lists (dl , l ′)
where dl a strictly increasing degeneracy list and l ′ is a list without two
equal consecutive elements.

Example: ((3, 5, 6), (k , t, r , t, l ,m)) represents (k, t, r , r , t, t, t, l ,m).

J. Aransay, C. Doḿınguez (Univ. La Rioja) MAP 2009 36 / 41



Important example: universal simplicial set ∆

Contains the minimal number of identifications from the equalities

Any theorem proved on ∆, by using only these identities, will be also
true for any other simplicial set.

Can be represented by:
I A q-simplex is a list of elements of length q + 1.
I The face operator ∂i deletes the i-th element of the list
I The degeneracy operator ηi repeats the i-th element of the list.

Lemma. Second layer

The universal simplicial set ∆ is a simplicial set.

Canonical representation lemma. First layer

Any simplex l in ∆ admits a unique representation as a pair of lists (dl , l ′)
where dl a strictly increasing degeneracy list and l ′ is a list without two
equal consecutive elements.

Example: ((3, 5, 6), (k , t, r , t, l ,m)) represents (k, t, r , r , t, t, t, l ,m).

J. Aransay, C. Doḿınguez (Univ. La Rioja) MAP 2009 36 / 41



Important example: universal simplicial set ∆

Contains the minimal number of identifications from the equalities

Any theorem proved on ∆, by using only these identities, will be also
true for any other simplicial set.
Can be represented by:

I A q-simplex is a list of elements of length q + 1.
I The face operator ∂i deletes the i-th element of the list
I The degeneracy operator ηi repeats the i-th element of the list.

Lemma. Second layer

The universal simplicial set ∆ is a simplicial set.

Canonical representation lemma. First layer

Any simplex l in ∆ admits a unique representation as a pair of lists (dl , l ′)
where dl a strictly increasing degeneracy list and l ′ is a list without two
equal consecutive elements.

Example: ((3, 5, 6), (k , t, r , t, l ,m)) represents (k, t, r , r , t, t, t, l ,m).

J. Aransay, C. Doḿınguez (Univ. La Rioja) MAP 2009 36 / 41



Important example: universal simplicial set ∆

Contains the minimal number of identifications from the equalities

Any theorem proved on ∆, by using only these identities, will be also
true for any other simplicial set.
Can be represented by:

I A q-simplex is a list of elements of length q + 1.
I The face operator ∂i deletes the i-th element of the list
I The degeneracy operator ηi repeats the i-th element of the list.

Lemma. Second layer

The universal simplicial set ∆ is a simplicial set.

Canonical representation lemma. First layer

Any simplex l in ∆ admits a unique representation as a pair of lists (dl , l ′)
where dl a strictly increasing degeneracy list and l ′ is a list without two
equal consecutive elements.

Example: ((3, 5, 6), (k , t, r , t, l ,m)) represents (k, t, r , r , t, t, t, l ,m).

J. Aransay, C. Doḿınguez (Univ. La Rioja) MAP 2009 36 / 41



Important example: universal simplicial set ∆

Contains the minimal number of identifications from the equalities

Any theorem proved on ∆, by using only these identities, will be also
true for any other simplicial set.
Can be represented by:

I A q-simplex is a list of elements of length q + 1.
I The face operator ∂i deletes the i-th element of the list
I The degeneracy operator ηi repeats the i-th element of the list.

Lemma. Second layer

The universal simplicial set ∆ is a simplicial set.

Canonical representation lemma. First layer

Any simplex l in ∆ admits a unique representation as a pair of lists (dl , l ′)
where dl a strictly increasing degeneracy list and l ′ is a list without two
equal consecutive elements.

Example: ((3, 5, 6), (k , t, r , t, l ,m)) represents (k, t, r , r , t, t, t, l ,m).
J. Aransay, C. Doḿınguez (Univ. La Rioja) MAP 2009 36 / 41



Simplicial set implementation in Isabelle and Coq

Isabelle

Coq
Record SimplicialSet: Type:=

{K:> nat -> Type;

Face: forall (q:nat)(i:nat), q>0 -> i<=q -> K q -> K (q-1);

Deg: forall (q:nat)(i:nat), i<=q -> K q -> K (S q);

eq1: forall(q i j:nat)(a:GS q)(p:i<j)(q:j<=q)(k:(q-1)>0),

Face(q:=q-1)(i:=i) k (le tra’ p q)(Face(q:=q)(i:=j)(cS q k) q a)=

Face(q:=q-1)(i:=j-1) k (le traS q)(Face(q:=q)(i:=i)(cS q k)(le tra p q)a)

...}.

J. Aransay, C. Doḿınguez (Univ. La Rioja) MAP 2009 37 / 41



Universal simplicial set implementation in Isabelle and Coq

Isabelle Coq
Variable A : Type.

Let ListA :=list A.

Let ListN:= list nat.

Fixpoint deg(i:nat)(l:ListA)

{struct l}: ListA:=

match i, l with

| , nil => nil

|O, x :: l’ => x::x::l’

|S n, x :: l’ => x::deg n l’

end.

