
Tutorial
Formalization of Algebraic Topology

Talk 2
Isabelle/HOL: First proving, then extracting code

Julio Rubio

Universidad de La Rioja
Departamento de Matemáticas y Computación

Mathematics, Algorithms, Proofs, MAP 2009

Monastir (Tunisia), December 14th-18th, 2009

Julio Rubio (Universidad de La Rioja) Formalizing Algebraic Topology 1 / 21

Summary

Introduction.

Formal statement of a Basic Perturbation Lemma (BPL).

Formal proof of the BPL in Isabelle/HOL.

Different settings for code extraction.

The graded case: the importance of types.

Conclusions and further work.

Julio Rubio (Universidad de La Rioja) Formalizing Algebraic Topology 2 / 21

Introduction

Isabelle/HOL is a theorem proving assistant for Higher Order Logic.

J. Aransay, C. Ballarin, J. R.
A mechanized proof of the Basic Perturbation Lemma
Journal of Automated Reasoning 40 (2008) 271-293.

J. Aransay, C. Ballarin, J. R.
Generating certified code from formal proofs: A case study in
Homological Algebra
To appear in Formal Aspects of Computing.

Julio Rubio (Universidad de La Rioja) Formalizing Algebraic Topology 3 / 21

Definitions

The formal proof is carried out in an ungraded setting.

A differential group is a pair (C , dC) where C is an abelian group and
dC is an endomorphism such that dC dC = 0EndC

The rest of definitions (morphism, reduction, perturbation, . . .) are
modified accordingly.

The Isabelle/HOL type for differential groups is the following:

record ’a diff_group =

carrier :: ’a set

mult :: [’a, ’a] => ’a (infixl⊗ı 70)

one :: ’a (1ı)
diff :: ’a ⇒ ’a (differı 81)

Important point: type versus carrier set.

Higher Order Logic: quantifying over sets, algebraic structures, . . .

Julio Rubio (Universidad de La Rioja) Formalizing Algebraic Topology 4 / 21

Formal statement of a Basic Perturbation Lemma (BPL)

Basic Perturbation Lemma

Let (f , g , h) : (D, dD)⇒ (C , dC) be a reduction between two differential
groups and δD : D → D a perturbation of the differential dD satisfying the
local nilpotency condition with respect to the reduction (f , g , h). Then, a
new reduction (f ′, g ′, h′) : (D ′, dD′)⇒ (C ′, dC ′) can be obtained, where
the underlying graded groups D and D ′ (resp. C and C ′) are the same,
but the differentials are perturbed: dD′ = dD + δD , dC ′ = dC + δC , where
δC = f δDψg ; f ′ = f φ; g ′ = ψg ; h′ = hφ, where φ =

∑∞
i=0(−1)i (δDh)i ,

and ψ =
∑∞

i=0(−1)i (hδD)i .

theorem (in BPL) BPL: shows reduction D’

(| carrier = carrier C, mult = mult C, one = one C, diff = (λx.
if x ∈ carrier C then (differC) x ⊗C (f ◦ δ ◦ Ψ ◦ g) x else 1C)|)
(f ◦ Φ) (Ψ ◦ g) (h ◦ Φ)

Julio Rubio (Universidad de La Rioja) Formalizing Algebraic Topology 5 / 21

Formal proof of the BPL: general organization

The formalized proof is that by
F. Sergeraert in Constructive Algebraic Topology
(Lecture Notes Summer School Institut Fourier 1997), pp. 70–72.

It is separated in two parts:
1 Equational.
2 Series.

More concretely:
1 From a family of equations F , the BPL follows.
2 From properties of the series, the family of equations F is proved.

Julio Rubio (Universidad de La Rioja) Formalizing Algebraic Topology 6 / 21

Formal proof of the BPL: equational part

The proofs are carried out inside the group of homomorphisms
between differential groups (and the ring of endomorphisms of a
differential group).

The Isabelle type and specification for the set of homomorphisms
(between monoids):

constdefs (structure G and H)

hom :: _=> _=> (’a => ’b)set

hom G H == {h. h ∈ carrier G -> carrier H &

(∀ x ∈ carrier G. ∀ y ∈ carrier G. h (x ⊗G y) = (h x)

⊗H(h y))}

Equational reasoning can be then achieved in Isabelle/HOL by using
Ballarin’s library Algebra.

Julio Rubio (Universidad de La Rioja) Formalizing Algebraic Topology 7 / 21

Formal proof of the BPL: completions

In order to work comfortably with homomorphisms as elements of an
abstract algebraic structure we need:

I To compare it.
I To operate with it (to compose it, in particular).

Consider the two homomorphisms:
I id1 = λx . id(x)
I id2 = (λx .if x ∈ carrier G then id(x) else 1G)

They represent the same function (over the carrier set of G), but they
are not extensionally equal.

