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Departamento de Matemáticas y Computación

Mathematics, Algorithms, Proofs, MAP 2009

Monastir (Tunisia), December 14th-18th, 2009

Julio Rubio (Universidad de La Rioja) Formalizing Algebraic Topology 1 / 21



Summary

Introduction.

Rewriting systems and Simplicial Topology.

Quantifier elimination.

Infrastructure to prove C (K ) =⇒ CND(K ).

Conclusions and further work.

Conclusions of the tutorial.

Julio Rubio (Universidad de La Rioja) Formalizing Algebraic Topology 2 / 21



Introduction

ACL2 = A Computational Logic for Applicative Common Lisp (ACL2).

ACL2 is:
I A programming language (an applicative subset of Common Lisp).
I A logic (a restricted first-order one, with few quantifiers).
I A theorem prover for that logic (on programs properties).

M. Andrés, L. Lambán, J. R., J. L. Ruiz-Reina.
Formalizing Simplicial Topology in ACL2.
Workshop ACL2 2007, Austin University, pp. 34-39.

L. Lambán, F. J. Mart́ın-Mateos, J. R., J. L. Ruiz Reina.
When first order is enough: the case of Simplicial Topology.
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The category ∆∗ and the simplicial set ∆

Recall: category ∆∗

I Objects: n = {0, 1, . . . , n},∀n ∈ N.
I Morphisms: µ : n→ m, increasing.

Each morphism µ : n→ m can be identified with a list (its image)
(µ0, . . . , µn) where 0 ≤ µi ≤ m,∀0 ≤ i ≤ n.

A canonical (universal) simplicial set ∆ can be defined as the
simplicial complex with
∆(n) = {(a0, a1, . . . , an); a0 ≤ a1 ≤ . . . ≤ an and ai ∈ N}.
Roughly speaking:
∆ encodes the same information as the category ∆∗.

Rough consequence:
all the properties of ∆ which can be proved by using only the
simplicial identities can be extended to any simplicial set.
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Standard encoding of degenerate simplexes

Recall:
Given a simplicial set K and a simplex x ∈ Kn, there exists a unique
expression x = ηi1 . . . ηit x , with x non-degenerate (i.e. x /∈ Im(ηj), ∀j),
and 0 ≤ it < . . . < i1 (t could be equal to 0).

Rewording it in terms of the simplicial set ∆:

Any simplex l of ∆ can be expressed in a unique way as a pair (dl , l0)
such that: l = degenerate(dl , l0) with l0 a non-degenerate simplex
and dl a strictly increasing list.

Or more generally, expressed in terms of ACL2 elements:
Any ACL2 list l can be expressed in a unique way as a pair (dl , l0)
such that: l = degenerate(dl , l0) with l0 without two consecutive
elements equal and dl a strictly increasing degeneracy list.
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Simplicial identities as rewriting rules

You can prove the previous theorem in ACL2, inside the simplicial set
∆ (it is a problem of list manipulation) or. . .

. . . you can give a more abstract proof based only in the simplicial
identities seen as rewriting rules.

Only two identities are needed for this concrete result:
I ηiηj = ηj+1ηi if i ≤ j
I ∂iηi = id .

That gives two kind of rewriting rules:
I ηiηj −→o ηj+1ηi if i ≤ j (o-rules, ordering rules)
I ∂iηi −→r id (r-rules, reduction rules).

This allows defining, in ACL2, an abstract reduction system
(framework previously developed by J. L. Ruiz-Reina and F. J.
Mart́ın-Mateos).
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Properties of the simplicial rewriting system

It is necessary only to prove two properties on this formal system:
I It is noetherian.
I It is locally confluent.

Then by using the formalization of Newman’s Lemma in
J. L. Ruiz-Reina, J. A. Alonso, M. J. Hidalgo, F. J. Mart́ın-Mateos,
Formal Proofs About Rewriting Using ACL2.
Annals of Mathematics and Artificial Intelligence 36 (2002) 239–262.

we can prove in ACL2 that the simplicial rewriting systems is
convergent

and then the canonical decomposition x = ηi1 . . . ηit x follows.
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From Simplicial to Algebraic Topology

Can this “theoretical computer science” (= rewriting systems)
approach be generalized?

Many results in Algebraic Topology take the form:

∀K ∀n ∀x ∈ Kn,T (x) = T ′(x)

where T and T ′ are linear combinations of simplicial operators (i. e.
sequences of face and degeneracy operations).

For instance: ∀K ∀n ∀x ∈ Kn, dndn+1(x) = 0.