Lemma deg permut: forall (a b:nat)(l:ListA),

a<=b -> b<(length l)

-> deg a (deg b l) = deg (S b)(deg a l).

Proof.

double induction a b.

intro l; case l; simpl; trivial.

intros n H l; case l; case n; simpl; trivial.

intros n b0 l H; inversion H.

intros n H n0 H0 l H1 H2; induction l.

inversion H2.

simpl; rewrite H0; auto with arith.

Qed.

J. Aransay, C. Doḿınguez (Univ. La Rioja) MAP 2009 38 / 41



Canonical representation lemma in Isabelle and Coq

Isabelle Coq
Lemma existence:

forall l:ListA,

(canonical (generate l)) ∧
(degenerate (generate l))=l.

Lemma uniqueness: forall (l1 l2:ListNxListA)

(l:ListA), canonical l1 -> canonical l2 ->

(degenerate l1)=l -> (degenerate l2)=l ->

l1 = l2

Proof.
Using induction on the lists structure and rewriting on the equalities

J. Aransay, C. Doḿınguez (Univ. La Rioja) MAP 2009 39 / 41



Canonical representation lemma in Isabelle and Coq

Isabelle Coq
Lemma existence:

forall l:ListA,

(canonical (generate l)) ∧
(degenerate (generate l))=l.

Lemma uniqueness: forall (l1 l2:ListNxListA)

(l:ListA), canonical l1 -> canonical l2 ->

(degenerate l1)=l -> (degenerate l2)=l ->

l1 = l2

Proof.
Using induction on the lists structure and rewriting on the equalities

J. Aransay, C. Doḿınguez (Univ. La Rioja) MAP 2009 39 / 41



1 Introduction

2 First layer of data structures and algorithms
Implementation in Isabelle/HOL
Implementation in Coq
Comparison of both approaches

3 Second layer of data structures and algorithms
Implementation in Isabelle/HOL
Implementation in Coq
Comparison of both approaches

4 Merging both data layers

5 Conclusions and further work

J. Aransay, C. Doḿınguez (Univ. La Rioja) MAP 2009 40 / 41



Conclusions

A representation of both Kenzo’s data structures layers has been
provided in Isabelle/HOL and Coq

The implementations obtained are sound and useful: we provide
instances of the representations and formally prove some results with
them

The representations illustrate some of the special features of each
system

Further work

Development of more formal proofs (as, for instance, the BPL in the
graded case)

Enhancement of the graded structure hierarchy (as, for example,
product of graded structures, cone, cone reductions. . . )

J. Aransay, C. Doḿınguez (Univ. La Rioja) MAP 2009 41 / 41



Conclusions

A representation of both Kenzo’s data structures layers has been
provided in Isabelle/HOL and Coq

The implementations obtained are sound and useful: we provide
instances of the representations and formally prove some results with
them

The representations illustrate some of the special features of each
system

Further work

Development of more formal proofs (as, for instance, the BPL in the
graded case)

Enhancement of the graded structure hierarchy (as, for example,
product of graded structures, cone, cone reductions. . . )

J. Aransay, C. Doḿınguez (Univ. La Rioja) MAP 2009 41 / 41



Conclusions

A representation of both Kenzo’s data structures layers has been
provided in Isabelle/HOL and Coq

The implementations obtained are sound and useful: we provide
instances of the representations and formally prove some results with
them

The representations illustrate some of the special features of each
system

Further work

Development of more formal proofs (as, for instance, the BPL in the
graded case)

Enhancement of the graded structure hierarchy (as, for example,
product of graded structures, cone, cone reductions. . . )

J. Aransay, C. Doḿınguez (Univ. La Rioja) MAP 2009 41 / 41



Conclusions

A representation of both Kenzo’s data structures layers has been
provided in Isabelle/HOL and Coq

The implementations obtained are sound and useful: we provide
instances of the representations and formally prove some results with
them

The representations illustrate some of the special features of each
system

Further work

Development of more formal proofs (as, for instance, the BPL in the
graded case)

Enhancement of the graded structure hierarchy (as, for example,
product of graded structures, cone, cone reductions. . . )

J. Aransay, C. Doḿınguez (Univ. La Rioja) MAP 2009 41 / 41



Conclusions

A representation of both Kenzo’s data structures layers has been
provided in Isabelle/HOL and Coq

The implementations obtained are sound and useful: we provide
instances of the representations and formally prove some results with
them

The representations illustrate some of the special features of each
system

Further work

Development of more formal proofs (as, for instance, the BPL in the
graded case)

Enhancement of the graded structure hierarchy (as, for example,
product of graded structures, cone, cone reductions. . . )

J. Aransay, C. Doḿınguez (Univ. La Rioja) MAP 2009 41 / 41


	Outline
	Introduction
	First layer of data structures and algorithms
	Implementation in Isabelle/HOL
	Implementation in Coq
	Comparison of both approaches

	Second layer of data structures and algorithms
	Implementation in Isabelle/HOL
	Implementation in Coq
	Comparison of both approaches

	Merging both data layers
	Conclusions and further work

