Tutorial
 Formalization of Algebraic Topology Talk 1

The mathematics to formalize

Julio Rubio
Universidad de La Rioja
Departamento de Matemáticas y Computación
Mathematics, Algorithms, Proofs, MAP 2009
Monastir (Tunisia), December 14th-18th, 2009

Summary

- Plan of the tutorial.
- Introduction to the first talk.
- Simplicial sets.
- The category Δ^{*}.
- Chain complexes.
- Reductions.
- Basic Perturbation Lemma.
- Effective Homology.
- Bicomplexes.

Plan of the tutorial

- Talk 1:

The mathematics to formalize.
(1) Simplicial Topology.
(2) Basic Perturbation Lemma.
(3) Effective Homology and Bicomplexes.

- Talk 2: (from 1.2) Isabelle/HOL: First proving, then extracting code.
(Joint work with J. Aransay and C. Ballarin)
- Talk 3: (from 1.3)

Coq: Algebraic structures, effective homology and type theory. (Joint work with C. Domínguez)

- Talk 4: (from 1.1)

ACL2: Going down to first order. The case of Simplicial Topology. (Joint work with L. Lambán, F.J. Martín-Mateos and J.L. Ruiz-Reina)

Introduction

A (directed) graph:

Abstractly:

- $V=\left\{v_{0}, v_{1}, v_{2}, v_{3}\right\}, E=\left\{e_{0}, e_{1}, e_{2}, e_{3}\right\}$
- $e_{0}=\left(v_{0}, v_{1}\right), e_{1}=\left(v_{0}, v_{2}\right) \ldots$
- That is to say: $E \subseteq V \times V$.

Other combinatorial description:

- $\partial_{0}: E \rightarrow V, \partial_{1}: E \rightarrow V$
- $\partial_{0}\left(e_{0}\right)=\partial_{0}\left(v_{0}, v_{1}\right):=v_{1}, \partial_{0}\left(e_{1}\right)=\partial_{0}\left(v_{0}, v_{2}\right):=v_{2}$
- $\partial_{1}\left(e_{0}\right)=\partial_{0}\left(v_{0}, v_{1}\right):=v_{0}, \partial_{1}\left(e_{1}\right)=\partial_{0}\left(v_{0}, v_{2}\right):=v_{0} \ldots$
- $\partial_{0}=$ target, $\partial_{1}=$ source

Introduction

A (triangulated) space K :

Abstractly:

- Any (ordered) subset of $\left(v_{0}, v_{1}, v_{2}\right)$ and $\left(v_{2}, v_{3}\right)$ is in K.

Other combinatorial description:

- $\partial_{0}^{(2)}: K_{2} \rightarrow K_{1}, \partial_{1}^{(2)}: K_{2} \rightarrow K_{1}, \partial_{2}^{(2)}: K_{2} \rightarrow K_{1}$
- $\partial_{0}^{(1)}: K_{1} \rightarrow K_{0}, \partial_{1}^{(1)}: K_{1} \rightarrow K_{0}$
- $\partial_{0}^{(2)}\left(v_{0}, v_{1}, v_{2}\right):=\left(v_{1}, v_{2}\right), \ldots$
- But now it is needed that: $\partial_{0}^{(1)} \partial_{0}^{(2)}(\tau)=\partial_{0}^{(1)} \partial_{1}^{(2)}(\tau), \ldots$

Simplicial Complexes

Given an ordered set V, a simplicial complex K is a subset of

$$
\operatorname{OrderedList}(V)=\left\{\left(v_{0}, v_{1}, \ldots, v_{m}\right): v_{0}<v_{1}<\ldots<v_{m}\right\}
$$

such that any ordered sublist of an element of K is again in K. The dimension of a list $\left(v_{0}, v_{1}, \ldots, v_{m}\right)$ is m. Thus K is naturally graded by the dimension of its simplexes.
A simplicial complex K admits another combinatorial description:

- $\partial_{i}^{(n)}: K_{n} \rightarrow K_{n-1}, 0 \leq i \leq n$
- satisfying: $\partial_{i}^{(n)} \partial_{j}^{(n+1)}=\partial_{j}^{(n)} \partial_{i+1}^{(n+1)}$, if $0 \leq j \leq i \leq n$.
- $\left(\partial_{i}=\right.$ erasing the i-th element in a list $)$

Theorem

Let K be a subset of OrderedList(V). K is a simplicial complex if and only if the operators $\left\{\partial_{i}^{(n)}\right\}$ are closed on K.

