Tutorial
 Formalization of Algebraic Topology Talk 4

ACL2: Going down to first order. The case of Simplicial Topology

Julio Rubio
Universidad de La Rioja
Departamento de Matemáticas y Computación
Mathematics, Algorithms, Proofs, MAP 2009
Monastir (Tunisia), December 14th-18th, 2009

Summary

- Introduction.
- Rewriting systems and Simplicial Topology.
- Quantifier elimination.
- Infrastructure to prove $C(K) \Longrightarrow C^{N D}(K)$.
- Conclusions and further work.
- Conclusions of the tutorial.

Introduction

- $\mathrm{ACL2}=\mathrm{A}$ Computational Logic for Applicative Common Lisp $\left(A C L^{2}\right)$.
- $\mathrm{ACL2}$ is:
- A programming language (an applicative subset of Common Lisp).
- A logic (a restricted first-order one, with few quantifiers).
- A theorem prover for that logic (on programs properties).
- M. Andrés, L. Lambán, J. R., J. L. Ruiz-Reina.

Formalizing Simplicial Topology in ACL2.
Workshop ACL2 2007, Austin University, pp. 34-39.

- L. Lambán, F. J. Martín-Mateos, J. R., J. L. Ruiz Reina.

When first order is enough: the case of Simplicial Topology.

The category Δ^{*} and the simplicial set Δ

- Recall: category Δ^{*}
- Objects: $\mathbf{n}=\{0,1, \ldots, n\}, \forall n \in \mathbb{N}$.
- Morphisms: $\mu: \mathbf{n} \rightarrow \mathbf{m}$, increasing.
- Each morphism $\mu: \mathbf{n} \rightarrow \mathbf{m}$ can be identified with a list (its image) $\left(\mu_{0}, \ldots, \mu_{n}\right)$ where $0 \leq \mu_{i} \leq m, \forall 0 \leq i \leq n$.
- A canonical (universal) simplicial set Δ can be defined as the simplicial complex with
$\Delta(\mathbf{n})=\left\{\left(a_{0}, a_{1}, \ldots, a_{n}\right) ; a_{0} \leq a_{1} \leq \ldots \leq a_{n}\right.$ and $\left.a_{i} \in \mathbb{N}\right\}$.
- Roughly speaking:
Δ encodes the same information as the category Δ^{*}.
- Rough consequence:
all the properties of Δ which can be proved by using only the simplicial identities can be extended to any simplicial set.

Standard encoding of degenerate simplexes

- Recall:

Given a simplicial set K and a simplex $x \in K_{n}$, there exists a unique expression $x=\eta_{i_{1}} \ldots \eta_{i_{t}} \bar{x}$, with \bar{x} non-degenerate (i.e. $\bar{x} \notin \operatorname{Im}\left(\eta_{j}\right), \forall j$), and $0 \leq i_{t}<\ldots<i_{1}(t$ could be equal to 0$)$.

- Rewording it in terms of the simplicial set Δ :
- Any simplex I of Δ can be expressed in a unique way as a pair $(d I, I 0)$ such that: $I=$ degenerate $(d I, I 0)$ with $/ 0$ a non-degenerate simplex and $d l$ a strictly increasing list.
- Or more generally, expressed in terms of ACL2 elements: Any ACL2 list I can be expressed in a unique way as a pair ($d I, I 0$) such that: $I=$ degenerate $(d I, / 0)$ with $/ 0$ without two consecutive elements equal and $d l$ a strictly increasing degeneracy list.

Simplicial identities as rewriting rules

- You can prove the previous theorem in ACL2, inside the simplicial set Δ (it is a problem of list manipulation) or...
- ... you can give a more abstract proof based only in the simplicial identities seen as rewriting rules.
- Only two identities are needed for this concrete result:
- $\eta_{i} \eta_{j}=\eta_{j+1} \eta_{i}$ if $i \leq j$
- $\partial_{i} \eta_{i}=i d$.
- That gives two kind of rewriting rules:
- $\eta_{i} \eta_{j} \longrightarrow o \eta_{j+1} \eta_{i}$ if $i \leq j$ (o-rules, ordering rules)
- $\partial_{i} \eta_{i} \longrightarrow_{r}$ id (r-rules, reduction rules).
- This allows defining, in ACL2, an abstract reduction system (framework previously developed by J. L. Ruiz-Reina and F. J. Martín-Mateos).

