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Plan of the tutorial

Talk 1:
The mathematics to formalize.

1 Simplicial Topology.
2 Basic Perturbation Lemma.
3 Effective Homology and Bicomplexes.

Talk 2: (from 1.2)
Isabelle/HOL: First proving, then extracting code.
(Joint work with J. Aransay and C. Ballarin)

Talk 3: (from 1.3)
Coq: Algebraic structures, effective homology and type theory.
(Joint work with C. Doḿınguez)

Talk 4: (from 1.1)
ACL2: Going down to first order. The case of Simplicial Topology.
(Joint work with L. Lambán, F.J. Mart́ın-Mateos and J.L. Ruiz-Reina)
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Introduction
A (directed) graph:

v0

v1

v2

v3

Abstractly:

V = {v0, v1, v2, v3},E = {e0, e1, e2, e3}
e0 = (v0, v1), e1 = (v0, v2) . . .

That is to say: E ⊆ V × V .

Other combinatorial description:

∂0 : E → V , ∂1 : E → V

∂0(e0) = ∂0(v0, v1) := v1, ∂0(e1) = ∂0(v0, v2) := v2

∂1(e0) = ∂0(v0, v1) := v0, ∂1(e1) = ∂0(v0, v2) := v0 . . .

∂0 = target, ∂1 = source

Julio Rubio (Universidad de La Rioja) Formalizing Algebraic Topology 4 / 21



Introduction
A (triangulated) space K :

v0

v1

v2

τ
v3

Abstractly:

Any (ordered) subset of (v0, v1, v2) and (v2, v3) is in K .

Other combinatorial description:

∂
(2)
0 : K2 → K1, ∂

(2)
1 : K2 → K1, ∂

(2)
2 : K2 → K1

∂
(1)
0 : K1 → K0, ∂

(1)
1 : K1 → K0

∂
(2)
0 (v0, v1, v2) := (v1, v2), . . .

But now it is needed that: ∂
(1)
0 ∂

(2)
0 (τ) = ∂

(1)
0 ∂

(2)
1 (τ), . . .
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Simplicial Complexes
Given an ordered set V , a simplicial complex K is a subset of

OrderedList(V ) = {(v0, v1, . . . , vm) : v0 < v1 < . . . < vm},

such that any ordered sublist of an element of K is again in K .
The dimension of a list (v0, v1, . . . , vm) is m. Thus K is naturally graded
by the dimension of its simplexes.
A simplicial complex K admits another combinatorial description:

∂
(n)
i : Kn → Kn−1, 0 ≤ i ≤ n

satisfying: ∂
(n)
i ∂

(n+1)
j = ∂

(n)
j ∂

(n+1)
i+1 , if 0 ≤ j ≤ i ≤ n.

(∂i = erasing the i-th element in a list)

Theorem

Let K be a subset of OrderedList(V ). K is a simplicial complex if and

only if the operators {∂(n)
i } are closed on K .
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Simplicial Complexes with degeneracies

If we allow the lists to have duplicates, that is to say if we consider as
simplexes elements of {(v0, v1, . . . , vm) : v0 ≤ v1 ≤ . . . ≤ vm}, we can
define new operators ηi which repeat the i-th element of a list.
Then, the following identities hold:

∂
(n)
i ∂

(n+1)
j = ∂

(n)
j ∂

(n+1)
i+1 if 0 ≤ j ≤ i ≤ n (1)

η
(n+1)
i η

(n)
j = η

(n+1)
j+1 η

(n)
i if 0 ≤ i ≤ j ≤ n (2)

∂
(n+1)
i η

(n)
j = η

(n−1)
j−1 ∂

(n)
i if 0 ≤ i < j ≤ n (3)

∂
(n+1)
i η

(n)
j = id if 0 ≤ i = j ≤ n (4)

or 0 < i = j + 1 ≤ n + 1 (5)

∂
(n+1)
i η

(n)
j = η

(n−1)
j ∂

(n)
i−1 if 0 < j + 1 < i < n (6)
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Simplicial Sets

If we abstract from the previous definition, we can define a simplicial set K

as a graded set {Kn}n∈N endowed with operations ∂
(n)
i : Kn → Kn−1 and

η
(n)
i : Kn → Kn+1, ∀0 ≤ i ≤ n ∈ N satisfying the simplicial identities:

∂
(n)
i ∂

(n+1)
j = ∂

(n)
j ∂

(n+1)
i+1 if 0 ≤ j ≤ i ≤ n (1)

η
(n+1)
i η

(n)
j = η

(n+1)
j+1 η

(n)
i if 0 ≤ i ≤ j ≤ n (2)

∂
(n+1)
i η

(n)
j = η

(n−1)
j−1 ∂

(n)
i if 0 ≤ i < j ≤ n (3)

∂
(n+1)
i η

(n)
j = id if 0 ≤ i = j ≤ n (4)

or 0 < i = j + 1 ≤ n + 1 (5)

∂
(n+1)
i η

(n)
j = η

(n−1)
j ∂

(n)
i−1 if 0 < j + 1 < i < n (6)
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The category ∆∗

Objects: n = {0, 1, . . . , n},∀n ∈ N.

