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Logical Analysis of (some) Proofs in Algebra

Content of the course

Lecture I: Hilbert’s program, intuitionistic/classical logic, negative translation

Lecture II: coherent logic, dynamical proof

The lecture II presents a new approach to constructive mathematics
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Content of the course

Coste, Lombardi, Roy

“Dynamical Method in Algebra”,

Ann. Pure Appl. Logic 111 (2001), no. 3, 203–256.

Prawitz

“Ideas and results in proof theory”

in the Proceedings of the Second Scandinavian Logic Symposium, 1971
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Hilbert’s program

In mathematics, success of non effective methods to prove concrete statements

concrete: existence of a “finitary” object satisfying a decidable property
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Hilbert’s program

Theorem (Krivine): If P ∈ Q[x1, . . . , xk] is > 0 on [0, 1]n then it can be
written as a polynomial in xi, 1− xi with rational positive coefficients

This is also proved with the Axiom of Choice

It is not true if P is only ≥ 0: take (2x− 1)2

(but it works for (2x− 1)2 + ε if ε > 0)
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Hilbert’s program

Theorem (Kronecker): Given n + 2 polynomials in Q[X1, . . . , Xn]
P1, . . . , Pn+2 there exist n + 1 polynomials Q1, . . . , Qn+1 such that

Z(P1, . . . , Pn+2) = Z(Q1, . . . , Qn+1) ⊆ Cn

One proof (van der Waerden) uses the notion of Noetherian rings and Krull
dimension
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Other examples

(Counter) Example: any polynomial P of degree ≥ 1 in K[X] has an
irreducible factor

If P is not irreducible, P = QR with 1 ≤ d(Q) < d(R) and we can find an
irreducible factor

This looks like an algorithm but even if K is concretely given it can be shown
that there is no such algorithm in general

The property: “to be irreducible” is not decidable in general
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Other examples

How is it that we can use such properties without problems?

This notion of irreducible polynomials is used without comment in the work
of Abel and Galois (early use of classical reasoning?)
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Hilbert’s program

Whenever we use “ideal methods” to prove a concrete statement we should
be able to explain the use of these ideal methods and replace this argument by a
proof which has a direct algorithmic content

In particular, if we prove the existence of an object, this proof should give us
a way to find this object

“ideal methods”: Axiom of Choice, prime ideals
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Role of classical arguments?

Brouwer-Heyting-Kolmogorov: constructive proofs can be seen directly as
algorithms

Question: has the use of ideal/non effective arguments in mathematics some
computational relevance??

We shall see that it has some connection with the idea of lazy computation

(We cannot compute completely an infinite object but we can use partial finite
amount of information about this object during a computation.)
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Fragments of First-Order Logic

Equational logic (much larger fragment than it seems: one important theorem
of Serre 1958 can be formulated in this fragment)

Coherent logic (for which intuitionistic and classical logic coincide)

Intuitionistic logic (for which we have the BHK interpretation)

Classical first-order logic
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Geometric logic

Some properties cannot be stated in first-order logic but belongs to a logic for
which intuitionistic and classical logic coincide (extension of coherent logic with
countable disjunction)

nilpotent
∨

n∈N xn = 0

flat module Σriui = 0 → ∃B.∃~v.~u = B~v ∧ (r1, . . . , rk)B = 0

to be integral
∨

n∈N ∃u1, . . . , un.xn + u1x
n−1 + · · ·+ un
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Completeness theorems

Theorem: (Birkhoff’s theorem) If an equation is a semantical consequence
of an equational theory then it can be deduced purely by equational reasoning

Theorem: (Skolem, Gödel) If a first-order statement is a semantical
consequence of a first-order theory then it can be deduced purely by first-order
reasoning

Theorem: (Deligne?) If a coherent first-order statement is a semantical
consequence of a coherent first-order theory then it can be deduced purely by a
dynamical proof
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Completeness theorems

This is an indication that Hilbert’s program should hold in algebra since most
statements there can be formulated in an equational or coherent way

Skolem and Gödel proved completeness w.r.t. “cut-free” provabibility (this is
not the case for Henkin’s proof)
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Example: Jacobson radical

Classically one defines J ⊆ R as the intersection of all maximal ideals of R

One can prove x ∈ J ↔ ∀z.inv(1− xz) where inv(u) ≡ ∃y.uy = 1

It follows that we have

∀z.inv(1− uz) ∧ ∀z.inv(1− vz) → ∀z.inv(1− (u + v)z)

This is a first-order tautology and hence it can be proved in first-order logic

Furthermore the proof cannot be “too complicated”
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Kronecker’s theorem

We consider a two sorted theory: theory of commutative rings and theory of
distributive lattice with D : R → L satisfying

D(0) = 0 D(1) = 1 D(uv) = D(u) ∧D(v) D(u + v) ≤ D(u, v)

where D(u1, . . . , un) denotes D(u1) ∨ · · · ∨D(un)

