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Sylvester double sums versus subresultants
given two polynomials A and B

first notion symmetric expression of the roots of two polynomials
second notion defined through the coefficients polynomials

main result of the lecture
these two notions are very closely related
(idea due to Sylvester [S])
see details and complete proofs in [RS].

1 Definitions and main result.

A and B two finite families of elements of a field K.
The resultant of A and B is

R(A, B):=
∏

a∈A,b∈B

(a− b).

R(A, ∅) = 1.

If A∩B=∅,

R(A, B) = 0,

R(X, A): =
∏

a∈A

(X − a)∈K[X ], R(X, B): =
∏

b∈B

(X − b)∈K[X ],

R(X, A∩B) = gcd(R(X, A), R(X, B)).
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1.1 Sylvester double sums

A finite, C subset of A with cardinality p, denoted C ⊂p A.
A, B finite sets, p, q two natural numbers p + q ≤min (#B, #A),

Sylvester double sum with exponent (p, q), denoted Sylvp,q

Sylvp,q(A, B)(X)=
∑

C⊂pA

D⊂qB

R(X,C)R(X, D)
R(C, D)R(A \C, B \D)

R(C, A \C)R(D, B \D)

Remark 1.

1. degree of Sylvp,q(A, B)(X) with respect to X ≤ p + q.

2. Sylv0.0(A, B)(X) = R(A, B).

3. a non zero Sylvester double sum of smallest possible degree is
a gcd of R(X, A) and R(X, B). More precisely, if j is the
number of elements of A∩B,

a. for every p, q such that j = p + q,
Sylvp,q(A, B)(X) = gcd(R(X,A),R(X, B)),

b. for every p, q such that j > p + q,
Sylvp,q(A, B)(X) = 0.

Properties 1 and 2 follow from the definition. Properties 3(a) and
3(b) follow from the fact that if ♯(C)= p, ♯(D) = q,

• if p + q = ♯(A∩B), C ∪D = A∩B,

R(X, C)R(X, D) = R(X, A∩B)= gcd(R(X, A), R(X, B)),

• if p + q < ♯(A∩B) or if (p + q = ♯(A∩B) and C ∪D=A∩B)

R(A \C, B \D)= 0,

since (A \C)∩ (B \D)=∅.

1.2 Subresultants.

abusing notation, A = R(X, A) and B = R(X, B), n 6 m

A =
∑

k=0

m

αkX
m−k B =

∑

k=0

n

βkX
n−k.
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j ≤ n − 1, Sylvj(A, B) matrix whose rows are the coordinates of the

polynomials Xn−1−jA, 	 , A, B, 	 , Xm−1−jB (in this order) in the
basis {Xm+n−j−1, 	 , 1}; matrix of dimension (m + n − 2j) × (m +
n− j).

Sresj(A, B)(X), the subresultant of index j of A and B: determi-
nant of the matrix Mj(A, B), whose (m + n − 2j − 1) first columns
are the columns of Sylvj(A, B), and the last column (the (m + n −

2j)-th one) has elements Xn−1−jA, 	 , A, B, 	 , Xm−1−jB (in this
order).

Sresj(A, B)(X) =
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1 α1 α2 α3 
 αm+n−2j−2 Xn−j−1A

0 1 α1 α2 
 αm+n−2j−3 Xn−j−2A� � � � � �
• • • • 
 αm−j−1 A

• • • • 
 βn−j−1 B� � � � � � �
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∣

with the convention: αi = 0 for i > m and βi = 0 for i > n.

Notation 2. Define εk = (− 1)[k/2] = (− 1)k(k−1)/2.

Remark 3. The subresultants have the following properties

1. Sresj(A, B)(X) polynomial of degree ≤ j.

2. Sres0(A,B)(X) = εmR(A, B).

3. The non zero subresultant with smallest index is a gcd of A

and B.

similar to the properties of Sylvester double sums given in the pre-
ceeding paragraph, classical [BPR].

1.3 Main result.

equality, up to a multiplicative constant

Definitions and main result. 3



Theorem 4. Let j ≤ n < m ; for all p, q such that p + q = j,

Sresj(A, B)(X) and Sylvp,q(A, B)(X) are equal u p to a multiplica-

tive constant. More precisely,

(− 1)p(m−j)εm−j

(

j

p

)

Sresj(A, B)(X) = Sylvp,q(A, B)(X).

stated by Sylvester [S],
proved in [LP] Schur functions and their properties
new proof by [AHKS] based on matrix manipulations
here : a simple proof by induction on n

Note that for Sylvester double sums, when two different choices
of p, q are made, the equality is not obvious ! But both are equal to
subresultants !!