Morphisms: µ : n→ m, increasing.

Each morphism µ can be written as µmono ◦ µepi

Distinguished morphisms:

I (Mono) {δ(n)
i : n→ n + 1 ; 0 ≤ i ≤ n },

with δ
(n)
i (j) = j if j < i and δ

(n)
i (j) = j + 1 if j ≥ i .

I (Epi) {σ(n)
i : n→ n-1 ; 0 ≤ i ≤ n − 1 }

with σ
(n)
i (j) = j if j ≤ i and σ

(n)
i (j) = j − 1 if j > i .

Each morphism µ can be written in a unique way as:

µ = δjs . . . δj1σit . . . σi1 , with 0 ≤ it < . . . < i1 and 0 ≤ j1 < . . . < js .

(Important remark: superindices skipped)
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Identities in ∆∗

The morphisms δi and σi satisfy a series of identities:

δjδi = δi+1δj if i ≥ j (1)

σjσi = σiσj+1 if i ≤ j (2)

σjδi = δiσj−1 if i < j (3)

σjδi = id if i = j (4)

or i = j + 1 (5)

σjδi = δi−1σj if i > j + 1 (6)
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What?
Compare:

δjδi = δi+1δj if i ≥ j (1)

σjσi = σiσj+1 if i ≤ j (2)

σjδi = δiσj−1 if i < j (3)

σjδi = id if i = j (4)

or i = j + 1 (5)

σjδi = δi−1σj if i > j + 1 (6)

∂i∂j = ∂j∂i+1 if i ≥ j (1)

ηiηj = ηj+1ηi if i ≤ j (2)

∂iηj = ηj−1∂i if i < j (3)

∂iηj = id if i = j (4)

or i = j + 1 (5)

∂iηj = ηj∂i−1 if i > j + 1 (6)
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Another definition of Simplicial Set

A simplicial set is a (contravariant) functor K : ∆∗ → Set.

Kn := K (n) (n-simplexes)

∂i := K (δi ) (faces)

ηi := K (σi ) (degeneracies)

Theorem

Given a simplicial set K and a simplex x ∈ Kn, there exists a unique
expression x = ηi1 . . . ηit x, with x non-degenerate (i.e. x /∈ Im(ηj),∀j),
and 0 ≤ it < . . . < i1 (t could be equal to 0).

Recall, in ∆∗:
µ = δjs . . . δj1σit . . . σi1 , with 0 ≤ it < . . . < i1 and 0 ≤ j1 < . . . < js .
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Simplicial Sets and Chain Complexes

Let K be a simplicial set.

Define: Cn(K ) := Z[Kn], free Z-module generated by n-simplexes.

Define: dn(x) :=
∑n

i=0(−1)i∂ix over generators, and extend linearly.

Then: dn ◦ dn+1 = 0.

v0

v1

v2

τ

d1d2(τ) = d1(∂0(v0, v1, v2)− ∂1(v0, v1, v2) + ∂2(v0, v1, v2)) = . . . = 0
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Homology groups

dn ◦ dn+1 = 0 =⇒ Im(dn+1) ⊆ Ker(dn) ⊆ Cn(K )

We can define
Hn(K ) := Ker(dn)/Im(dn+1), the n-th homology group of K .

Geometrical meaning:

K

v0

v1

v2
L

v0

v1

v2

c := (v1, v2)− (v0, v2) + (v0, v1) defines a cycle (∈ Ker(d1)), both in
K and L.

H1(K ) = 0, but H1(L) = Z generated by c , since it is not a boundary
(/∈ Im(d2)).
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Degenerate and non-degenerate simplexes

A simplex x ∈ Kn is degenerate if x = ηi (x̄) for some x̄ ∈ Kn−1 and
some i with 0 ≤ i < n.

Otherwise: x is called non-degenerate.

In the simplicial complex case: non-degenerate = without duplicates.

Let us call KND
n the set of non-degenerate n-simplexes of a simplicial

set K .

And let us call KD
n the set of degenerate n-simplexes.
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Different chain complexes, equal homology groups

We define a new chain complex with Dn(K ) := Z[KD
n ] and as

differential the restriction over D(K ) of that of C (K ).