Key example: L is the lattice of finitely generated radical ideals of R
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Kronecker’s theorem

In this theory, the following property holds

D(uv) = 0 → D(u + v) = D(u, v)

Since this is first-order the proof cannot be too complex: it follows from

D(u + v, uv) = D(u, v)
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Kronecker’s theorem

We say that a1, . . . , an and b1, . . . , bn are complementary iff

D(a1, b1) = 1, D(a1b1) ≤ D(a2, b2), . . . , D(anbn) = 0

For n = 1 this means that D(a1) is the complement of D(b1)

R,D is of dimension < n iff any n-ary sequence has a complementary sequence
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Kronecker’s theorem

Theorem: if R,D is of dimension < n then for any u0, u1, . . . , un there exists
v1, . . . , vn such that D(u0, . . . , un) = D(v1, . . . , vn)

This is a generalisation of Kronecker’s Theorem

Since it is formulated as a first-order schema the proof cannot be complicated
a priori
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Forster’s theorem

Let M be a rectangular matrix and ∆n(M) be ∨νD(ν) where ν ranges over
the n× n minors of M

Theorem: If ∆n(M) = 1 and R,D is of dimension < n then there exists an
unimodular combination of the column vectors of M

This is a non Noetherian version of Forster’s 1964 Theorem

Since it is formulated as a first-order schema the proof cannot be complicated
a priori

For a given n and given size of the matrix, one expects to have an algorithm
which produces the unimodular combination
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Negative translation

We shall explain an important example of a conservativity result which has a
completely elementary proof (this is not the case for the cut-elimination results)

Conservativity of classical logic over intuitionistic logic, for a large class of
statements

Kolmogorov (1925), Gödel (1932), Bernays, Gentzen, Friedman-Dragalin
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Negative translation

The fact that there is such a simple translation between classical and
intuitionistic logic gives an intuitionistic proof of consistency of classical arithmetic

This result probably surprised Gödel, Bernays (1932) who introduced since a
distinction between “finitary” and “intuitionistic”

There is another distinction: difference between “feasible” and “finitary”. The
negative translation is feasible, normalization in natural deduction is not.
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A-translation for first-order logic

We fix a first-order language

A,B ::= R(t1, . . . , tk) | A ∧A | A → A | ⊥ | A ∨A | ∀x.A | ∃x.A

As “usual” we define ¬A to be A →⊥
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Natural deduction

Prawitz/Gentzen Γ ` A if A ∈ Γ

Γ ` A Γ ` B

Γ ` A ∧B

Γ ` A ∧B

Γ ` A

Γ ` A ∧B

Γ ` B

Γ, A ` C Γ, B ` C Γ ` A ∨B

Γ ` C

Γ ` A

Γ ` A ∨B

Γ ` B

Γ ` A ∨B

Γ, A ` B

Γ ` A → B

Γ ` A → B Γ ` A

Γ ` B
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Natural deduction

Γ ` A(x)
Γ ` ∀x.A(x)

(∗) Γ ` ∀x.A(x)
Γ ` A(t)

Γ ` A(t)
Γ ` ∃x.A(x)

Γ, A(x) ` B Γ ` ∃x.A(x)
Γ ` B

(∗)
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Natural deduction

Γ,⊥` A

Without this rule we have minimal logic

With this rule we have intuitionistic logic

To get classical logic, we add the rule

Γ,¬A `⊥
Γ ` A

Notice that classical logic contains intuitionistic logic
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A-translation for first-order logic

¬AB = B → A

B∗ = ¬A¬AB, B atomic

(B1 ∧B2)∗ = B∗
1 ∧B∗

2

(B1 → B2)∗ = B∗
1 → B∗

2

(⊥)∗ = A

(B1 ∨B2)∗ = ¬A¬A(B∗
1 ∨B∗

2)
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A-translation for first-order logic

Since `i ¬A(B ∨ C) ↔ ¬AB ∧ ¬AC and `i ¬A(∃x.B) ↔ ∀x.¬AB this
amounts to take away ∨ and ∃ and to define then

B ∨ C = ¬(¬B ∧ ¬C)

∃x.B = ¬(∀x.¬B)

This is what Prawitz does (and he restricts the inference of ` B from ¬B `⊥
to atomic formulae B)
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A-translation for first-order logic

Already in Kolmogorov (1925) on the form

B∗ = ¬A¬AB, B atomic

(B1 ∧B2)∗ = ¬A¬A(B∗
1 ∧B∗

2)

(B1 → B2)∗ = ¬A¬A(B∗
1 → B∗

2)

(B1 ∨B2)∗ = ¬A¬A(B∗
1 ∨B∗

2) (by translation)

(⊥)∗ = A
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A-translation for first-order logic

(∀x.B)∗ = ∀x.B∗

(∃x.B)∗ = ¬A¬A(∃x.B∗)

Lemma: ¬A¬AB∗ `i B∗ for any formula B

Theorem: If B1, . . . , Bk `c B then B∗
1 , . . . , B∗

k `i B∗

Assume that Σ is a set of formulae such that Σ `i B∗ if B ∈ Σ and `i C∗ → C

Corollary: If Σ `c C then Σ `i C

29



Logical Analysis of (some) Proofs in Algebra

Application: arithmetic

The first application is when Σ is the theory of natural numbers. The only
relation symbol is equality.