Properties of the simplicial rewriting system

- It is necessary only to prove two properties on this formal system:
- It is noetherian.
- It is locally confluent.
- Then by using the formalization of Newman's Lemma in J. L. Ruiz-Reina, J. A. Alonso, M. J. Hidalgo, F. J. Martín-Mateos, Formal Proofs About Rewriting Using ACL2. Annals of Mathematics and Artificial Intelligence 36 (2002) 239-262.
- we can prove in ACL2 that the simplicial rewriting systems is convergent
- and then the canonical decomposition $x=\eta_{i_{1}} \ldots \eta_{i_{t}} \bar{x}$ follows.

From Simplicial to Algebraic Topology

- Can this "theoretical computer science" (= rewriting systems) approach be generalized?
- Many results in Algebraic Topology take the form:

$$
\forall K \forall n \forall x \in K_{n}, T(x)=T^{\prime}(x)
$$

where T and T^{\prime} are linear combinations of simplicial operators (i. e. sequences of face and degeneracy operations).

- For instance: $\forall K \forall n \forall x \in K_{n}, d_{n} d_{n+1}(x)=0$.
- In principle, this kind of statements requires:
- Higher order logic.
- Dependent types.

Quantifier elimination

- $\forall K \forall n \forall x \in K_{n}, T(x)=T^{\prime}(x)$
- If we work in the universal simplicial set Δ :

$$
\forall n \forall x \in \Delta_{n}, T(x)=T^{\prime}(x)
$$

- But $x \in \Delta_{n}$ implies x can be interpreted as any list of length $n+1$.
- Thus: $\forall n T^{(n)}=T^{\prime(n)}$.
- Can we even eliminate this last quantifier to obtain as statement:

$$
T=T^{\prime} ?
$$

Example

- A (faulty) proof of $d_{n} \circ d_{n+1}=0$.
- $d_{n+1}=(-1)^{n+1} \partial_{n+1}^{(n+1)}+(-1)^{n} \partial_{n}^{(n+1)}+\ldots-\partial_{1}^{(n+1)}+\partial_{0}^{(n+1)}$ and

$$
d_{n}=(-1)^{n} \partial_{n}^{(n)}+(-1)^{n-1} \partial_{n-1}^{(n)}+\ldots-\partial_{1}^{(n)}+\partial_{0}^{(n)}
$$

- Let us skip the superindices:

$$
\begin{aligned}
& d_{n+1}=(-1)^{n+1} \partial_{n+1}+(-1)^{n} \partial_{n}+\ldots-\partial_{1}+\partial_{0} \text { and } \\
& d_{n}=(-1)^{n} \partial_{n}+(-1)^{n-1} \partial_{n-1}+\ldots-\partial_{1}+\partial_{0}
\end{aligned}
$$

- Thus: $d_{n+1}=(-1)^{n+1} \partial_{n+1}+d_{n}$.
- $d_{n} \circ d_{n+1}=\left[(-1)^{n} \partial_{n}+d_{n-1}\right]\left[(-1)^{n+1} \partial_{n+1}+d_{n}\right]=$

$$
=-\partial_{n} \partial_{n+1}+(-1)^{n} \partial_{n} d_{n}+(-1)^{n+1} d_{n-1} \partial_{n+1}+d_{n-1} d_{n} .
$$

- By induction: $d_{n} \circ d_{n+1}=-\partial_{n} \partial_{n+1}+(-1)^{n} \partial_{n} d_{n}+(-1)^{n+1} d_{n-1} \partial_{n+1}$
- Lemma: $\partial_{n} d_{n}=(-1)^{n} \partial_{n} \partial_{n+1}+d_{n-1} \partial_{n+1}$.
- QED.
- Only using induction+simplification (ACL2!).
- Can this kind of heuristic reasoning be formalized?

