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Framework

Bishop-style constructive mathematics without countable choice.

Intuitionistic logic. Suitable fragment of CZF. Unique Choice.

No non-unique countable choice, let alone dependent choice.

Completions without sequences; real numbers: Dedekind cuts.

Continuity: uniform continuity on every compact domain.

Compactness: total boundedness plus completeness.



Setting

Let S be a metric space and F : S → R a continuous function.

If S is totally bounded and F uniformly continuous, then inf F can

be computed, in which case it may be assumed that inf F = 0.

If S is compact, can one locate a minimum of F? That is, find a

point of S at which F attains its infimum, or simply a root of F?

Heuristics: constructive solutions are continuous in the parameters.

Hence uniqueness of the solution is needed to rule out discontinuity.



Variants of uniqueness

Let F > 0; denote points of S by y, y′ and real numbers > 0 by ε, δ.

Any such F has uniformly at most one root if

∀δ ∃ε∀y, y′
[
F (y) < ε ∧ F (y′) < ε ⇒ d(y, y′) < δ

]
or, equivalently,

∀δ ∃ε∀y, y′
[
d(y, y′) > δ ⇒ F (y) > ε ∨ F (y′) > ε

]
.

In this case F has at most one root: i.e.,

∀δ ∀y, y′ ∃ε
[
d(y, y′) > δ ⇒ F (y) > ε ∨ F (y′) > ε

]
or more simply but equivalently

∀y, y′
[
y 6= y′ ⇒ F (y) > 0 ∨ F (y′) > 0

]
.



Theorem 1 Let S be a complete metric space and F : S → R a

uniformly continuous function. If inf F = 0 and F has uniformly at

most one root, then there is y ∈ S with F (y) = 0.

This well known metatheorem has a considerable history:

Lifshitz 1971, Gelfond 1972, Kreinovich 1979, Bridges 1980, Aczel

1987, Ko 1986, Kohlenbach 1993, Weihrauch 2000, Oliva 2002,

Kohlenbach-Oliva 2003, Bauer-Taylor 2005, Brattka 2008, . . .

(to mention for each author only the first printed occurrence)



The metatheorem

— can be traced back to Russian recursive mathematics;

— has proved productive in constructive/computable analysis;

— stood right at the beginnings of the so-called proof mining.

The uniqueness hypothesis helps to find the root above any “pure

existence proof” tied together with the use of classical logic.



Two (semi-)classical short cuts

If S has the Bolzano-Weierstraß property, then no uniqueness hy-
pothesis at all is necessary.

If S has the Heine-Borel property, then the non-uniform uniqueness
precondition suffices.

The Weak König Lemma is equivalent to (Ishihara 1990):

Every continuous function on a compact space attains its infimum.

Brouwer’s Fan Theorem is equivalent to (J. Berger, Bridges, Sch. 2005):

Every continuous function on a compact space that has at most
one minimum attains its infimum.



Uniqueness with parameters

Let S, T be metric spaces and F : T × S → R with F > 0 such that

∀ε∀x∃δ∀x′∀y, y′
[
d(x, x′) < δ ∧ F (x, y) < δ ∧ F (x′, y′) < δ ⇒ d(y, y′) < ε

]
,

or even

∀ε∃δ∀x∀x′∀y, y′
[
d(x, x′) < δ ∧ F (x, y) < δ ∧ F (x′, y′) < δ ⇒ d(y, y′) < ε

]
.

Before any talk of existence, note that F (x, y) = 0 defines a point-

wise (or even uniformly) continuous partial function x 7→ y.

(Look at the case F (x, y) = 0 and F
(
x′, y′

)
= 0, first with x = x′.)

In other words: Uniqueness with parameters implies continuity.



A parametrised version of the metatheorem is known equally well:

Corollary 2 Let F : S × T → R be as above. If, in addition, S is

complete, and F (x, · ) uniformly continuous with inf F (x, · ) = 0 for

each x ∈ T , then there is a pointwise or even uniformly continuous

f : T → S with F (x, f (x)) = 0 for all x ∈ T .

The case x = x′ already of the non-uniform hypothesis

∀ε∀x∃δ∀x′∀y, y′
[
d(x, x′) < δ ∧ F (x, y) < δ ∧ F (x′, y′) < δ ⇒ d(y, y′) < ε

]
says that F (x, · ) has uniformly at most one root for every x ∈ T ;

whence the partial function x 7→ y defined by F (x, y) = 0 is total.

This subsumes the Implicit Functions Theorem (Diener-Sch. 2009).



Proving the metatheorem with countable choice (folklore)

Since inf F = 0 one can choose (!) a sequence (yn) in S with

F (yn) < 1/n, which is a Cauchy sequence because F has uniformly

at most one root. Hence if S is complete, then (yn) has a limit y

in S, for which F (y) = 0 by the continuity of F .