0 6= x + 1 x + 1 = y + 1 → x = y

For each of these formulae we have `i A → A∗

The induction schema I(A) is the formula

A(0) ∧ ∀x.(A(x) → A(x + 1)) → ∀x.A(x)

We have I(A)∗ = I(A∗)
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Application: arithmetic

Peano Arithmetic is Σ with classical logic, Heyting Arithmetic is Σ with
intuitionistic logic

Theorem: If PA ` C then HA ` C∗

If C is a formula ∃y.B(x, y) with B atomic and we take A = ∃x.B(x, y) we
get

Theorem: If PA ` ∃y.B(x, y) then HA ` ∃y.B(x, y)
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Application: arithmetic

This can be considered as a solution of Hilbert’s program for arithmetic: if
we prove classically the existence of a number satisfying some equations then we
have also an intuitionistic proof

Furthermore we have an explicit way to get this proof from the classical
argument

Theorem: If PA `⊥ then HA `⊥

This is a simple constructive proof of the consistency of Peano Arithmetic

Why it is not considered as a solution to Hilbert’s program: distinction
between finitary and intuitionistic (Gödel, Bernays 1932)
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Application I: coherent theories

We assume that all formulae in Σ are the form

H ::= R(t1, . . . , tk) | H∧H | H∨H | ⊥ | > | ∃x.H I ::= H → H | ∀x.I

The formulae H are called positive formulae

Lemma: For any positive formula H we have `m H∗ ↔ ¬A¬AH

Lemma: For any coherent formula I we have `m I → I∗

Theorem: If all formulae of Σ are coherent, I is coherent and Σ `c I then
Σ `m I
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Application I: coherent theories

An example of a coherent theory is the theory of local rings

Axiom (∃y.xy = 1) ∨ (∃y.(1− x)y = 1)

We define inv(x) ≡ ∃y.xy = 1, the axiom can be written

inv(x) ∨ inv(1− x)

We have inv(xy) ↔ inv(x) ∧ inv(y) hence the axiom implies

inv(x) ∨ inv(1− xy)

Define J(x) ≡ ∀y.inv(1− xy) we have classically

inv(x) ∨ J(x)
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Application I: coherent theories

J defines an ideal of R

Classically we can show inv(x) ∨ J(x) and k = R/J is a field

inv(x) ∨ J(x) expresses that we have a local ring with a detachable maximal
ideal

One can prove that this is not provable intuitionistically (using the technique
presented in the second lecture)
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Application I: coherent theories

Using that R/J is a field one can prove

Lemma: If F is an idempotent square matrix over a local ring R then F is
similar to a matrix of the form (

Ir 0
0 0

)

By our metatheorem this can also be proved intuitionistically

In practice, in most examples, the direct intuitionistic proof is not more
complicated than the classical proof
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Application II: example

(This example is due to U. Berger and H. Schwichtenberg.)

Suppose that we have proved 5 < f(3) and f(0) ≤ 5

We show ∃n.f(n) ≤ 5 < f(n + 1) classically
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Application II: example

If this is not the case, we have ∀n.f(n) ≤ 5 → f(n + 1) ≤ 5

Since f(0) ≤ 5 by induction we have f(n) ≤ 5 for all n

This contradicts 5 < f(3)

A constructive proof will be to prove directly, from f(0) ≤ 5 < f(3)

(f(0) ≤ 5 < f(1)) ∨ (f(1) ≤ 5 < f(2)) ∨ (f(2) ≤ 5 < f(3))

What do we get by negative translation?
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Application II: counter-example

We have a proof in PA of a statement ∃n.∀m.f(n + m) 6= 0

It states that the equation f(x) = 0 has only a finite number of solutions

In general, from a proof of this statement, it will not be possible to compute
a bound for the solutions

Concrete instance: Mordell’s conjecture, which states that a large class of
polynomial equations has only a finite number of rational solutions
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Problems in constructive algebra

Proposition: There is no irreducibility test for k[X] even if k is discrete

We reduce the problem to a decision ∀n.αn = 0 ∨ ∃n.αn = 1

Is X2 + 1 irreducible over k[X] where k is the field generated by the elements
αni, n ∈ N??

This field k is well-defined: its elements are polynomials f(α0i, . . . , αni) and
it is discrete

X2 + 1 is irreducible over k[X] iff ∀n.αn = 0
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