Three models

- Idea: when working over Δ, if a simplicial equation is true in a dimension n, it is also true $\forall m \geq n \ldots$
- ... because for any simplicial complex faces and degeneracies are defined in a generic way (i.e. a way independent from the concrete complex and the concrete dimensions).
- Three layers:
- Model 1: Simplicial sets expressed as graded sets, and functions defining faces and degeneracies (and chain complexes over them).
- Model 2: Simplicial rewriting rules (symbolic, without evaluation on simplices), but with dimension annotations.
- Model 3: Simplicial terms and polynomials without dimension annotations.
- From Model 2 to Model 1: trough the universal property of Δ.
- From Model 3 to Model 2: for each proof carried out over Model 3, a dimension n can be computed such that the proof can be translated to Model 2 for all $m \geq n$.
- The three layers can be formalized in ACL2.

The first model in ACL2

The higher-order aspect of the first model can be simulated in ACL2 by means of an encapsulate.
(encapsulate

$$
\begin{aligned}
& (((\mathrm{K} * *)=>*) \\
& ((\mathrm{d} * * *)=>*) \\
& ((\mathrm{n} * * *)=>*))
\end{aligned}
$$

(defthm simplicial-id1

```
(implies (and (K n x)
                                (natp n)
                                (natp i)
                                (natp j)
                                (<= ji)
                                (< i n))
        (equal (d (- n 1) i (d \(n \mathrm{j} x)\) )
    \((d \quad(-n 1) j(d n(+1 i) x))))\)
```


Third model: simplicial terms

- A simplicial operator is any sequence of faces and degeneracies.
- Example: $\partial_{3} \eta_{0} \partial_{3} \partial_{2} \eta_{5}$.
- A simplicial term is a simplicial operator in canonical form.
- In the example: $\eta_{3} \eta_{0} \partial_{2} \partial_{3} \partial_{4}$.
- In ACL2 a simplicial term is represented as a pair of two lists of natural numbers, the first one strictly decreasing, and the second one strictly increasing.
- In the example: ((3 0) (2 344$)$)
- Simplicial terms can be composed, following the simplicial rules.
- We have proved in ACL2 that the set of simplicial terms together with this binary operation form a monoid (the unity being the list with two empty lists).

Third model: simplicial polynomials

- Given a monoid ($\mathcal{T}, \circ, \mathbf{1}$), we can construct the set \mathcal{P} of linear combinations (with integer coefficients) over \mathcal{T}.
- By extending the product in \mathcal{T}, we can endow \mathcal{P} with a ring structure.
- This construction can be formalized in ACL2 as a generic theory (a tool previously developed in ACL2 by J. L. Ruiz-Reina and F. J. Martín-Mateos).
- Example of theorem inferred:
(defthm cmp-pol-pol-add-pol-pol-distributive-l
(implies (and (pol-p p1)
(pol-p p2)
(pol-p p3))

$$
\begin{aligned}
& \text { (equal (cmp-pol-pol (add-pol-pol p1 p2) p3) } \\
& \text { (add-pol-pol (cmp-pol-pol p1 p3) } \\
& \text { (cmp-pol-pol p2 p3))))) }
\end{aligned}
$$

The differential example revisited

The "heuristic" proof of $d_{n} \circ d_{n+1}=0$ can be now formalized in ACL2
(defthm cmp-d-d=0
(implies (and (natp n)

$$
(<0 \mathrm{n}))
$$

(equal (cmp-sp-sp (dn) (d (1+n)))
(add-pol-pol-id))))
Not only it can be formalized, but it can be highly automated.
Furthermore, it can be "lifted" to Model 1 (through Model 2) in ACL2 and expressed in the standard textbook way.

A reduction from $C(K)$ to $C^{N D}(K)$

- Recall:
- Let K be a simplicial set.
* Define: $C_{n}(K):=\mathbb{Z}\left[K_{n}\right]$, free \mathbb{Z}-module generated by n-simplexes.
\star Define: $d_{n}(x):=\sum_{i=0}^{n}(-1)^{i} \partial_{i x}$ over generators, and extend linearly.
- Define $C^{N D}(K):=C(K) / D(K)$, where $D_{n}(K):=\mathbb{Z}\left[K_{n}^{D}\right]$, with K_{n}^{D} the set of degenerate n-simplexes of K.
- Theorem: there exists a reduction $(f, g, h): C(K) \Rightarrow C^{N D}(K)$.
- We are going to use the previous infrastructure on the ring of simplicial polynomials to give an ACL2 proof of this result.