One only needs that S is complete, and F sequentially continuous.

Uniform uniqueness, however, is essential to get a Cauchy sequence.

Even if S fails to be complete, the given data are converted—by

countable choice—into an element of the completion of S.

The problem thus provides us, in a sense, with its own solution.



. . . and without countable choice (Sch. 2009)

The completion of S is the set Ŝ of locations (Richman 2000).

Similar methods to define completions without sequences:
Mulvey 1979, Burden and Mulvey 1979, Stolzenberg 1988,
Vickers 2005, Fox 2005, Palmgren 2007, . . .

Let R denote the set of Dedekind reals: that is, located cuts in Q.

A location on S is a function f : S → R with inf f = 0 and

|f (y)− f (z)| 6 d (y, z) 6 f (y) + f (z) .

The set Ŝ of all locations on S is a metric space with metric

d (f, g) = sup |f − g| = inf (f + g) .



There is the isometric embedding

S ↪→ Ŝ , z 7→ ẑ = d (z, · ) ,

along which (each point of) S is identified with its image in Ŝ.

As usual, S is dense in Ŝ, and S is complete if S equals Ŝ:

that is, for every f ∈ Ŝ there is z ∈ S with f = ẑ.

Needless to say, Ŝ is complete; and so is R for R ∼= Q̂.

Every location measures the distance between itself and the points:

d (f, ẑ) = f (z) .



Every location f on S is uniformly continuous with inf f = 0, has
uniformly at most one root, and satisfies

f (z) = lim
f(y)→0

d (z, y) .

More generally, if F : S → R with inf F = 0 has uniformly at most
one root, then the corresponding limit exists for every z ∈ S:

lim
F (y)→0

d (z, y) .

Lemma 3 If F : S → R with inf F = 0 is uniformly continuous
and has uniformly at most one root, then

fF (z) = lim
F (y)→0

d (z, y)

defines fF ∈ Ŝ with F̂ (fF ) = 0 .

Even more clearly, the problem provides us with its own solution!



Note that every ϕ : S → T that is uniformly continuous on bounded

subsets extends uniquely to a mapping ϕ̂ : Ŝ → T̂ with

ϕ̂ (f) (z) = lim
f(y)→0

d (ϕ (y) , z)

for every z ∈ T which is uniformly continuous on bounded subsets.

If S and T are complete, then ϕ̂ = ϕ.

Example If S = R \ {a} and F (t) = |t− a|k with k > 1, then

fF (t) = lim
F (s)→0

d (t, s) = lim
s→a

d(t, s) = d(t, a) = |t− a| .

In particular, fF = F precisely when k = 1, which is the only case

in which F is a location.

But why does uniform uniqueness help to find the solution at all?



The unique solution property: an equivalent of completeness

Definition A metric space has the unique solution property if for

every uniformly continuous F : S → R with inf F = 0 which has

uniformly at most one root there is y ∈ S with F (y) = 0.

The metatheorem thus says that every complete metric space has

the unique solution property. The converse, however, is also valid:

Theorem 4 A metric space has the unique solution property if and

only if it is complete.

In fact, S is complete already when every location on S has a root

in S: if f ∈ Ŝ has the root y ∈ S, then f = ŷ because d (f, ŷ) = f (y).



Alternative proof, for completions with Cauchy sequences:

If (yn) is a Cauchy sequence in S, then

f(y) = lim
n→∞ d(y, yn)

defines a location f on S such that

f(y) = 0 ⇔ lim
n→∞ yn = y .

Moduli of convergence and of uniqueness correspond to each other.

“Cauchy sequence” and uniform uniqueness have the same form:

∀δ ∃N ∀k, k′
[
k > N ∧ k′ > N ⇒ d(yk, yk′) < δ

]
∀δ ∃ε∀y, y′

[
F (y) < ε ∧ F (y′) < ε ⇒ d(y, y′) < δ

]



The Banach Fixed Point Theorem: a simple-minded example

Let h : S → S be such that there is λ < 1 with

d(h(y), h(y′)) 6 λ · d(y, y′) .

First, h has approximate fixed points: for any y0 ∈ S,

d(hk(y0), h(hk(y0)) 6 λk · d(y0, h(y0)) .

Next, h has uniformly at most one fixed point:

d(y, y′) 6 d(h(y), h(y′)) +
[
d(y, h(y)) + d(y′, h(y′)

]
⇒ (1− λ) · d(y, y′) 6 d(y, h(y)) + d(y′, h(y′)) .

Along the same lines two typical applications, the Implicit Functions
Theorem and the Picard-Lindelöf Theorem, can be settled directly,
without any need to invoke the Banach Fixed Point Theorem.
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[a digression on limits]

Let h : S → R and a ∈ R with inf
x∈S

|h (x)− a| = 0 .

