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Plan of the tutorial

o Talk 1:
The mathematics to formalize.

@ Simplicial Topology.
© Basic Perturbation Lemma.
© Effective Homology and Bicomplexes.
e Talk 2: (from 1.2)
Isabelle/HOL: First proving, then extracting code.
(Joint work with J. Aransay and C. Ballarin)
e Talk 3: (from 1.3)
Coq: Algebraic structures, effective homology and type theory.
(Joint work with C. Dominguez)
o Talk 4: (from 1.1)
ACL2: Going down to first order. The case of Simplicial Topology.
(Joint work with L. Lamban, F.J. Martin-Mateos and J.L. Ruiz-Reina)
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Introduction
A (directed) graph:

vi
Yo
V3

V2

Abstractly:

o V= {Vo, Vi, Vo, V3}, E = {eo, €1, €2, 63}
@ ¢ = (Vo, Vl), € = (V()7 V2) A
@ Thatistosay: EC V x V.

Other combinatorial description:
080:E—>V,81:E—>V
o 80(60) = 80(V0, V1) = v1,80(e1) = (90(V()7 V2) =W
o 81(e0) = 80(V0, V1) = Vo,al(el) = 80(V0, V2) =V ...
@ (Jy = target, J; = source

ryE



Introduction
A (triangulated) space K:

Vi
Vo

V3

V2

Abstractly:

@ Any (ordered) subset of (vg, v1, v2) and (v2, v3) is in K.
Other combinatorial description:

0 0P Ky — K, 0P Ky — Ky, 08 Ky — Kq

o OV Ky — Ko, 0 Ky — Ko

° 8(()2)(v0, vi, v2) i= (v1, v2),...

@ But now it is needed that: 881)882)(7) = 8(()1)8£2)(7'), .
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Simplicial Complexes

Given an ordered set V, a simplicial complex K is a subset of
OrderedList(V) = {(vo, Vi, ..., Vm): vo < v1 < ... < Vpm},

such that any ordered sublist of an element of K is again in K.
The dimension of a list (vp, vi,...,vm) is m. Thus K is naturally graded
by the dimension of its simplexes.
A simplicial complex K admits another combinatorial description:

° 8}"): Kn— Kn1,0<i<n

o +1 +1) . .
@ satisfying: 8,(")81(" ) = 8}")8,-(11 ), ifo<j<i<n.
@ (0; = erasing the i-th element in a list)

Theorem
Let K be a subset of OrderedList(V). K is a simplicial complex if and
only if the operators {8,.(")} are closed on K.
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Simplicial Complexes with degeneracies

If we allow the lists to have duplicates, that is to say if we consider as
simplexes elements of {(vo, vi,...,Vvm): vo < vi <...< vy}, we can
define new operators 7; which repeat the i-th element of a list.

Then, the following identities hold:

8,( )aJ(n-i-l) 8(n)3l(r1L1) if0<;j<i<n (1)
(D) ) (o ifo<i<j<n (2)
8I(n+1) (n) _ nf”ll)af") ifo<i<j<n (3)
Hr+D) J‘”’ id if0<i=j<n (4)
or0<i=j4+1<n+1 (5)

8(n+1)nj(n) (n—l)al@l fo<j+l<i<n (6)
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Simplicial Sets

If we abstract from the previous definition, we can define a simplicial set K
as a graded set {K},en endowed with operations 8}"): K, — K,_1 and

n§"): Ky — Kny1, Y0 < i < n € N satisfying the simplicial identities:

amMalmth) = oMaln ) ifo<j<i<n (1)
i =l ifo<i<j<n (2)
o gl =y Vol if0<i<j<n (3)
oy = id if0<i=j<n (4)

or0<i=j+1<n+1 (5)
o (™ = ("D, if0<j+l<i<n (6)
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The category A*

e Objects: n=1{0,1,...,n},Vn e N.
@ Morphisms: ;1 : n — m, increasing.
@ Each morphism p can be written as fimono © flepi
@ Distinguished morphisms:
> (Mono) {5,("): n—-n+1;0<i<n},
with 6 (j) =jifj<iand 6M(j) =j+1ifj> i
> (Epi) {a?"):n—>n—1;0§i§n—1}
with o) =jifj<iand o\"(j) =j - 1ifj > i.

Each morphism p can be written in a unique way as:

u:(sjs...(sle','t...O','l,With 0<i;<...<ih and 0< 1 <. <Js.

(Important remark: superindices skipped)
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Identities in A*

The morphisms §; and o; satisfy a series of identities:

0;0j = dj416; ifi > (1)
0j0; = 0i0j41 ifi <j (2)
ojd; = 0j0j_1 ifi<j (3)
0;8: = id ifi=j 4)

ori=j+1 (5)
Uj5;25i_10'j ifi>j+1 (6)
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What?

Compare:

5,01 = 6,415 ifi> ) (1)
0jo; = 0j0j41 ifi <j (2)
0;0; = 6ioj_1 ifi<j 3)
076, = id ifi=j (4)

ori=j+1 (5)
010 = 8i_10 ifi>j+1 (6)
0;0; = 9041 if i > (1)
ninj = Njt1ni if i <j (2
9imj = nj—10; if i <j (3)
Omj = id ifi= (4)

ori=j+1 (5)
Omj = n;0i—1 ifi>j+1 (6)
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Another definition of Simplicial Set

A simplicial set is a (contravariant) functor K : A* — Set.
e K, := K(n) (n-simplexes)
e J; := K(9;) (faces)
e 7; := K(oj) (degeneracies)

Theorem

Given a simplicial set K and a simplex x € K,,, there exists a unique
expression x = 1;, . ..n;,X, with X non-degenerate (i.e. X ¢ Im(n;),Vj),
and 0 < i < ...< i (t could be equal to 0).