Simplicial Complexes with degeneracies

If we allow the lists to have duplicates, that is to say if we consider as simplexes elements of $\left\{\left(v_{0}, v_{1}, \ldots, v_{m}\right): v_{0} \leq v_{1} \leq \ldots \leq v_{m}\right\}$, we can define new operators η_{i} which repeat the i-th element of a list.
Then, the following identities hold:

$$
\begin{array}{ll}
\partial_{i}^{(n)} \partial_{j}^{(n+1)}=\partial_{j}^{(n)} \partial_{i+1}^{(n+1)} & \\
\eta_{i}^{(n+1)} \eta_{j}^{(n)}=\eta_{j+1}^{(n+1)} \eta_{i}^{(n)} & \\
\text { if } 0 \leq i \leq i \leq n \\
\partial_{i}^{(n+1)} \eta_{j}^{(n)}=\eta_{j-1}^{(n-1)} \partial_{i}^{(n)} & \\
\partial_{i}^{(n+1)} \eta_{j}^{(n)}=i d & \\
& \tag{6}\\
\partial_{i}^{(n+1)} \eta_{j}^{(n)}=\eta_{j}^{(n-1)} \partial_{i-1}^{(n)} & \\
\partial_{i} 0 \leq i=j \leq n \\
\text { or } 0<i=j+1 \leq n+1 \\
\text { if } 0<j+1<i<n
\end{array}
$$

Simplicial Sets

If we abstract from the previous definition, we can define a simplicial set K as a graded set $\left\{K_{n}\right\}_{n \in \mathbb{N}}$ endowed with operations $\partial_{i}^{(n)}: K_{n} \rightarrow K_{n-1}$ and $\eta_{i}^{(n)}: K_{n} \rightarrow K_{n+1}, \forall 0 \leq i \leq n \in \mathbb{N}$ satisfying the simplicial identities:

$$
\begin{array}{ll}
\partial_{i}^{(n)} \partial_{j}^{(n+1)}=\partial_{j}^{(n)} \partial_{i+1}^{(n+1)} & \\
\eta_{i}^{(n+1)} \eta_{j}^{(n)}=\eta_{j+1}^{(n+1)} \eta_{i}^{(n)} & \\
\text { if } 0 \leq i \leq j \leq n \\
\partial_{i}^{(n+1)} \eta_{j}^{(n)}=\eta_{j-1}^{(n-1)} \partial_{i}^{(n)} & \\
\text { if } 0 \leq i<j \leq n_{(n+1)} \eta_{j}^{(n)}=i d & \\
\partial_{i} & \text { if } 0 \leq i=j \leq n \\
\partial_{i}^{(n+1)} \eta_{j}^{(n)}=\eta_{j}^{(n-1)} \partial_{i-1}^{(n)} & \tag{6}\\
\text { or } 0<i=j+1 \leq n+1 \\
\text { if } 0<j+1<i<n
\end{array}
$$

The category Δ^{*}

- Objects: $\mathbf{n}=\{0,1, \ldots, n\}, \forall n \in \mathbb{N}$.
- Morphisms: $\mu: \mathbf{n} \rightarrow \mathbf{m}$, increasing.
- Each morphism μ can be written as $\mu_{\text {mono }} \circ \mu_{\text {epi }}$
- Distinguished morphisms:
- (Mono) $\left\{\delta_{i}^{(n)}: \mathbf{n} \rightarrow \mathbf{n}+\mathbf{1} ; 0 \leq i \leq n\right\}$, with $\delta_{i}^{(n)}(j)=j$ if $j<i$ and $\delta_{i}^{(n)}(j)=j+1$ if $j \geq i$.
- (Epi) $\left\{\sigma_{i}^{(n)}: \mathbf{n} \rightarrow \mathbf{n - 1} ; 0 \leq i \leq n-1\right\}$ with $\sigma_{i}^{(n)}(j)=j$ if $j \leq i$ and $\sigma_{i}^{(n)}(j)=j-1$ if $j>i$.
- Each morphism μ can be written in a unique way as:
$\mu=\delta_{j_{s}} \ldots \delta_{j_{1}} \sigma_{i_{t}} \ldots \sigma_{i_{1}}$, with $0 \leq i_{t}<\ldots<i_{1}$ and $0 \leq j_{1}<\ldots<j_{s}$.
(Important remark: superindices skipped)