For every g : S → R and b ∈ R, we write lim
h(x)→a

g (x) = b whenever

∀ε∃δ ∀x (|h (x)− a| < δ ⇒ |g (x)− b| < ε) .

(If S = R and h (x) = x, this means nothing but lim
x→a

g (x) = b.)



The limit—if it exists—is uniquely determined. But when does it

exist?

A (necessary and) sufficient condition for the existence of the limit

is

∀ε∃δ ∀x, y (|h (x)− a| < δ ∧ |h (y)− a| < δ ⇒ |g (x)− g (y) | < ε) .

In fact, the subset L of Q characterised by

r ∈ L ⇔ ∃s ∈ Q [r < s ∧ ∃δ ∀x (|h (x)− a| < δ ⇒ s < g (x))]

is a lower cut in Q defining b ∈ R with lim
h(x)→a

g (x) = b.

[end of digression]



Proof of Lemma For every x the limit exists and is uniquely deter-

mined by x; whence unique choice suffices to obtain the function

fF . It is routine to verify that fF is a location on S; we still have

to see that F̂ (fF ) = 0.

Since fF (x) = lim
F (y)→0

d (x, y), we indeed have

d
(
F̂ (fF ) ,0

)
= F̂ (fF ) (0) = lim

fF (x)→0

F (x)︷ ︸︸ ︷
d (F (x) ,0)

(†)
= 0 .

As for (†), it is straightforward to give a rigorous version of the

following argument: if fF (x) is small, then x is close—by the def-

inition of fF—to some y with F (y) small, so that F (x) is small.

q.e.d.



The Fan Theorem and unique existence: a digression

Brouwer’s Fan Theorem can equivalently be put as:

FAN Every decidable binary tree without infinite path is finite.

This is the contrapositive of the Weak König Lemma:

WKL Every infinite decidable binary tree has an infinite path.

With intuitionistic logic, WKL implies FAN (Ishihara 2006).



The logical form of FAN and WKL is

FAN ∀α ∃n B (αn) ⇒ ∃n∀α B (αn)

WKL ∀n∃α T (αn) ⇒ ∃α ∀n T (αn)

where B and T are decidable properties of finite binary sequences

that are closed under extension and restriction, respectively, and

αn = (α (0) , . . . , α (n− 1))

denote the finite initial segments of infinite binary sequences α.

Think of B and T as of each other’s complement in {0,1}∗.



J. Berger, Bridges, and Sch. (2003): FAN is equivalent to

MIN! Every continuous function on a compact space

that has at most one minimum attains its infimum

J. Berger and Ishihara (2005) exchanged the Minimum Theorem for

the Weak König Lemma (see also Schwichtenberg 2005), Cantor’s

Intersection Theorem, and a Fixed Point Theorem.

All these equivalents of FAN have the following form:

If a problem on a compact space has approximate solutions

and at most one solution, then it has an exact solution.

Yet it was all but clear why FAN occurred in this context.



The Positivity Principle

POS Every continuous function on a compact space that

attains only positive values has a positive infimum

is the equivalent of FAN that was needed to prove MIN!.

With FAN in the form of POS we now know why it occurred there.

Sch. (2006): FAN is equivalent to

UAM If a continuous function on a compact space has at most

one minimum, then it has uniformly at most one minimum.

This sharpens FAN ⇒ MIN!, because UAM ⇒ MIN!.



Proof We already know that MIN! ⇒ FAN and FAN ⇒ POS.

To show the missing link POS ⇒ UAM, we assume that S is com-
pact, and that H : S → R is continuous with inf H = 0.

We will use Bishop’s result that d(x, y) > δ defines a compact subset
of S × S for all but countably many values of δ.

The condition “H has at most one minimum” can be put as

∀x, y (∃δ d(x, y) > δ ⇒ H(x) + H(y) > 0) ,

which is equivalent to

∀δ ∀x, y (d(x, y) > δ ⇒ H(x) + H(y) > 0) .

By POS, this implies

∀δ ∃ε∀x, y (d(x, y) > δ ⇒ H(x) + H(y) > ε) ,

which is equivalent to “H has uniformly at most one minimum”.



Problems as their own solutions: a trivial observation

Let Φ(S) consist of all the F : S → R with inf F = 0 which are
uniformly continuous and have uniformly at most one root.

Since fF = F whenever F ∈ Ŝ, the mapping

Φ(S) → Ŝ , F 7→ fF

has a cross section. The relation ≈ on Φ(S) defined by

F ≈ G ⇔ ∀δ ∃ε∀x, y [F (x) < ε ∧G (y) < ε ⇒ d (x, y) < δ]

is an equivalence relation, and satisfies

F ≈ G ⇔ fF = fG .

In all, F 7→ fF induces a bijection

Φ(S) / ≈ ↔ Ŝ .

Also, the following are equivalent: F ≈ ŷ, fF = ŷ, and F (y) = 0.