An experimental result

- In
J. R., F. Sergeraert.

Supports Acycliques and Algorithmique.
Astérisque 192 (1990) pp. 35-55.

- we have found experimentally the following formula for $(f, g, h): C(K) \Rightarrow C^{N D}(K)$.
- f is simply the canonical projection.
- $g_{n}=\sum(-1)^{\sum_{i=1}^{p} a_{i}+b_{i}} \eta_{a_{\rho}} \ldots \eta_{a_{1}} \partial_{b_{1}} \ldots \partial_{b_{p}}$ where the indexes range over $0 \leq a_{1}<b_{1}<\ldots<a_{p}<b_{p} \leq n$, with $0 \leq p \leq(n+1) / 2$.
- $h_{n}=\sum(-1)^{a_{p+1}+\sum_{i=1}^{p} a_{i}+b_{i}} \eta_{a_{p+1}} \eta_{a_{p}} \ldots \eta_{a_{1}} \partial_{b_{1}} \ldots \partial_{b_{p}}$ where the indexes range over $0 \leq a_{1}<b_{1}<\ldots<a_{p}<a_{p+1} \leq b_{p} \leq n$, with $0 \leq p \leq(n+1) / 2$.
- and we claimed there, without proof, that they define a homotopy equivalence.

Obtaining a reduction

- Other proofs were known, but no one (up to our knowledge) is given by means of explicit programmable formula.
- In fact (f, g, h) does not define a reduction, but only a homotopy equivalence.
- Our definitions satisfy:
(1) $f g=i d$
(2) $d h+h d+f g=i d$
(3) $f h=0$, but
(9) $h g \neq 0$
(3) $h h \neq 0$
- Nevertheless, there is a generic procedure to obtain an actual reduction from (f, g, h) satisfying (1) and (2).
- This can be encoded in Model 1, since it does not require complex rewriting.

Devising an ACL2 proof

- The simplicial ring technique can be applied over one space/chain complex, but in the statement there are now two chain complexes.
- Solution: do not pass too early to the quotient.
- We model everything on $C(K)$, the "big" chain complex.
- The morphism f is replaced by the simplicial polynomial $F=i d$.
- The morphism g is replaced by a simplicial polynomial G (thus it is interpreted as a morphism $C(K) \rightarrow C(K)$).
- The homotopy operator h is replaced by a simplicial polynomial H.
- By applying induction and simplification over the simplicial ring, we prove in ACL2
- $d G=G d$
- $d H+H d+G=i d$
- and several properties proving that G and H are well behaved with respect to degeneracies.
- Then Model 1 can be used to express the theorem in the usual terms.

Conclusions and further work

- Conclusions:
- ACL2 can be used to formalize (part of) Simplicial and Algebraic Topology.
- Going down to first order, through the simplicial ring, a higher degree of automation is reached.
- In ACL2, we are always verifying Common Lisp programs, close relatives of Kenzo ones.
- Further work:
- To continue exploring and extending the first order simplicial ring technique.
- Up to now, we have been guided by Kenzo requirements:
* The Kenzo representation of degenerate simplexes (proved correct by means of ACL2, Calculemus 2009).
ฝ Justifying why in Kenzo we can work with the smaller chain complex $C^{N D}(K)$.
- Next step: Eilenberg-Zilber theorem (the bridge between Geometry and Algebra).

Conclusions of the tutorial

- Algebraic Topology seems a good area to experiment with the formalization and mechanization of Mathematics:
- Infinite dimensional spaces occur there in a natural (and unavoidable) way.
- It is needed to deal with complicated algebraic structures hierarchies.
- There are difficult combinatorial proofs.
- In summary: logic is complicated in Algebraic Topology, and combinatorics too.
- Challenge guiding our approach: the verification of the Kenzo system. (Formal mathematics for program verification.)
- Our multi-tool approach seems to be suitable:
- Isabelle/HOL to get proofs as close as possible to those of books and papers.
- Coq when the constructiveness of proofs needs to be ensured.
- ACL2 when first order is enough, and we need to be very near the Kenzo Common Lisp code.