Completions:
constdefs

completion :: [(’a, ’c) monoid_scheme, (’b, ’d)

monoid_scheme, (’a => ’b)] => (’a => ’b)

completion G H f == (λx. if x ∈ carrier G then f x else

one H)

Completions can be safely compared, composed, added, . . .

Julio Rubio (Universidad de La Rioja) Formalizing Algebraic Topology 8 / 21

Formal proof of the BPL: locales and instances of locales

Locales (C. Ballarin) are a way to get a modular organization of
proofs (structure + logic).

The Ring locale admits the tactic Algebra.
locale ring = abelian_group R + monoid R for R (structure) +

assumes l_distr: "[| x ∈ carrier R; y ∈ carrier R; z ∈
carrier R; |] =⇒ (x ⊕ y) ⊗ z = x ⊗ z ⊕ y ⊗z" and
r_distr: "[| x ∈ carrier R; y ∈ carrier R; z ∈ carrier R; |]

=⇒ z ⊗(x ⊕ y) = z ⊗ x ⊕ z ⊗y"
And then it can be particularized to the ring of endomorphisms:

lemma (in comm_group) hom_completion_ring:

shows "ring (| carrier = hom_completion G G,

mult = op o,

one = (λx. if x ∈ carrier G then id x else 1),
zero = (λx. if x ∈ carrier G then 1 else 1),
add = λf. λg. (λx. if x ∈ carrier G then f x ⊗ g x

else 1)|)"

This allows us to automate the Algebra proofs in this concrete ring.

Julio Rubio (Universidad de La Rioja) Formalizing Algebraic Topology 9 / 21

Formal proof of the BPL: local nilpotency

We need to deal with the power series that were defined in the BPL
statement:
φ =

∑∞
i=0(−1)i (δDh)i and ψ =

∑∞
i=0(−1)i (hδD)i

An Isabelle locale definition is used; a ring endomorphism a will be
said to satisfy the nilpotency condition whenever it satisfies the
following:

locale local_nilpotent_term = ring_endomorphisms D R + var a +

assumes a_in_R: a ∈ carrier R

and a_local_nilpot: ∀ x∈carrier D. ∃ n::nat. (a (^)R n) x =

1D
fixes deg_of_nilpot

defines deg_of_nilpot_def: deg_of_nilpot == (λx. (LEAST n.

(a (^)R (n::nat)) x = 1D))

Julio Rubio (Universidad de La Rioja) Formalizing Algebraic Topology 10 / 21

Formal proof of the BPL: the series

From the previous definition, we introduce the power series of the
element a as a function assigning to each x ∈ D the finite product
(recall: multiplicative notation) in D of the powers of such an
endomorphism:

definition (in local_nilpotent_term)

power_series x == finprod D (λi::nat. (a(^)R i) x)

{..deg_of_nilpot x}

The series defines an endomorphism too, and then the premises F for
the equational part can be proved.

Julio Rubio (Universidad de La Rioja) Formalizing Algebraic Topology 11 / 21

Extracting code from the BPL proof

Is it constructive?

Yes, but expressed in a classical logic.

Can programs be extracted from it?

Yes, in the JAR paper Berghofer’s tool was used.

Applying it to concrete spaces?

Julio Rubio (Universidad de La Rioja) Formalizing Algebraic Topology 12 / 21

Different settings for code extraction.

The programs generated from the BPL are functional
(i.e. their arguments and results are morphisms/functions).

Thus, what about the correctness of the input data?
(in general, it is not trivial: to be a differential group, for instance).

Approach 1: Only the programs from the statement are produced.
(JAR version based on Berghofer’s tool.)

Approach 2: The correctness of the input is also proved in
Isabelle/HOL.
The execution of the program on this input still relies on the target
programming language.

Approach 3: Programs and input data are grouped together in
Isabelle/HOL, proving the correctness of the complete instance, thus
going from certified programs to certified computations.
(FAC version based on the extracting tool by Haftmann and Nipkow.)

Julio Rubio (Universidad de La Rioja) Formalizing Algebraic Topology 13 / 21

From locales to type classes

Type classes (à la Haskell) give another way of representing Algebraic
Structures in Isabelle/HOL.

Example:
class times = type +

fixes times :: ’a => ’a => ’a (infixl * 70)

class semigroup_mult = times +

assumes mult_assoc: (x * y) * z = x * (y * z)

Advantages:
I Code can be generated from type classes through Haftmann-Nipkow’s

tool.
I Input specifications and statements can be grouped together in a type

class, and then instantiated.

Drawbacks:
I Type classes in Isabelle/HOL (as in Haskell 98) are single

parameterized (reductions need two parameters).
I There is no explicit carrier in a type class (and our proof of the BPL

intensively uses subsets of carriers sets).

Julio Rubio (Universidad de La Rioja) Formalizing Algebraic Topology 14 / 21

From type classes to locales
We construct general functors passing from the differential group type
class to the differential group locale (and accordingly with the rest of
data structures).
Then: our proof of the BPL can be applied, without any changes, to
type classes.
Certified computations (in ML) have been achieved in the case of a
concrete bicomplex.