In principle, this kind of statements requires:
I Higher order logic.
I Dependent types.
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Quantifier elimination

∀K ∀n ∀x ∈ Kn,T (x) = T ′(x)

If we work in the universal simplicial set ∆:
∀n ∀x ∈ ∆n,T (x) = T ′(x).

But x ∈ ∆n implies x can be interpreted as any list of length n + 1.

Thus: ∀n T (n) = T ′(n).

Can we even eliminate this last quantifier to obtain as statement:

T = T ′?
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Example

A (faulty) proof of dn ◦ dn+1 = 0.

I dn+1 = (−1)n+1∂
(n+1)
n+1 + (−1)n∂

(n+1)
n + . . .− ∂(n+1)

1 + ∂
(n+1)
0 and

dn = (−1)n∂
(n)
n + (−1)n−1∂

(n)
n−1 + . . .− ∂(n)

1 + ∂
(n)
0

I Let us skip the superindices:
dn+1 = (−1)n+1∂n+1 + (−1)n∂n + . . .− ∂1 + ∂0 and
dn = (−1)n∂n + (−1)n−1∂n−1 + . . .− ∂1 + ∂0

I Thus: dn+1 = (−1)n+1∂n+1 + dn.
I dn ◦ dn+1 = [(−1)n∂n + dn−1][(−1)n+1∂n+1 + dn] =

= −∂n∂n+1 + (−1)n∂ndn + (−1)n+1dn−1∂n+1 + dn−1dn.
I By induction: dn ◦ dn+1 = −∂n∂n+1 + (−1)n∂ndn + (−1)n+1dn−1∂n+1

I Lemma: ∂ndn = (−1)n∂n∂n+1 + dn−1∂n+1.
I QED.

Only using induction+simplification (ACL2!).

Can this kind of heuristic reasoning be formalized?
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Three models

Idea: when working over ∆, if a simplicial equation is true in a
dimension n, it is also true ∀m ≥ n . . .

. . . because for any simplicial complex faces and degeneracies are
defined in a generic way (i.e. a way independent from the concrete
complex and the concrete dimensions).
Three layers:

I Model 1: Simplicial sets expressed as graded sets, and functions
defining faces and degeneracies (and chain complexes over them).

I Model 2: Simplicial rewriting rules (symbolic, without evaluation on
simplices), but with dimension annotations.

I Model 3: Simplicial terms and polynomials without dimension
annotations.

From Model 2 to Model 1: trough the universal property of ∆.

From Model 3 to Model 2: for each proof carried out over Model 3, a
dimension n can be computed such that the proof can be translated
to Model 2 for all m ≥ n.

The three layers can be formalized in ACL2.
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The first model in ACL2
The higher-order aspect of the first model can be simulated in ACL2 by
means of an encapsulate.

(encapsulate
(((K * *) => *)
((d * * *) => *)
((n * * *) => *))
...

(defthm simplicial-id1
(implies (and (K n x)

(natp n)
(natp i)
(natp j)
(<= j i)
(< i n))

(equal (d (- n 1) i (d n j x))
(d (- n 1) j (d n (+ 1 i) x)))))

...
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Third model: simplicial terms

A simplicial operator is any sequence of faces and degeneracies.

Example: ∂3η0∂3∂2η5.

A simplicial term is a simplicial operator in canonical form.

In the example: η3η0∂2∂3∂4.

In ACL2 a simplicial term is represented as a pair of two lists of
natural numbers, the first one strictly decreasing, and the second one
strictly increasing.

In the example: ((3 0) (2 3 4))

Simplicial terms can be composed, following the simplicial rules.

We have proved in ACL2 that the set of simplicial terms together
with this binary operation form a monoid (the unity being the list
with two empty lists).
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Third model: simplicial polynomials

Given a monoid (T , ◦, 1), we can construct the set P of linear
combinations (with integer coefficients) over T .

By extending the product in T , we can endow P with a ring structure.

This construction can be formalized in ACL2 as a generic theory
(a tool previously developed in ACL2 by J. L. Ruiz-Reina and F. J.
Mart́ın-Mateos).

Example of theorem inferred:

(defthm cmp-pol-pol-add-pol-pol-distributive-l
(implies (and (pol-p p1)

(pol-p p2)
(pol-p p3))

(equal (cmp-pol-pol (add-pol-pol p1 p2) p3)
(add-pol-pol (cmp-pol-pol p1 p3)

(cmp-pol-pol p2 p3)))))
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The differential example revisited

The “heuristic” proof of dn ◦ dn+1 = 0 can be now formalized in ACL2

(defthm cmp-d-d=0
(implies (and (natp n)

(< 0 n))
(equal (cmp-sp-sp (d n) (d (1+ n)))

(add-pol-pol-id))))

Not only it can be formalized, but it can be highly automated.