Recall, in A*:
,u=5js...5j10','t...0','1,With 0<ip<...<ih and 0§j1<...<js.
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Simplicial Sets and Chain Complexes

@ Let K be a simplicial set.
o Define: Cy(K) := Z[K,], free Z-module generated by n-simplexes.
o Define: dn(x) := Y7 o(—1)'0;x over generators, and extend linearly.
@ Then: d,od,t1 =0.
Vi
Vo
V2
didx(7) = d1(0o(vo, v1, v2) — O1(vo, v1, v2) + D2(vo, Vi, v2)) = ... =0
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Homology groups

@ dyodpy1 =0 = Im(dy11) C Ker(d,) C Co(K)
@ We can define
Hn(K) := Ker(dp)/Im(dn+1), the n-th homology group of K.

@ Geometrical meaning:
%1 Vi
%) Vo

K L

%) V2
e c:=(vi,v) — (vo, v2) + (w, v1) defines a cycle (€ Ker(d1)), both in
K and L.

e Hi(K) =0, but Hi(L) = Z generated by c, since it is not a boundary
(¢ Im(d2)).
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Degenerate and non-degenerate simplexes

e A simplex x € K,, is degenerate if x = n;(x) for some x € K,_1 and
some i with 0 </ < n.

o Otherwise: x is called non-degenerate.

@ In the simplicial complex case: non-degenerate = without duplicates.

o Let us call KNP the set of non-degenerate n-simplexes of a simplicial
set K.

@ And let us call KP the set of degenerate n-simplexes.
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Different chain complexes, equal homology groups

o We define a new chain complex with D,(K) := Z[KP] and as
differential the restriction over D(K) of that of C(K).

® Remark: d|pky is well defined.

e Define CNP(K) := C(K)/D(K).

@ On the contrary, if C,(K) := Z[KNP], the differential is not
well-defined

@ ...but can be slightly modified to produce another chain complex
associated with K: C,(K).

o CNP(K) and C(K) are isomorphic
...and thus it is the same for H(CNP(K)) and H(C(K)).
What about the relation between H(K) and H(CVP(K))?
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General chain complexes

@ A chain complex is {Cp, dn)}nez, where each G, is an abelian group,
and each d, : C, — C,_1 is a homomorphism satisfying
dpi10d, =0,Vn € Z.

@ Examples: Chain complexes associated with simplicial sets
(here C, =0,Vn < 0; it is called a positive chain complex).

e Homology groups: H,(C,d) := Ker(d,)/Im(dn+1).
@ Given two chain complexes {Cy, dy)}nez and {C}, d})} ez, a chain

morphism between them is a family f of group homomorphisms
fn: Cop — C},¥n € Z satisfying d), o f, = f,_1 0 dy, Vn € Z.
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Reductions

e Given two chain complexes C := {C,, d,)}nez and
C':={C(],d))}nez a reduction between them is (f, g, h) where

» f:C— C'"and g: C' — C are chain morphisms
> and h is a family of homomorphisms (called homotopy operator)

hn:Cn—>Cn+1.
satisfying
Q fog=1
Q@ doh+hod+gof=1
Q@ foh=0
Q hog=0
© hoh=0

e If (f,g,h): C — C’is a reduction, then H(C) = H((").

o Let K be a simplicial set, then there exists a reduction
(f.g,h) : C(K) — CP(K).
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Basic Perturbation Lemma

@ Given a chain complex (C,d), a perturbation for it is a family p of
group homomorphisms p, : C, — C,_1 such that (C,d + p) is again
a chain complex (that is to say: (d + p) o (d + p) = 0).

e A reduction (f,g,h): (C,d) — (C’,d") and a perturbation p for
(C,d) are locally nilpotent if
Vx € Cp,dm € N such that (ho p)™(x) = 0.

Basic Perturbation Lemma

Let (f,g,h): (C,d) — (C',d") be a reduction and be p a perturbation for
(C, d) which are locally nilpotent. Then there exists a reduction

(foor 8o0s hoo) + (C,d +p) — (C', dL,).
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Sergeraert’s effective homology

@ From now on, all the groups in chain complexes will be free abelian

groups with an explicit basis.

That is: C, = Z[Bn]. (Example: Co(K) = Z[Kn].)

A chain complex is effective, if Vn € Z, B, is a finite set presented as

a list of elements.

@ On the contrary, a chain complex is called locally effective if the only
known data on their bases are their characteristic functions and an
equality test.

@ A chain complex with (strong) effective homology is a data structure
[C,E,f,g, h] where C is a chain complex (possibly locally effective),
E is an effective chain complex, and (f,g,h) : C — E is a reduction.

Basic Perturbation Lemma Algorithm

Given a chain complex (C, d) with effective homology and p a
perturbation for it satisfying the local nilpotency condition, then
(C,d + p) is a chain complex with effective homology.
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Bicomplexes

o A (first quadrant) bicomplex C is a family of pairs (Cp «, fp)pen With
(Cp,x)pen a family of positive chain complexes and
(fo: Cot1,+ — Cpx)pen a family of chain morphisms, such that
fpofpr1 =0.

e Given a bicomplex C = {Cp g, dp g, fp,q} p.gcv, the totalization of C is
the chain complex T(C) = (T(C)n, dn)neciv Where
T(C)n = Dprg=nCp,qg and dn = Bp1g=n(dpq © (~1)Pfq).

Effective homology of bicomplexes

Let C be a bicomplex (Cp «, f)pev such that each chain complex C,  is
with effective homology. Then the total chain complex

T(C) = (T(C)n,dn)nen is with effective homology.

Two proofs:

@ By using the Basic Perturbation Lemma.
@ As an iteration of mapping cones.
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