Identities in Δ^{*}

The morphisms δ_{i} and σ_{i} satisfy a series of identities:

$$
\begin{array}{ll}
\delta_{j} \delta_{i}=\delta_{i+1} \delta_{j} & \text { if } i \geq j \\
\sigma_{j} \sigma_{i}=\sigma_{i} \sigma_{j+1} & \text { if } i \leq j \\
\sigma_{j} \delta_{i}=\delta_{i} \sigma_{j-1} & \text { if } i<j \\
\sigma_{j} \delta_{i}=i d & \text { if } i=j \\
& \text { or } i=j+1 \tag{6}\\
\sigma_{j} \delta_{i}=\delta_{i-1} \sigma_{j} & \text { if } i>j+1
\end{array}
$$

What?

Compare:

$$
\begin{array}{ll}
\delta_{j} \delta_{i}=\delta_{i+1} \delta_{j} & \text { if } i \geq j \\
\sigma_{j} \sigma_{i}=\sigma_{i} \sigma_{j+1} & \text { if } i \leq j \\
\sigma_{j} \delta_{i}=\delta_{i} \sigma_{j-1} & \text { if } i<j \\
\sigma_{j} \delta_{i}=i d & \text { if } i=j \\
& \text { or } i=j+1 \tag{6}\\
\sigma_{j} \delta_{i}=\delta_{i-1} \sigma_{j} & \text { if } i>j+1
\end{array}
$$

$$
\begin{align*}
\partial_{i} \partial_{j} & =\partial_{j} \partial_{i+1} \tag{1}\\
\eta_{i} \eta_{j} & =\eta_{j+1} \eta_{i} \tag{2}\\
\partial_{i} \eta_{j} & =\eta_{j-1} \partial_{i} \tag{3}\\
\partial_{i} \eta_{j} & =i d \tag{4}\\
\partial_{i} \eta_{j} & =\eta_{j} \partial_{i-1} \tag{5}
\end{align*}
$$

if $i \geq j$
if $i \leq j$
if $i<j$
if $i=j$
or $i=j+1$
if $i>j+1$

Another definition of Simplicial Set

A simplicial set is a (contravariant) functor $K: \Delta^{*} \rightarrow$ Set.

- $K_{n}:=K(\mathbf{n})$ (n-simplexes)
- $\partial_{i}:=K\left(\delta_{i}\right)$ (faces)
- $\eta_{i}:=K\left(\sigma_{i}\right)$ (degeneracies)

Theorem

Given a simplicial set K and a simplex $x \in K_{n}$, there exists a unique expression $x=\eta_{i_{1}} \ldots \eta_{i_{t}} \bar{x}$, with \bar{x} non-degenerate (i.e. $\bar{x} \notin \operatorname{Im}\left(\eta_{j}\right), \forall j$), and $0 \leq i_{t}<\ldots<i_{1}$ (t could be equal to 0).

Recall, in Δ^{*} :
$\mu=\delta_{j_{s}} \ldots \delta_{j_{1}} \sigma_{i_{t}} \ldots \sigma_{i_{1}}$, with $0 \leq i_{t}<\ldots<i_{1}$ and $0 \leq j_{1}<\ldots<j_{s}$.