Furthermore, it can be “lifted” to Model 1 (through Model 2) in ACL2
and expressed in the standard textbook way.
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A reduction from C (K ) to CND(K )

Recall:
I Let K be a simplicial set.

F Define: Cn(K) := Z[Kn], free Z-module generated by n-simplexes.
F Define: dn(x) :=

∑n
i=0(−1)i∂ix over generators, and extend linearly.

I Define CND(K ) := C (K )/D(K ), where Dn(K ) := Z[KD
n ], with KD

n the
set of degenerate n-simplexes of K .

I Theorem: there exists a reduction (f , g , h) : C (K )⇒ CND(K ).

We are going to use the previous infrastructure on the ring of
simplicial polynomials to give an ACL2 proof of this result.
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An experimental result

In
J. R., F. Sergeraert.
Supports Acycliques and Algorithmique.
Astérisque 192 (1990) pp. 35-55.

we have found experimentally the following formula for
(f , g , h) : C (K )⇒ CND(K ).

I f is simply the canonical projection.
I gn =

∑
(−1)

∑p
i=1 ai +bi ηap . . . ηa1∂b1 . . . ∂bp

where the indexes range over 0 ≤ a1 < b1 < . . . < ap < bp ≤ n, with
0 ≤ p ≤ (n + 1)/2.

I hn =
∑

(−1)ap+1+
∑p

i=1 ai +bi ηap+1ηap . . . ηa1∂b1 . . . ∂bp

where the indexes range over 0 ≤ a1 < b1 < . . . < ap < ap+1 ≤ bp ≤ n,
with 0 ≤ p ≤ (n + 1)/2.

and we claimed there, without proof, that they define a homotopy
equivalence.
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Obtaining a reduction

Other proofs were known, but no one (up to our knowledge) is given
by means of explicit programmable formula.

In fact (f , g , h) does not define a reduction, but only a homotopy
equivalence.

Our definitions satisfy:
1 fg = id
2 dh + hd + fg = id
3 fh = 0, but
4 hg 6= 0
5 hh 6= 0

Nevertheless, there is a generic procedure to obtain an actual
reduction from (f , g , h) satisfying (1) and (2).

This can be encoded in Model 1, since it does not require complex
rewriting.
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Devising an ACL2 proof

The simplicial ring technique can be applied over one space/chain
complex, but in the statement there are now two chain complexes.

Solution: do not pass too early to the quotient.

We model everything on C (K ), the “big” chain complex.
I The morphism f is replaced by the simplicial polynomial F = id .
I The morphism g is replaced by a simplicial polynomial G

(thus it is interpreted as a morphism C (K )→ C (K )).
I The homotopy operator h is replaced by a simplicial polynomial H.

By applying induction and simplification over the simplicial ring, we
prove in ACL2

I dG = Gd
I dH + Hd + G = id

and several properties proving that G and H are well behaved with
respect to degeneracies.

Then Model 1 can be used to express the theorem in the usual terms.
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Conclusions and further work

Conclusions:
I ACL2 can be used to formalize (part of) Simplicial and Algebraic

Topology.
I Going down to first order, through the simplicial ring, a higher degree

of automation is reached.
I In ACL2, we are always verifying Common Lisp programs, close

relatives of Kenzo ones.

Further work:
I To continue exploring and extending the first order simplicial ring

technique.
I Up to now, we have been guided by Kenzo requirements:

F The Kenzo representation of degenerate simplexes
(proved correct by means of ACL2, Calculemus 2009).

F Justifying why in Kenzo we can work with the smaller chain complex
CND(K).

I Next step: Eilenberg-Zilber theorem (the bridge between Geometry and
Algebra).
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Conclusions of the tutorial

Algebraic Topology seems a good area to experiment with the
formalization and mechanization of Mathematics:

I Infinite dimensional spaces occur there in a natural (and unavoidable)
way.

I It is needed to deal with complicated algebraic structures hierarchies.
I There are difficult combinatorial proofs.

In summary: logic is complicated in Algebraic Topology, and
combinatorics too.

Challenge guiding our approach: the verification of the Kenzo system.
(Formal mathematics for program verification.)

Our multi-tool approach seems to be suitable:

I Isabelle/HOL to get proofs as close as possible to those of books and
papers.

I Coq when the constructiveness of proofs needs to be ensured.
I ACL2 when first order is enough, and we need to be very near the

Kenzo Common Lisp code.
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