2 Two properties of Sylvester double sums.

A a finite subset of a field, a∈A, A \ a := A \ {a}, a ;= {a}.

A univariate polynomial, cj(A) coefficient of the term of degree j of
A (convention cj(A)= 0 when j>deg(A)).

Proposition 5. Let j < n < m ; for every p, q such that j = p + q,

and b∈B ;

Sylvp,q(A, B)(b) = (− 1)m−jA(b) cj(Sylv
p,q(A, B \ b)(X))

Proof.

•

Sylvp,q(A, B)(b)

=
∑

C⊂pA

D⊂qB

R(b, C)R(b, D)
R(C, D)R(A \C, B \D)
R(C, A \C)R(D, B \D)

= (− 1)m−jA(b)
∑

C⊂pA

D⊂qB\b

R(C, D)R(A \C, (B \ b) \D)

R(C, A \C)R(D, (B \ b) \D)
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Indeed, if b ∈ D, all the terms containing R(b, D) are null; and if
b � D, then

R(b, C)R(A \C, B \D) = (− 1)m−pA(b)R(A \C, (B \ b) \D),
R(b, D)

R(D, B \D)
= (− 1)q 1

R(D, (B \ b) \D)

also

cj(Sylvp,q(A, B \ b)(X) =
∑

C⊂pA

D⊂qB\b

R(C, D)R(A \C, (B \ b) \D)

R(C,A \C)R(D, (B \ b) \D).

�

Proposition 6.

1. If n < m and p + q = n, then

Sylvp,q(A, B)(X) = (− 1)p(m−n)

(

n

p

)

B(X).

2. If n= m = p + q, then

Sylvp,q(A, B)(X) =

(

n− 1
q

)

A(X) +

(

n− 1
p

)

B(X).

• Proof of the proposition : a litte complicated
uses the following lemma (similar in spirit to Proposition 5,

more technical).

Lemma 7.

1. Let j ≤ n < m ; for all p, q such that j = p + q, and

a∈A ;

Sylvp,q(A, B)(a) = (− 1)pB(a) cj(Sylv
p,q(A \ a,B)(X))

2. Let j = n = m ; for all p, q such that j = p + q, if q=0, for
all a∈A ;

Sylvp,q(A, B)(a)

= (− 1)pB(a) cj−1(Sylv
p,q−1(B, A \ a)(X))

3. Let j = n = m ; for all p, q such that j = p + q, if p=0, for
all b∈B ;

Sylvp,q(A, B)(b) = (− 1)qA(b) cj−1(Sylv
q,p−1(A, B \ b)(X))

Two properties of Sylvester double sums. 5



Proof.

◦ Proof of the Lemma

�
Proof. Proof of proposition 6 .
◦ The proof uses a double induction on n and m.

�
3 Two properties of the subresultants.

The subresultant have analogous properties.

Proposition 8. If b is a root of B, then, for all 0≤ j < n < m,

Sresj(A, B)(b) = (− 1)m−jA(b) cj

(

Sresj

(

A,
B

X − b

)

(X)

)

.

Proof.

◦ Manipulations in Sylvester matrix
�

Proposition 9.

Sresn(A,B)(X) = εm−nB(X).

Immediate consequence of the definition of subresultants.

No equivalent of proposition 6, 2 : subresultants are not defined
for n= m.

4 Proof of the theorem 4

Remark 10. From proposition 8 and proposition, two similar
equalities : if j ≤n− 1, then

Sresj(A, B)(b) = (− 1)m−jA(b) cj(Sresj

(

A,
B

X − b

)

(X)

Sylvp,q(A, B)(b) = (− 1)m−jA(b) cj(Sylv
p,q(A, B \ b)(X)).
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Proof by induction on n of theorem 4 : if theorem holds for B \ b

(n − 1 elements) for every b ∈ B, by interpolation at the n elements
of B, theorem holds for B.

Remark 11.

Subresultants are a basic tool in computer algebra

1. compute gcd: last non zero in the sequence

2. (real) : compute number of real roots, Cauchy index through
sign variations in the whole sequence

3. as a consequence cylindrical algebraic decomposition: quanti-
fier elimination, Hilbert’th 17 problem ...

Proofs of facts: based on an induction on the length of the euclidean
remainder sequence of two polynomials A and B

Use of Sylvester double sums

1. compute gcd

2. since they are equal to the subresultants compute the number
of real roots, the Cauchy index

Proof of the equality of Sylvester double sums and subresultants:
based on an induction on the degree of B

Given the lectures of this morning, formalizing these proofs should
be a nice exercize. Assia already worked on the subresultants ....
what about Sylvester double sums ?
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