Simplicial Sets and Chain Complexes

- Let K be a simplicial set.
- Define: $C_{n}(K):=\mathbb{Z}\left[K_{n}\right]$, free \mathbb{Z}-module generated by n-simplexes.
- Define: $d_{n}(x):=\sum_{i=0}^{n}(-1)^{i} \partial_{i} x$ over generators, and extend linearly.
- Then: $d_{n} \circ d_{n+1}=0$.

$$
d_{1} d_{2}(\tau)=d_{1}\left(\partial_{0}\left(v_{0}, v_{1}, v_{2}\right)-\partial_{1}\left(v_{0}, v_{1}, v_{2}\right)+\partial_{2}\left(v_{0}, v_{1}, v_{2}\right)\right)=\ldots=0
$$

Homology groups

- $d_{n} \circ d_{n+1}=0 \Longrightarrow \operatorname{Im}\left(d_{n+1}\right) \subseteq \operatorname{Ker}\left(d_{n}\right) \subseteq C_{n}(K)$
- We can define $H_{n}(K):=\operatorname{Ker}\left(d_{n}\right) / \operatorname{Im}\left(d_{n+1}\right)$, the n-th homology group of K.
- Geometrical meaning:

- $c:=\left(v_{1}, v_{2}\right)-\left(v_{0}, v_{2}\right)+\left(v_{0}, v_{1}\right)$ defines a cycle $\left(\in \operatorname{Ker}\left(d_{1}\right)\right)$, both in K and L.
- $H_{1}(K)=0$, but $H_{1}(L)=\mathbb{Z}$ generated by c, since it is not a boundary $\left(\notin \operatorname{Im}\left(d_{2}\right)\right)$.

Degenerate and non-degenerate simplexes

- A simplex $x \in K_{n}$ is degenerate if $x=\eta_{i}(\bar{x})$ for some $\bar{x} \in K_{n-1}$ and some i with $0 \leq i<n$.
- Otherwise: x is called non-degenerate.
- In the simplicial complex case: non-degenerate $=$ without duplicates.
- Let us call $K_{n}^{N D}$ the set of non-degenerate n-simplexes of a simplicial set K.
- And let us call K_{n}^{D} the set of degenerate n-simplexes.

Different chain complexes, equal homology groups

- We define a new chain complex with $D_{n}(K):=\mathbb{Z}\left[K_{n}^{D}\right]$ and as differential the restriction over $D(K)$ of that of $C(K)$.
- Remark: $\left.d\right|_{D(K)}$ is well defined.
- Define $C^{N D}(K):=C(K) / D(K)$.
- On the contrary, if $\overline{C_{n}(K)}:=\mathbb{Z}\left[K_{n}^{N D}\right]$, the differential is not well-defined
- ... but can be slightly modified to produce another chain complex associated with $K: \overline{C_{n}(K)}$.
- $C^{N D}(K)$ and $\overline{C(K)}$ are isomorphic
- ... and thus it is the same for $H\left(C^{N D}(K)\right)$ and $H(\overline{C(K)})$.
- What about the relation between $H(K)$ and $H\left(C^{N D}(K)\right)$?

General chain complexes

- A chain complex is $\left.\left\{C_{n}, d_{n}\right)\right\}_{n \in \mathbb{Z}}$, where each C_{n} is an abelian group, and each $d_{n}: C_{n} \rightarrow C_{n-1}$ is a homomorphism satisfying $d_{n+1} \circ d_{n}=0, \forall n \in \mathbb{Z}$.
- Examples: Chain complexes associated with simplicial sets (here $C_{n}=0, \forall n<0$; it is called a positive chain complex).
- Homology groups: $H_{n}(C, d):=\operatorname{Ker}\left(d_{n}\right) / \operatorname{Im}\left(d_{n+1}\right)$.
- Given two chain complexes $\left.\left\{C_{n}, d_{n}\right)\right\}_{n \in \mathbb{Z}}$ and $\left.\left\{C_{n}^{\prime}, d_{n}^{\prime}\right)\right\}_{n \in \mathbb{Z}}$, a chain morphism between them is a family f of group homomorphisms $f_{n}: C_{n} \rightarrow C_{n}^{\prime}, \forall n \in \mathbb{Z}$ satisfying $d_{n}^{\prime} \circ f_{n}=f_{n-1} \circ d_{n}, \forall n \in \mathbb{Z}$.