Z(0,0) Z(1,0) Z(2,0) Z(3,0) . . .

Z(0,1) Z(1,1) Z(2,1) Z(3,1) . . .

Z(0,2) Z(1,2) Z(2,2) Z(3,2) . . .

Z(0,3) Z(1,3) Z(2,3) Z(3,3) . . .

.

//

OO

d=id
��

d=0
��

d=id
��

d=0
��

d=0
��

d=id
��

d=0
��

d=id
��

d=id
��

d=0
��

d=id
��

d=0
��

d=0
��

d=id
��

d=0
��

d=id
��

Julio Rubio (Universidad de La Rioja) Formalizing Algebraic Topology 15 / 21

First proving, then extracting code

Summing up:
I From a representation suitable for proving

(locales for a BPL proof) . . .
I . . . we pass to a representation suitable for extraction programs

(type classes) . . .
I . . . obtaining for free a proof of correctness of the generated programs

(proof of the BPL for type classes).

Can this scenario be generalized?

Other examples already worked out: polynomials, matrices, . . .

Julio Rubio (Universidad de La Rioja) Formalizing Algebraic Topology 16 / 21

Behavioural correspondence: an abstract framework
Let Σ be a signature (for an algebraic structure).
Let D1 a certain Σ-algebra, encoded in Isabelle/HOL (for instance)
and over which we can prove some theorems.
Some essential properties of D1 allowing us to carry out the proofs.
This implies to mark some operators on Σ (the observational part)
and some properties of them (which will act as lemmas for proving
the theorems).
D1 is useful to prove, and then it is quite abstract and very linked to
the mathematical structures Σ is representing.
Thus, likely, programs cannot be extracted in the D1 context.
Let us assume that we design a new Σ-algebra D2 but specially
devised to generate programs from it.
If we can define an abstraction map α : D2 → D1 which is a
Σ-morphism, such that the behaviour of the observational operators
are translated from D1 to D2,
then the proofs carried out over D1 are applicable to D2 (through α),
and we ensure the generation of programs certified, for free, correct.

Julio Rubio (Universidad de La Rioja) Formalizing Algebraic Topology 17 / 21

The graded case

J. Aransay, C. Doḿınguez, Modelling Differential Structures in Proof
Assistants: The Graded Case
Lecture Notes in Computer Science 5717 (2009) 203-210.

Graded structures in Isabelle/HOL.

Graded module

definition graded R module :: α ring ⇒ (int ⇒ (α, β) module) ⇒ bool
where graded R module R f ≡ ∀n. module R (f n)

Julio Rubio (Universidad de La Rioja) Formalizing Algebraic Topology 18 / 21

Easy Perturbation Lemma

(Easy Perturbation Lemma)

Given a pair of chain complexes (Mn, dn)n∈Z and (M ′n, d
′
n)n∈Z, a reduction

(f , g , h) from (Mn, dn)n∈Z to (M ′n, d
′
n)n∈Z, and a perturbation δ′ of

(M ′n, d
′
n)n∈Z, then a new reduction from (Mn, dn + gn−1 ◦ δ′n ◦ fn)n∈Z to

(M ′n, d
′
n + δ′n)n∈Z is given by means of (f , g , h).

theorem EPL

assumes reduction R M diff M’ diff’ f g h

and δ ∈ perturbation R M’ diff’

shows reduction R M (diff⊕R M M −1(g�−1(δ�0f)))

M’(diff’⊕R M′ M′ −1δ)
f g h

Julio Rubio (Universidad de La Rioja) Formalizing Algebraic Topology 19 / 21

The importance of types

Type of graded modules

definition graded R module :: α ring ⇒ (int ⇒ (α, β) module) ⇒ bool

Statement in Isabelle (incorrect)

lemma assumes ”graded R module M”
and ”x ∈ carrier (M n)”
and ”y ∈ carrier (M (n + 1))”
shows ”x �Mn y ∈ carrier (M n)”

Typing en Isabelle

assumes ”x ∈ carrier (M n)”
term x: type β
assumes ”y ∈ carrier (M (n + 1))”
term y: type β

Julio Rubio (Universidad de La Rioja) Formalizing Algebraic Topology 20 / 21

Conclusions and further work

Conclusions:
I Algebraic Topology can be formalized in Isabelle/HOL.
I Correct programs can be extracted

(even if the formalization is expressed in a classical logic).
I Typing is very flexible, but more abstraction is needed.

Further work:
I Type classes do not work with several type parameters.
I Interpretation of locales does not work with complex parameters.
I Automating the behavioural correspondence framework.

Julio Rubio (Universidad de La Rioja) Formalizing Algebraic Topology 21 / 21

	Summary.
	Introduction.
	Formal statement of a Basic Perturbation Lemma (BPL).
	Formal proof of the BPL.
	Different settings for code extraction.
	The graded case: the importance of types.
	Conclusions and further work.