Remark: d |D(K) is well defined.

Define CND(K ) := C (K )/D(K ).

On the contrary, if Cn(K ) := Z[KND
n ], the differential is not

well-defined

. . . but can be slightly modified to produce another chain complex
associated with K : Cn(K ).

CND(K ) and C (K ) are isomorphic

. . . and thus it is the same for H(CND(K )) and H(C (K )).

What about the relation between H(K ) and H(CND(K ))?
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General chain complexes

A chain complex is {Cn, dn)}n∈Z, where each Cn is an abelian group,
and each dn : Cn → Cn−1 is a homomorphism satisfying
dn+1 ◦ dn = 0,∀n ∈ Z.

Examples: Chain complexes associated with simplicial sets
(here Cn = 0,∀n < 0; it is called a positive chain complex).

Homology groups: Hn(C , d) := Ker(dn)/Im(dn+1).

Given two chain complexes {Cn, dn)}n∈Z and {C ′n, d ′n)}n∈Z, a chain
morphism between them is a family f of group homomorphisms
fn : Cn → C ′n,∀n ∈ Z satisfying d ′n ◦ fn = fn−1 ◦ dn,∀n ∈ Z.
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Reductions

Given two chain complexes C := {Cn, dn)}n∈Z and
C ′ := {C ′n, d ′n)}n∈Z a reduction between them is (f , g , h) where

I f : C → C ′ and g : C ′ → C are chain morphisms
I and h is a family of homomorphisms (called homotopy operator)

hn : Cn → Cn+1.

satisfying

1 f ◦ g = 1
2 d ◦ h + h ◦ d + g ◦ f = 1
3 f ◦ h = 0
4 h ◦ g = 0
5 h ◦ h = 0

If (f , g , h) : C → C ′ is a reduction, then H(C ) ∼= H(C ′).

Let K be a simplicial set, then there exists a reduction
(f , g , h) : C (K )→ CND(K ).
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Basic Perturbation Lemma

Given a chain complex (C , d), a perturbation for it is a family ρ of
group homomorphisms ρn : Cn → Cn−1 such that (C , d + ρ) is again
a chain complex (that is to say: (d + ρ) ◦ (d + ρ) = 0).

A reduction (f , g , h) : (C , d)→ (C ′, d ′) and a perturbation ρ for
(C , d) are locally nilpotent if
∀x ∈ Cn,∃m ∈ N such that (h ◦ ρ)m(x) = 0.

Basic Perturbation Lemma

Let (f , g , h) : (C , d)→ (C ′, d ′) be a reduction and be ρ a perturbation for
(C , d) which are locally nilpotent. Then there exists a reduction
(f∞, g∞, h∞) : (C , d + ρ)→ (C ′, d ′∞).
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Sergeraert’s effective homology

From now on, all the groups in chain complexes will be free abelian
groups with an explicit basis.

That is: Cn = Z[Bn]. (Example: Cn(K ) = Z[Kn].)

A chain complex is effective, if ∀n ∈ Z,Bn is a finite set presented as
a list of elements.

On the contrary, a chain complex is called locally effective if the only
known data on their bases are their characteristic functions and an
equality test.

A chain complex with (strong) effective homology is a data structure
[C ,E , f , g , h] where C is a chain complex (possibly locally effective),
E is an effective chain complex, and (f , g , h) : C → E is a reduction.

Basic Perturbation Lemma Algorithm

Given a chain complex (C , d) with effective homology and ρ a
perturbation for it satisfying the local nilpotency condition, then
(C , d + ρ) is a chain complex with effective homology.
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Bicomplexes

A (first quadrant) bicomplex C is a family of pairs (Cp,∗, fp)p∈N with
(Cp,∗)p∈N a family of positive chain complexes and
(fp : Cp+1,∗ → Cp,∗)p∈N a family of chain morphisms, such that
fp ◦ fp+1 = 0.

Given a bicomplex C = {Cp,q, dp,q, fp,q}p,q∈N, the totalization of C is
the chain complex T (C ) = (T (C )n, dn)n∈N where
T (C )n = ⊕p+q=nCp,q and dn = ⊕p+q=n(dp,q ⊕ (−1)pfp,q).

Effective homology of bicomplexes

Let C be a bicomplex (Cp,∗, fp)p∈N such that each chain complex Cp,∗ is
with effective homology. Then the total chain complex
T (C ) = (T (C )n, dn)n∈N is with effective homology.

Two proofs:

By using the Basic Perturbation Lemma.

As an iteration of mapping cones.
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