Reductions

- Given two chain complexes $\left.C:=\left\{C_{n}, d_{n}\right)\right\}_{n \in \mathbb{Z}}$ and $\left.C^{\prime}:=\left\{C_{n}^{\prime}, d_{n}^{\prime}\right)\right\}_{n \in \mathbb{Z}}$ a reduction between them is (f, g, h) where
- $f: C \rightarrow C^{\prime}$ and $g: C^{\prime} \rightarrow C$ are chain morphisms
- and h is a family of homomorphisms (called homotopy operator) $h_{n}: C_{n} \rightarrow C_{n+1}$.
satisfying
(1) $f \circ g=1$
(2) $d \circ h+h \circ d+g \circ f=1$
(3) $f \circ h=0$
(9) $h \circ g=0$
(9) $h \circ h=0$
- If $(f, g, h): C \rightarrow C^{\prime}$ is a reduction, then $H(C) \cong H\left(C^{\prime}\right)$.
- Let K be a simplicial set, then there exists a reduction $(f, g, h): C(K) \rightarrow C^{N D}(K)$.

Basic Perturbation Lemma

- Given a chain complex (C, d), a perturbation for it is a family ρ of group homomorphisms $\rho_{n}: C_{n} \rightarrow C_{n-1}$ such that $(C, d+\rho)$ is again a chain complex (that is to say: $(d+\rho) \circ(d+\rho)=0)$.
- A reduction $(f, g, h):(C, d) \rightarrow\left(C^{\prime}, d^{\prime}\right)$ and a perturbation ρ for (C, d) are locally nilpotent if $\forall x \in C_{n}, \exists m \in \mathbb{N}$ such that $(h \circ \rho)^{m}(x)=0$.

Basic Perturbation Lemma

Let $(f, g, h):(C, d) \rightarrow\left(C^{\prime}, d^{\prime}\right)$ be a reduction and be ρ a perturbation for (C, d) which are locally nilpotent. Then there exists a reduction $\left(f_{\infty}, g_{\infty}, h_{\infty}\right):(C, d+\rho) \rightarrow\left(C^{\prime}, d_{\infty}^{\prime}\right)$.

Sergeraert's effective homology

- From now on, all the groups in chain complexes will be free abelian groups with an explicit basis.
- That is: $C_{n}=\mathbb{Z}\left[B_{n}\right]$. (Example: $C_{n}(K)=\mathbb{Z}\left[K_{n}\right]$.)
- A chain complex is effective, if $\forall n \in \mathbb{Z}, B_{n}$ is a finite set presented as a list of elements.
- On the contrary, a chain complex is called locally effective if the only known data on their bases are their characteristic functions and an equality test.
- A chain complex with (strong) effective homology is a data structure [C, E, f, g, h] where C is a chain complex (possibly locally effective), E is an effective chain complex, and $(f, g, h): C \rightarrow E$ is a reduction.

Basic Perturbation Lemma Algorithm

Given a chain complex (C, d) with effective homology and ρ a perturbation for it satisfying the local nilpotency condition, then $(C, d+\rho)$ is a chain complex with effective homology.

Bicomplexes

- A (first quadrant) bicomplex C is a family of pairs $\left(C_{p, *}, f_{p}\right)_{p \in \mathbb{N}}$ with $\left(C_{p, *}\right)_{p \in \mathbb{N}}$ a family of positive chain complexes and
$\left(f_{p}: C_{p+1, *} \rightarrow C_{p, *}\right)_{p \in \mathbb{N}}$ a family of chain morphisms, such that $f_{p} \circ f_{p+1}=0$.
- Given a bicomplex $C=\left\{C_{p, q}, d_{p, q}, f_{p, q}\right\}_{p, q \in \mathbb{N}}$, the totalization of C is the chain complex $T(C)=\left(T(C)_{n}, d_{n}\right)_{n \in \mathbb{N}}$ where $T(C)_{n}=\oplus_{p+q=n} C_{p, q}$ and $d_{n}=\oplus_{p+q=n}\left(d_{p, q} \oplus(-1)^{p} f_{p, q}\right)$.

Effective homology of bicomplexes

Let C be a bicomplex $\left(C_{p, *}, f_{p}\right)_{p \in \mathbb{N}}$ such that each chain complex $C_{p, *}$ is with effective homology. Then the total chain complex $T(C)=\left(T(C)_{n}, d_{n}\right)_{n \in \mathbb{N}}$ is with effective homology.

Two proofs:

- By using the Basic Perturbation Lemma.
- As an iteration of mapping cones.

